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For nearly a century, investigators in the social sciences have used regression
models to deduce cause-and-effect relationships from patterns of association. Path
models and automated search procedures are more recent developments. In my
view, this enterprise has not been successful. The models tend to neglect the
difficulties in establishing causal relations, and the mathematical complexities tend
to obscure rather than clarify the assumptions on which the analysis is based.
Formal statistical inference is, by its nature, conditional. If maintained hypotheses
A, B, C, . . . hold, then H can be tested against the data. However, if A, B, C, . . .
remain in doubt, so must inferences about H. Careful scrutiny of maintained
hypotheses should therefore be a critical part of empirical work}a principle
honored more often in the breach than the observance. This paper focuses on
modeling techniques that seem to convert association into causation. The object is
to clarify the differences among the various uses of regression, as well as the source
of the difficulty in making causal inferences by modeling. The discussion will

Ž Ž .proceed mainly by examples, ranging from Yule J. R. Stat. Soc. 62 1899 ,
. Ž249]295 to Spirtes, Glymour, and Scheines ‘‘Causation,’’ Lect. Notes in Statist,

.Vol. 81, Springer-Verlag, New YorkrBerlin, 1993 . Q 1997 Academic Press

1. OUTLINE

Many treatments of regression seem to take for granted that the
investigator knows the relevant variables, their causal order, and the
functional form of the relationships among them; measurements of
the independent variables are assumed to be without error. Indeed, Gauss
developed and used regression in physical science contexts where these
conditions hold, at least to a very good approximation.1 Today, the text-
book theorems that justify regression are proved on the basis of such
assumptions.

U Presented at the Notre Dame Conference on Causality in Crisis, Oct. 15]17, 1993.
1 Gauss was fitting orbits to astronomical observations, with least squares to estimate the

w x w x w xelements of the orbits 21 . Stigler 64, pp. 145]146 awards priority to Legendre 36 .
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In the social sciences, the situation seems quite different. Regression is
used to discover relationships or to disentangle cause and effect. However,
investigators have only vague ideas as to the relevant variables and their
causal order; functional forms are chosen on the basis of convenience or
familiarity; serious problems of measurement are often encountered.

Regression may offer useful ways of summarizing the data and making
predictions. Investigators may be able to use summaries and predictions to
draw substantive conclusions. However, I see no cases in which regression
equations, let alone the more complex methods, have succeeded as engines
for discovering causal relationships. Of course, there may be success
stories that I have not found; nor does a track record of failure necessarily
project into the future.

One of the first applications of regression techniques to social science is
w xYule 71 . Recent examples will be found in Spirtes, Glymour, and Scheines

w x Ž62 , to be cited here as SGS. The SGS theory is summarized in Glymour
w x .23 , cited as CG. SGS have attracted considerable attention in the
philosophy of science, because they have developed computerized algo-
rithms that search for path models. With their algorithms, SGS claim to
make rigorous inferences of causation from association. This is a bold
claim, which does not survive examination.

The balance of this paper is organized as follows. Section 2 discusses
Yule’s work. Sections 3 and 4 explain the critical data of ‘‘exogeneity.’’
Section 5 describes a contemporary regression model. Sections 6]10 re-
view SGS and reanalyze some of their examples. Sections 11]12 canvass
some mathematical issues. Possible responses to my critique will be found
in Section 13. There is a brief review of the literature in Section 14, and
conclusions are presented in Section 15. For ease of reference, standard
formulas for regression are given in an appendix. I have tried to make
most of the paper accessible to nonstatistical readers, particularly if they
will permit the occasional undefined technical term; Sections 11 and 12 are
more specialized.

2. YULE’S REGRESSION MODEL FOR PAUPERISM

One of the first regression models in social science was developed by
Yule}‘‘An Investigation into the Causes of Changes in Pauperism in
England, Chiefly During the Last Two Intercensal Decades.’’2 In late 19th
century England, poor people could be supported either inside the poor
house or outside. Did provision of support outside the poor house increase
the number of poor people?

