Generalizing endoscopic transfer

David Vogan

Harish-Chandra Centenary Conference
October 9–14, 2023
Outline

Introduction

L-groups

Langlands parameters

Endoscopic groups

Examples of endoscopic groups

Slides at
http://www-math.mit.edu/~dav/paper.html/
Joint work with Jeffrey Adams and Lucas Mason-Brown generalizing endoscopic transfer for reductive groups.

Our results concern real reductive groups.

Subject is a morass of technical difficulties, many of which are much worse for \mathbb{R} than for p-adic fields.

Example: need to change def of Langlands parameter/\mathbb{R}.

I’ll avoid some difficulties by discussing mostly non-archimedean local field k, and connected reductive algebraic G/k.

Avoid remaining difficulties by ignoring them.
What’s the plan?

Study rep theory of reductive algebraic G.

Typically G defined over a local field k, but details later.

Endoscopic group: smaller reductive H, often $H \not\subset G$.

Examples:

$$G = \text{Sp}(2(p + q), \mathbb{R}), \quad H = \text{SO}(p, p) \times \text{Sp}(2q, \mathbb{R})$$
$$G = \text{Sp}(2(p + r), \mathbb{R}), \quad H = \text{GL}(p, \mathbb{R}) \times \text{Sp}(2r, \mathbb{R}).$$

Endoscopic transfer: (virtual H-reps) \rightarrow (virt G-reps).

Will define slightly larger class of such $H \not\subset G$.

New examples:

$$G = \text{Sp}(2(p + q + r), \mathbb{R}) \quad H = \text{U}(p, q) \times \text{Sp}(2r, \mathbb{R})$$
$$G = \text{GL}(2p + q, \mathbb{R}) \quad H = \text{GL}(p, \mathbb{C}) \times \text{GL}(q, \mathbb{R})$$
What’s this have to do with Harish-Chandra?

Harish-Chandra’s work on discrete series was rooted in what Hermann Weyl did for compact groups: (Weyl integration) + (Schur orthog) \(\leadsto\) (Weyl char formula).

Harish-Chandra’s work was the same, except that every step required radically new ideas.

One such idea was his method of descent. If \(s \in G\) semisimple, then \(H = G^s\) is again reductive.

Harish-Chandra descent describes any character \(\Theta_G\) near \(s\) in terms of a new character \(\Theta_H\) on \(H\).

In formal language, he defined a linear map descent

\[
(K(G) = \text{virtual reps of } G) \longrightarrow (K(H) = \text{virtual reps of } H).
\]

Endoscopic transfer is Harish-Chandra descent applied in the Langlands L-group.
How do you name a group? (case of \overline{k})

To ask about a group G, you need first to give it a name.

Lie, Chevalley and Grothendieck solved this problem:

(reductive algebraic group G) / algebraically closed \overline{k} ↔ based root datum $\mathcal{R}(G) = (X^*, \Pi, X_*, \Pi^\vee)$.

X^* and X_* are dual lattices: chars/ cochars of max torus in G.

finite sets $\Pi \subset X^*$ and $\Pi^\vee \subset X_*$: simple roots/simple coroots.

Any lattice is isomorphic to \mathbb{Z}^n, so the name $\mathcal{R}(G)$ of G is two finite collections of n-tuples of integers.

Two names are the same iff first collections differ by invertible integer matrix M, and second collections differ by tM^{-1}.

Example: $GL(2)$ is given by $\Pi = \{(1, -1)\}$, $\Pi^\vee = \{(1, -1)\}$.

Example: the exceptional group G_2 is given by

$\Pi = \{(1, 0), (0, 1)\}$, $\Pi^\vee = \{(2, -1), (-3, 2)\}.$
How do you name a group? (case of k)

A reductive G/\overline{k} named by the (combinatorial) based root datum $\mathcal{R}(G)$: two finite sets of n-tuples of integers.

Defining G/k gives action of $\Gamma = \text{Gal}(\overline{k}/k)$ on $\mathcal{R}(G)$.