2 w xSee 71; 64, pp. 345]358; 11 .
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To address this issue, Yule used data from the censuses of 1871, 1881,
Ž .and 1891. In England, the census is taken in years that end with 1. He

considered the periods 1871]1881 and 1881]1891, relating changes in the
number of paupers to changes in the ‘‘outrelief ratio,’’ that is, the ratio
between the number of paupers supported outside the poor house and
inside. He used regression to control for two confounders}changes in the
population and its age structure.

His equation can be written as follows:

D Paup s a q b = DOut q c = D Pop q d = DOld q error . 1Ž .

Here, D stands for percentage difference, Paup for the number of pau-
pers, Out for the outrelief ratio, Pop for population size, and Old for the
proportion of people aged 65 and over.

Yule’s unit of analysis was the ‘‘union,’’ which seems to have been a
small geographical area like a county.3 He had four kinds of areas: rural,

Ž .mixed, urban, metropolitan. He used ‘‘Ordinary Least Squares’’ OLS to
estimate the coefficients from the data, with a ‘‘50 cm. Gravet’’ slide rule
to do the arithmetic.

To be more specific, Yule estimated a separate equation for each
Ž .time period 1871]81 and 1881]91 and each kind of area. There were 2

time periods and 4 kinds of areas, thus, 2 = 4 s 8 equations. Within a
time period, all areas of the same kind}for instance, all rural unions}are

Žgoverned by one equation. By coincidence, there are 4 coefficients in each
.equation, and 4 kinds of areas.

Yule was looking for the ‘‘Hooke’s Law of Poverty.’’ Nature ran an
experiment, with lots of variation over time and geography, and Yule
analyzed the results. Regression was needed to control for the confound-
ing effects of change in population and age structure. The equations were
held to show that, other things being equal, changes in the outrelief ratio
create corresponding changes in the number of paupers. Indeed, if you
increase the outrelief ratio by one percentage point but hold the other
factors constant, you will increase the number of paupers by b percent, b

Ž .being the coefficient of D Out in Eq. 1 . More qualitatively, if b is
positive, welfare creates paupers.

For a moment, I turn from Yule to methodology. A regression equation
Ž .like 1 is usually written as

Y s Xb q « . 2Ž .

In this equation, the vector Y represents the dependent variable, like
Ž .pauperism; the matrix X represents the explanatory or ‘‘independent’’

3 There were about 600 such areas in England. A poor-law union ‘‘consisted of two or more
w xparishes combined for administrative purposes.’’ 64, p. 346 .
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variables, like the outrelief ratio, population, and age structure. These are
observable. The vector b represents parameters, which are not observable
but may be estimated from the data; parameters are ‘‘social constants,’’
which characterize the process that generated the data. In Yule’s equation,

Ž .b has four components}the parameters a, b, c, d in Eq. 1 . The error or
‘‘disturbance’’ term « is also unobservable and represents the impact of
chance factors unrelated to X. Statistical inferences are often based on
‘‘stochastic assumptions’’ about « ; e.g., « is independent of X and its
components are independent and identically distributed with mean 0. For
details, see the Appendix.

Three possible uses for regression equations are

Ž .i to summarize data, or
Ž .ii to predict values of the dependent variable, or
Ž .iii to predict the results of interventions.

Yule could certainly have summarized his data by saying that for a given
time period and unions of a specific type, with certain values of the
explanatory variables, the change in pauperism was about so much and so
much. In other words, he could have used his equations to estimate the
average value of Y, given the values of X. This use of regression may run
into technical problems if there are outliers, or nonlinearities in the
regression surface. However, at least in principle, there do seem to be
technical fixes for such problems. Furthermore, stochastic assumptions
about the disturbance term play almost no role. Therefore, like most
statisticians, I believe that regression can be quite helpful in summarizing
large data sets.

For prediction, there is a ceteris paribus assumption: the system will
remain stable. Prediction is already more complicated than description. On
the other hand, if you make a series of predictions and test them against
data, it may be possible to show that the system is stable, or sufficiently
stable for regression to be quite helpful.4 Again, any particular use of
regression to make predictions may go off the rails, but there do not seem
to be essential difficulties of principle involved.