Concretely: repn of Γ by $n \times n$ integer matrices $\mu(\sigma)$ so

$$\mu(\sigma) \cdot \Pi = \Pi, \quad ^t\mu(\sigma)^{-1} \cdot \Pi^\vee = \Pi^\vee,$$

respecting axioms for a based root datum.

Shorthand: action of Γ on the Dynkin diagram of G.

k-forms of G are inner if \sim same action of Γ on $\mathcal{R}(G)$.

Example A rank two unitary group/k starts with a separable quadratic extension of k; that is, subgroup $\Gamma_0 \subset \Gamma$ of index two.

Representation of Γ on \mathbb{Z}^2 is

$$M(\sigma) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (\sigma \in \Gamma_0), \quad M(\sigma) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \quad (\sigma \notin \Gamma_0)$$

All unitary grps w fixed quad ext form a single inner class.
L-group

Defining $G / \text{any } k \xrightarrow{\sim} \text{action of } \Gamma = \text{Gal}(\bar{k}/k) \text{ on } \mathcal{R}(G)$.

Axioms for based root data are symmetric in $(X^*, \Pi) \leftrightarrow (X^*, \Pi^\vee)$.

Dual based root datum is $\mathcal{R}^\vee = (X^*, \Pi^\vee, X^*, \Pi)$.

Gives reductive algebraic dual group $^\vee G$ and

\[L\text{-group } ^L G = ^\vee G \rtimes \Gamma, \quad \text{(defined over } \mathbb{Z}). \]

Langlands’ insight (local Langlands conjecture):

\[(\text{analytic rep theory/K of } G(k)) \leftrightarrow (\text{alg geom of } ^L G(K)). \]

Typically $K = \mathbb{C}$ and k is local.

Complex reps of $G(k) \leftrightarrow \text{complex alg geom of } ^L G(\mathbb{C})$

Endoscopic (and generalized endoscopic) groups H correspond to subgroups $^E H \subset ^L G$.

By local Langlands, relating $\hat{H}(k)$ to $\hat{G}(k)$ means relating alg geom of $^L G(\mathbb{C})$ to alg geom of subgroup $^E H(\mathbb{C})$.

Easy! But what the hell is \leftrightarrow?
Weil-Deligne group

k p-adic field, $\Gamma = \text{Gal}(\overline{k}/k)$, G conn reductive alg/k.

L-G complex L-group: $1 \to \mathcal{V} G \to L G \to \Gamma \to 1$.

Local Langlands explains irr reps $\widehat{G(k)}$ using $L G$.

Recall: finite residue field \mathbb{F}_q of $k \leadsto$ natural surjection

$$1 \to I_k \to \Gamma \to \widehat{\mathbb{Z}} = \langle \text{Frob} \rangle \to 1.$$

Inertia subgroup I_k is profinite compact.

Weil group $W_k = (\text{dense})$ preimage in Γ of $\langle \text{Frob} \rangle$:

$$1 \to I_k \to W_k \to \mathbb{Z} = \langle \text{Frob} \rangle \to 1.$$

Weil-Deligne group $W'_k = W_k \ltimes \mathbb{C}$: here I_k acts trivially on \mathbb{C}, and Frob acts by multiplication by q.
Langlands parameters

Recall $\Gamma = \text{Gal}(\overline{k}/k)$, and $W_k \subset \Gamma$ is a dense subgroup.

Have two short exact sequences

\[
\begin{array}{cccccc}
1 & \to & \breve{\mathbf{G}} & \to & L\mathbf{G} & \to & \Gamma & \to & 1 \\
& & \uparrow & & \uparrow \phi' & & \uparrow \\
1 & \to & \mathbb{C} & \to & W'_k & \to & W_k & \to & 1
\end{array}
\]

Langlands parameter is a group homomorphism $\phi' : W'_k \to L\mathbf{G}$ compatible with exact sequences.