Causal inference is different, because a change in the system is contem-
plated; for example, there will be an intervention. Descriptive statistics tell
you about the correlations that happen to hold in the data; causal models
claim to tell you what will happen to Y if you change X. Indeed,
regression is often used to make counterfactual inferences about the past:
what would Y have been if X had been different? This use of regression

4 w xMeehl 41 provides some well-known examples. Predictive validity is best demonstrated
w xby making real ex ante forecasts in several different contexts: see Ehrenberg and Bound 13 .
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to make causal inferences is the most intriguing}and the most problem-
atic. Difficulties are created by omitted variables, incorrect functional
form, etc. Of course, if the results of causal modeling were with any
frequency checked against the results of interventions, the balance of
argument might be very different.5

For description and prediction, the numerical values of the individual
coefficients fade into the background; it is the whole linear combination
on the right-hand side of the equation that matters. For causal inference,

Ž .it is the individual coefficients that do the trick. In Eq. 1 , for example, it
is b that should tell you what happens to pauperism when the outrelief
ratio is manipulated.

At this remove, the flaws in Yule’s argument may be apparent. For
example, there seem to be some important variables missing from the
equation, including variables that measure economic activity. Here is

w xYule’s comment on the last-named factor 71, p. 253 :

A good deal of time and labour was spent in making trial of this idea, but the
results proved unsatisfactory, and finally the measure was abandoned alto-
gether.

w xYule 71 seems to have used the rate of population growth}D Pop in Eq.
Ž .1 }as a proxy for economic activity, although that creates ambiguity.
Other things being equal, population growth will by itself add to the
number of paupers; in its role as proxy, however, population growth should
reduce pauperism.

The equations for metropolitan unions are shown below, for 1871]1881
and 1881]1891:6

1871]1881Ž .
D Paup s 13.19 q 0.755 = DOut y 0.322 = D Pop

y 0.022 = DOld q residual.
1881]1891Ž .

D Paup s 1.36 q 0.324 = DOut y 0.369 = D Pop

q 1.37 = DOld q residual.

For example, one metropolitan union is Westminster. Over the period
1871]1881, the percentage changes in Out, Pop, and Old are y73, y9,

5 w xAlso see Manski 40 .
6 w xThese, and the other six equations, are reported in Yule 71, Table C, p. 259 . His Table

XIX gives data for metropolitan unions, in the form of ‘‘percentage ratios’’ for 1871]1881
rather than differences, apparently to avoid negative numbers. The equations were fitted to
data; the numerical coefficients in the displays are estimates for the corresponding parame-

Ž .ters in 1 ; the residuals are observable, but are only approximations to unobservable
disturbance terms.
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and 5, respectively. The percentage change in Paup predicted from the
regression equation is

13.19 q 0.755 = y73 y 0.322 = y9 y 0.022 = 5 s y39.Ž . Ž .

The actual percentage change in Paup is y48. The ‘‘residual’’ is

residual s actual y predicted s y48 y y39 s y9.Ž .

The coefficients in the regression equation are estimated so as to minimize
Žthe size of the residuals. Technically, it is the sum of the squares that is

.minimized}hence the term ‘‘least squares.’’ The linear combination of
explanatory variables on the right side of the equation has therefore been
optimized; but there is no guarantee that individual coefficients will make
much sense.

There are some noticeable inconsistencies in Yule’s coefficients, over
time and across the various kinds of geography. Nor are the signs of the
coefficients entirely reasonable. These inconsistencies may not by them-
selves be fatal, but they certainly raise the question of whether the
equations hold true for any well-defined population of times and places. If
the coefficients do not have a life of their own}outside Yule’s particular
data set}they cannot be used to answer questions of the form, ‘‘What
would happen if you change the outrelief ratio?’’ The coefficients may be
useful for descriptive purposes, but not for causal inference or even
prediction.