Means $\phi'|_{\mathbb{C}} : \mathbb{C} \to \breve{\mathbf{G}}$ (one-param nilp alg subgp), and ϕ' descends to inclusion $W_k \hookrightarrow \Gamma$.

Loc Langlands conj: $\phi' \leadsto$ finite L-pkt $\Pi(\phi') \subset \hat{G}(k)$.

More conjecture:

1. L-packets partition $\hat{G}(k)$;
2. $\Pi(\phi')$ depends only $\breve{\mathbf{G}}$-conj class of ϕ';
3. if $G(k)$ quasisplit, then $\Pi(\phi') \neq \emptyset$.
Repn theory and algebraic geometry

Want to translate problems about reps of $G(k)$ to alg geom problems about parameters in L^*G.

Infl char of ϕ' is $\phi = \phi'|_{W_k}$. Each infl char $\phi: W_k \to L^*G$ extends in finitely many ways to $\phi': W'_k \to L^*G$: the parameters of infl char ϕ.

Since I_k compact, $^\forall G^{\phi(I_k)} = \text{centralizer in } ^\forall G$ of $\phi(I_k)$ is reductive algebraic in $^\forall G$.

Preimage $\widetilde{\text{Frob}}$ in W_k defines $\phi(\widetilde{\text{Frob}}) \in L^*G$, so semisimple alg aut (indep of $\widetilde{\text{Frob}}$) $\sigma_\phi = \text{Ad}(\phi(\widetilde{\text{Frob}})) \in \text{Aut}(^\forall G^{\phi(I_k)})$.

σ_ϕ defines $^\forall G^\phi = (^\forall G^{\phi(I_k)})^{\sigma_\phi}$, twisted pseudolevi of $^\forall G^{\phi(I_k)}$.

$\eta(\phi) = \text{def } q$-eigenspace of σ_ϕ on $^\forall g^{\phi(I_k)}$, a vector space of nilpotent Lie algebra elements on which $^\forall G^\phi$ acts.

The algebraic geom we want is $^\forall G^\phi$ orbits on $\eta(\phi)$.

$\eta(\phi)$ is prehomogeneous for $^\forall G^\phi$: finitely many orbits.
Could you repeat that?

Start with a Langlands parameter $\phi': W'_k \to ^L G$.

Restriction ϕ_I of ϕ' to inertia $I_k \subset \text{Gal}(\bar{k}/k)$ is arithmetic; image is profinite (compact) subgroup of $^L G$:

$$Z_{^G}G(\phi(I_k)) = ^G\phi(I_k)$$

reductive algebraic.

An extension ϕ of ϕ_I to W_k (called infinitesimal character) is given by a single element $\phi(\text{Frob})$ of $^L G$.

$\phi(\text{Frob})$ defines $\text{aut } \sigma_\phi$ of $^G\phi(I_k)$, fixed points $^G\phi$. q-eigspace of $d\sigma_\phi = \text{nilp subspace } \pi(\phi) \subset g^{\phi(I_k)}$.

$\pi(\phi)$ is prehomogeneous for $^G\phi$.

Parameters ϕ' of infl char $\phi \leftrightarrow ^G\phi$ orbits O' on $\pi(\phi)$.

irreps of infl char $\phi \leftrightarrow ^G\phi$-eqvt perv sheaves on $\pi(\phi)$.

L-packet of $\phi' \leftrightarrow$ sheaves with support O'.
What’s the plan?

L-group has short exact seq $$1 \rightarrow ^\lor G \rightarrow ^L G \rightarrow \Gamma \rightarrow 1$$.

L-subgroup is $$^L G \supset ^E H \rightarrow \Gamma$$, kernel $$^\lor H$$ reductive:

$$1 \rightarrow ^\lor G \rightarrow ^L G \rightarrow \Gamma \rightarrow 1$$

$$\cup \ \ \ \ | \ \ \ \ |$$

$$1 \rightarrow ^\lor H \rightarrow ^E H \rightarrow \Gamma \rightarrow 1$$

In this setting param $$\phi'_H$$ for $$^E H \sim\rightarrow$$ param $$\phi$$ for $$^L G$$;

$$\pi(\phi_H) \subset \pi(\phi), \quad ^\lor H^\phi \subset ^\lor G^\phi.$$

This is the geometric part of local Langlands functoriality.