Moreover, there are familiar difficulties of interpretation. At best, Yule
showed that changes in pauperism and the outrelief ratio were associated,
even after adjusting for changes in the population and its age structure.
The direction of the causal arrow, however, is by no means clear. Yule’s
theory is that outrelief is the cause and pauperism is the effect. That is a
reasonable view. However, the opposite idea seems equally tenable}a
union that is flooded with paupers may not be able to build poor houses
fast enough and resorts to outrelief. If so, pauperism causes outrelief.
Also, Governor Pete Wilson’s theory may have some plausibility for 19th
century England if not 20th century California: unions that provide gener-
ous outrelief attract paupers from elsewhere.7

Yule must have been aware of these problems. After allocating the
Ž .changes in pauperism to their various causes including the residual , he

7 w xAccording to Stigler 64, pp. 356]357 , Pigou criticized Yule for ignoring ‘‘the non-
quantitative facts of the situation . . . . It is well known that, during recent years, those unions
in which out-relief has been restricted have, on the whole, enjoyed a general administration
much superior to that of other unions.’’ Stigler responds that ‘‘Pigou’s ad hoc
speculation . . . could not, of course, be disproved from the data Yule used.’’ In effect, this
allows Yule to defend himself by pleading ignorance.
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Ž .FIG. 1. Yule’s model for pauperism. The figure represents Eq. 1 in graphical form. The
asterisks denote a high degree of statistical significance. To determine the asterisks, I
recomputed Yule’s regression for the metropolitan unions over the period 1871]1881, using
data in his Table XIX. I replicated his coefficients, as shown in the display, although roundoff
error is quite large:

DPaup s12.884 q 0.752 = DOut y 0.311 = DPop q 0.056 = DOld q residual.
10.367 0.135 0.067 0.223
1.24 5.57 y 4.645 0.25

Ž .Under the coefficients are standard errors SEs and t-statistics. The SE indicates the likely
size of the difference between an estimated coefficient and its true value. The t-statistic is the
ratio of an estimate to its SE. Generally, a t-statistic above 2 or 3 in absolute value indicates
that the corresponding parameter is unlikely to be truly 0. The parameters are features of the
model, and the SEs are computed on the basis of the stochastic assumptions in the model; for
details, see the appendix. In Fig. 1, the explanatory variables are correlated; such correlations
are often signaled by curved, double-headed arrows; error terms are not shown either.

withdraws all causal claims with one deft sentence: ‘‘Strictly, for ‘due to’
w xread ‘associated with.’ ’’ 71, p. 270, footnote 25 . Yule’s paper is quite

modern in spirit, with two exceptions: he did not rely on statistical
significance, and he did not use a graph. Figure 1 brings him up to date.

3. REGRESSION ESTIMATES AND
CONDITIONAL EXPECTATIONS

Ž .In the regression model 2 , Y is the dependent variable, like pauperism;
X represents the explanatory variables, like the outrelief ratio, population,
and age structure. If all goes well, the regression equation will estimate the
‘‘conditional expectation’’ of Y given X s x, that is, the average value of Y
corresponding to given values for the explanatory variables.

To clarify the definitions, consider two procedures:

Procedure 1. Select subjects with X s x; look at the average of their
Y ’s.
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Procedure 2. Intervene and set X s x for some subjects; look at the
average of their Y ’s.

These procedures are quite different. The first involves the data set as you
find it. The second involves an intervention.

Regression does seem to let you move from selection to intervention;
that is why the technique is so popular. However, regression approximates
the selection procedure, rather than intervention. Nor does the statistical
analysis prove that the two procedures give the same results; how could it?
Instead, causal inferences are made by assuming that selection tells you
what would happen if you were to intervene.

The phrase ‘‘X is exogenous’’ is often taken to mean that selecting on X
will produce the same results as intervening to set the value of X}the
basic assumption in many analyses. Exogeneity also has weaker meanings,
to be taken up later. The ambiguity is unfortunate, because analysts may
assume exogeneity in a weak sense and proceed as if they had established
something more. It is only exogeneity in the strong sense defined above
that enables you to predict the results of interventions from nonexperi-
mental data.

The distinction between selection and intervention is acknowledged
Ž w x.even by the modelers Pearl 44, p. 396 :

Formally speaking, probabilistic analysis is indeed sensitive only to covariations,
so it can never distinguish genuine causal dependencies from spurious correla-
tions . . . .

w xSuch admissions}like Yule’s 71 footnote 25}are fatal to the enterprise.
Of course, Pearl does not give up. For instance, he goes on to say that
experiments just provide the opportunity to observe yet more correlations,

w xa move he attributes to Simon 59 .
w xFigure 2 is Pearl’s 44 . On the left, it seems that X and Z cause Y;

manipulating X or Z will change Y. However, if only we had measured the

w xFIG. 2. After Judea Pearl 44, p. 397 . Causation cannot be inferred from association by
Ž . Ž .using causal models. In panel a , X and Z are assumed to be independent. In panel b , U

and V are assumed to be independent; it may be shown in consequence that X and Z are
w xindependent. Also see Duncan 12, pp. 113]127 .
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variables U and V, we might have seen that they were the joint causes of
X, Y, and Z, as in the right-hand panel. If so, manipulating X and Z will
not change Y at all. No amount of statistical analysis on the
observables}on X, Y, and Z}can tell us which panel expresses the right
theory. Indeed, matters can be arranged so that both theories lead to the
same joint distribution for the observables.

4. TWO IDEAS OF CONDITIONAL PROBABILITIES

The distinction between the two ideas of conditioning}selecting sub-
jects with X s x, or intervening to set X s x}seems fundamental. A
concrete example may help, and conditional probabilities are easier to deal
with than conditional expectations.

Many studies have demonstrated an association between cervical cancer
and exposure to two sexually transmitted diseases}herpes and chlamydia.
Suppose we had data as shown in Table I. The incidence rate of cervical

Žcancer is 200 per 100,000 for women exposed to herpes and chlamydia top
.left ; 116 per 100,000 for women exposed to herpes but not chlamydia; and

130 per 100,000 for those exposed to herpes, the two exposure categories
for chlamydia being combined. Other cells may be read in a similar way.

With sample data, there is a role for technical statistics in estimation
and testing}for instance, to see if the rates within a row are constant
across columns. However, the real question is not association but causa-
tion. Does herpes cause cervical cancer? What about chlamydia? Biotech-
nology might find a way to eliminate Herpes simplex as well as Chlamydia
trachomatis. That would be a great relief, but would it reduce the incidence
rate of cervical cancer?

To consider the issue of causality more directly, suppose that we actually
know the rates for the population of interest, as shown in Table I.
Statistical testing must now fade into the background. The overall inci-

TABLE I
Rate of Cervical Cancer Cases per 100,000 Women, by Exposure to Chlamydia and Herpes

Chlamydia

Yes No Total

Herpes
Yes 200 116 130
No 180 80 87

Total 190 90 100

Note. Data are hypothetical.
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Ždence rate is 100 cervical cancers per 100,000 women Table I, bottom
.right . Among women exposed neither to herpes nor to chlamydia, the rate

is lower}80 per 100,000. If cervical cancer is caused by herpes and
chlamydia, eliminating the microorganisms responsible for those diseases
should reduce the incidence rate of cervical cancer from 100 to 80 per
100,000. On the other hand, if the relationship is not causal, eliminating
those microorganisms will have little effect on the incidence rate of the
cancer.

To be more explicit, 80r100,000 has been found by selecting women
who are exposed to neither herpes nor chlamydia and by computing the
incidence rate of cervical cancer for that group, one interpretation of
conditional probability. If we intervene and eliminate the two diseases, we
want to know the rate after the intervention; that is another interpretation.
The two interpretations are different, because the underlying procedures
are different. Statistical analysis of the numbers in the table, however
refined or complex, cannot prove that a hypothetical intervention will give
the same results as selection. This may seem obvious, even banal; but if
you grant the point, the causal modeling game is largely over.