So relating reps of $$G$$ to reps of $$H$$ amounts to relating perv sheaves on $$\pi(\phi)$$ to perv sheaves on $$\pi(\phi_H)$$.

To get strong theorems relating perverse sheaves to a subvariety, need strong hypotheses on the subvariety.

Example is Goresky-MacPherson Lefschetz formula.

Need subvariety = fixed points of an automorphism.
What’s an endoscopic group?

Langlands params are $^\vee G$ orbits on (algebraic variety).
So action of $s \in {^\vee G} \rightsquigarrow$ automorphism of params.

Endoscopic datum is

1. $s \in {^\vee G}$ semisimple;
2. L-subgroup $^E H \subset (^L G)^s \subset ^L G$, with
3. $^\vee H =$ identity component of $^\vee G^s$ reductive in $^\vee G$.

Root datum $\mathcal{R}(^\vee H)$ has dual root datum $\rightsquigarrow H/\overline{k}$.

$^E H \rightsquigarrow$ action of $\Gamma = \text{Gal}(\overline{k}/k)$ on root data,
\rightsquigarrow inner class of k-forms of H.

Endoscopic group for $G = H/k$, any form in inner class.
Where’s the fixed point formula?

\[s \in {}^\vee G \text{ semisimple, } L\text{-subgroup } {}^E H \subset ({}^L G)^s \subset {}^L G, \quad {}^\vee H = {}^\vee (G^s)_0. \]

Hypotheses imply \({}^E H \) open in \(({}^L G)^s\).

Simplify by assuming \({}^E H = ({}^L G)^s \). Then

(fixed pts of \(Ad(s) \) on params) = (params for \({}^E H \)).

This equality allows application of a Lefschetz formula.

More precisely:

\[\text{tr} (s \text{ action on perv cohom for } {}^L G) = \text{tr} (s \text{ action on perv cohom for } {}^E H). \]

Since \(s \) central in \({}^E H \), right side is easy.

Equality seems to require \(s \) to centralize \({}^E H \).

Generalization seems impossible...
Here’s how to generalize

Generalized endoscopic datum is

1. $s \in \check{\check{G}}$ semisimple;
2. L-subgroup $^E H \subset \check{L}G$ normalized by s;
3. $\check{\check{H}}$ = identity component of $\check{\check{G}}^s$ reductive in $\check{\check{G}}$;
4. quotient action of $\text{Ad}(s)$ on $\Gamma = ^E H/\check{\check{H}}$ is trivial.

As for endoscopic groups,

$^E H \rightsquigarrow$ Galois action on root datum for $\check{\check{H}}$

\rightsquigarrow inner class of k-forms of H.

These k forms are generalized endoscopic groups.

Define $\xi: ^E H \to \check{\check{H}}$ by $\xi(m) = sms^{-1}m^{-1}$ $(m \in ^E H)$.

Equivalently: $\text{Ad}(s)(m) = \xi(m)m$.

ξ measures failure of s to commute with $^E H$, or equivalently failure of $^E H$ to be endoscopic.

Then ξ factors to $\Gamma = ^E H/\check{\check{H}}$, values in $Z(\check{\check{H}})$.

Precisely: ξ is 1-cocycle of Γ with values in $Z(\check{\check{H}})$.
How do you generalize endoscopic transfer?

Endoscopic transfer: should correspond to map sheaves on $L G$ params \rightsquigarrow sheaves on $E H$ params.

Classical endoscopy: s acts by conjugation on $L G$ params; fixed points are $E H$ params.

Only $L G$-params in image are $^\vee G$-conj to $E H$-params.