What is the situation for Table I? The story is far from certain. Current
epidemiological opinion favors the idea that cervical cancer is caused by

Ž .certain strains of human papilloma virus HPV ; herpes and chlamydia
have no etiologic role, but serve only as markers for exposure to HPV. If
that opinion is correct, wiping out herpes and chlamydia will have no
impact on rates of cervical cancer.

Due in part to the rarity of cervical cancer, cohort studies do not seem
Žto be available. The numbers in Table I, although hypothetical, are not

.unreasonable. My point is even stronger for the real studies of the
association between cervical cancer and herpes or chlamydia. Problems
created by incomplete data cannot simplify the task of inferring causation
from association.8

5. ANOTHER REGRESSION EXAMPLE

w xRindfuss et al. 55 propose a model to explain the process by which a
woman decides how much education to get, and when to have her first
child. The model illustrates many features of contemporary technique.9

8 w x w xFor a discussion of the epidemiology, see Cairns 4 , Peto and zur Hausen 51 , Sherman
w x w x w xet al. 58 , Hakama et al. 25 , Munoz et al. 75 .˜

9 w xI use this example because it is discussed by SGS 62, pp. 139]140 .
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Before we take up the model, let the authors say what they were trying to
do:

The interplay between education and fertility has a significant influence on the
roles women occupy, when in their life cycle they occupy these roles, and the
length of time spent in these roles . . . . This paper explores the theoretical
linkages between education and fertility . . . . It is found that the reciprocal
relationship between education and age at first birth is dominated by the effect
from education to age at first birth with only a trivial effect in the other

w xdirection. Abstract
No factor has a greater impact on the roles women occupy than maternity.

Whether a woman becomes a mother, the age at which she does so, and the
timing and number of subsequent births set the conditions under which other
roles are assumed . . . . Education is another prime factor conditioning female

w xroles. p. 431, footnote omitted
The overall relationship between education and fertility has its roots at some

unspecified point in adolescence, or perhaps even earlier. At this point aspira-
tions for educational attainment as a goal in itself and for adult roles that have
implications for educational attainment first emerge. The desire for education
as a measure of status and ability in academic work may encourage women to
select occupational goals that require a high level of educational attainment.
Conversely, particular occupational or role aspirations may set standards of
education that must be achieved. The obverse is true for those with either low
educational or occupational goals. Also, occupational and educational aspira-
tions are affected by a number of prior factors, such as mother’s education,
father’s education, family income, intellectual ability, prior educational experi-

w xence, race, and number of siblings. p. 432, citations omitted

w xThe model used by Rindfuss et al. 55 is shown in Fig. 3. The diagram
corresponds to two linear equations in two unknowns, ED and AGE
Ž .variables are defined in Table II :

ED s a = AGE q A , 3Ž .
AGE s aX = ED q AX . 4Ž .

According to the model, a women chooses her educational level and age at
first birth as if by solving these two equations for the two unknowns.

The coefficients a and aX are ‘‘social constants,’’ to be estimated from
the data. The terms A and AX take background factors into account:

A s A q b = DADSOCC q c = RACE q ??? qc = YCIG0 1 7 5Ž .qrandom error drawn from a box,

AX s AX q bX = FEC q cX = RACE q ??? qcX = YCIG0 1 7 6Ž .qanother random error drawn from a box.

Again, the parameters A , b, c , . . . are social constants to be estimated0 1
from the data. The random errors are assumed to have mean 0, to be



DAVID FREEDMAN70

w xFIG. 3. The model in diagram form 55; 62, p. 140 . Variables are defined in Table II.
Ž .Explanatory variables DADSOCC, RACE, etc. are correlated; error terms are not shown in

the diagram.