Generalized endoscopy: s still acts on $L G$-params, but does not fix $E H$ params: $\text{Ad}(s)(\phi_H(\gamma)) = \xi(\gamma)\phi_H(\gamma)$.

Try modify $\text{Ad}(s)$ by ξ^{-1}: $(s \circ_\xi \phi)(\gamma) = \xi^{-1}(\gamma)\text{Ad}(s)(\phi(\gamma))$. But this is not an action except on $E H$ params.

Solution: look only at params conjugate to $E H$ params:

$^\vee G \times_\nu_H(E H \text{ params}) \to (L G \text{ params}), \quad (g, \phi'_H) \mapsto \text{Ad}(g)\phi'_H$.

s acts on left space by $s \circ_\xi (g, \phi'_H) = \text{Ad}(g)(\xi^{-1}\phi'_H)$.

Fixed points of \circ_ξ are $E H$ params.
What’s that ★ action on parameters?

To make Langlands params $H (\forall H = \forall G^s)$ into fixed points, needed to compose action of $\text{Ad}(s)$ with mult by a 1-cocycle.

Following very special case may shed some light. Result stated is Theorem for k archimedean, and in various p-adic cases where local Langlands conj is proven.

Desideratum (Langlands); see Borel, Corvallis volume 2.

$$\phi': W'_k \rightarrow ^LG \rightsquigarrow L\text{-packet } \Pi(\phi') = \{\pi_\tau\}.$$

π_τ is irrep of an inner k-form of G. Suppose that

$$\xi: W'_k \rightarrow Z(G^\forall)$$

is a 1-cocycle. Define

$$\xi \cdot \phi': W'_k \rightarrow ^LG, \quad (\xi \cdot \phi')(w) = \xi(w)\phi'(w).$$

1. The 1-cocycle condition means $\xi \cdot \phi'$ is also a group homomorphism, new Langlands parameter.

2. $\overline{\xi} \in H^1(W'_k, Z(\forall G)) \rightsquigarrow \text{smooth char } \gamma_{\overline{\xi}}$ of $G(k)$.

3. $\Pi(\xi \cdot \phi') = \{\gamma_{\overline{\xi}} \otimes \pi_\tau\}$.

Mult param by $Z(\forall G)$ cocycle tensors G reps with 1-diml rep.
Classical endoscopic groups

Suppose G/k reductive and $P = MN$ parabolic over k.
Put $X^*(M) =$ ratl chars of M, a Γ-fixed sublattice of $X^*(G)$.
$\leadsto \Gamma$-fixed sub $\subset X^*(^\vee G) \leadsto \Gamma$-fixed torus $^\vee A \subset ^\vee G$.
$^\vee M \overset{\text{def}}{=} ^\vee G^A$ is Γ-stable, dual to M: $^L M \simeq ^\vee M \rtimes \Gamma$.
Generic $s \in ^\vee A \leadsto (^L G)^s = ^L M \leadsto $ endoscopic group M.
Endoscopic transfer (reps of $M) \leadsto $ (reps of G) is Ind_{MN}^G.
Endoscopy is more powerful than parabolic induction.
Allows $Z_{^L G}(\Gamma$-fixed element), not just Γ-fixed torus.
But endoscopy also misses a lot of interesting subgroups.
Rational Cartan subgrp of G is almost never endoscopic.
Generalized endoscopic groups

Suppose L any rational Levi subgroup of $G \hookrightarrow \Gamma$ action on root datum of L.

If G simply connected, easy to find $L \subset L \subset G$.

In general, get extended group $E L \subset L \subset G$.

$s \in Z(\vee L)$ generic $\mapsto (s, E L)$ gen endoscopic datum $\mapsto L$ generalized endoscopic for G.

Endoscopic transfer from general ratl Levi L should be important generalization of parabolic induction.

Over \mathbb{R}, this is Zuckerman’s cohomological induction.

Over a p-adic field, this is still a mystery.

Harish-Chandra would tell us to get to work.