TABLE II
w xVariables in the Model 55

The endogenous ¨ariables
ED Respondent’s education

Ž .Years of schooling completed at first marriage
AGE Respondent’s age at first birth

The exogenous ¨ariables
DADSOCC Respondent’s father’s occupation

Ž .RACE Race of respondent Black s 1, other s 0
NOSIB Respondent’s number of siblings

ŽFARM Farm background coded 1 if respondent grew up
.on a farm, else 0

Ž .REGN Region where respondent grew up South s 1, other s 0
ŽADOLF Broken family coded 0 if both parents present at

.age 14, else 1
Ž .REL Religion Catholic s 1, other s 0
ŽYCIG Smoking coded 1 if respondent smoked before age 16,

.else coded 0
ŽFEC Fecundability coded 1 if respondent had a

.miscarriage before first birth; else coded 0

Note. The data are from a probability sample of 1766 women 35]44
years of age residing in the continental United States; the sample was
restricted to ever-married women with at least one child. DADSOCC
was measured on Duncan’s scale, combining information on education

wand income; missing values were imputed at the overall mean. SGS 62,
xp. 139 gives the wrong definitions for NOSIB and ADOLF.
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statistically independent from woman to woman, and to be identically
Ž . Ž .distributed. Correlations across Eqs. 5 and 6 are permitted.

Ž . Ž .Equations 3 ] 6 are not quite regression equations, due to the simul-
Ž . Ž . Ž .taneity of 3 and 4 ; fitting by OLS ordinary least squares would create

w x‘‘simultaneity bias.’’ Thus, Rindfuss et al. 55 use an estimation procedure
10 Ž .called ‘‘two-stage least squares.’’ FEC does not enter into Eq. 5 , nor

Ž .DADSOCC into Eq. 6 . Graphically, there is no arrow from DADSOCC
to AGE in Fig. 3; likewise, there is no arrow from FEC to ED. These
behavioral assumptions are critical to the statistical enterprise. Without
them, or some similar assumptions, two-stage least squares could not be

Ž .used. Technically, the system would not be ‘‘identifiable’’ Section 11.4 .
The main empirical finding: The estimated coefficient of AGE in the

Ž .first equation is not ‘‘statistically significant’’; i.e., the coefficient a in 3
could be zero. The sort of woman who drops out of school to have a child
would drop out anyway.

If looked at coldly, the argument may seem implausible. A critique can
be given along the following lines:

Ž .i Statistical assumptions. Just why are the errors independent and
identically distributed across the women? Independence may be reason-
able, but heterogeneity is more plausible than homogeneity.

Ž . w xii The assumption of constant coefficients. Rindfuss et al. 55 are
assuming that the same parameters apply to all women alike, from poor
blacks in the cities of the Northeast to rich whites in the suburbs of the
West. Why?

Ž .iii Omitted ¨ariables. Surely, important variables have been omitted
from the model, including two that were identified by Rindfuss et al.
w x55 }aspirations and ability. Malthus thought that wealth was an impor-
tant factor. Social class matters, and DADSOCC measures only one of its
aspects.11

Ž .iv What about the ‘‘no arrow’’ assumptions, from DADSOCC to AGE
and FEC to ED?

Ž .v Are FEC and DADSOCC exogenous?

Ž .vi Are the equations ‘‘structural’’?

Ž . Ž .Questions iv ] vi will be discussed in the next section, as will the idea of
‘‘structural’’ equations.

10 w x w xSee, e.g., Maddala 39 ; for discussion, see Daggett and Freedman 9 .
11 The solution to the ‘‘omitted variable’’ problem may seem easy}just throw some more

w xvariables into the model. The difficulties are explored in Clogg and Haritou 6 . Also see
w xFreedman 17 .
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5.1. A Thought Experiment

A simpler version of the model restricts attention to a more homoge-
nous group of women, where the only relevant background factors are
DADSOCC and FEC. To make causal inferences from the data using the
model, we need to believe that the arrows are as shown in Fig. 4, that
DADSOCC and FEC are exogenous, and that the equations are ‘‘struct-
ural.’’ The following thought experiment may help to define the last term,
and the empirical commitments behind the words.12

The gedanken experiment involves two groups of women. In both
groups, fathers are randomized to jobs, and some of the daughters are

Žchosen at random to have a miscarriage before their first child. The
statistical terminology of randomization is dry; the gedanken experimental-
ist intervenes, for instance, to make the fathers do one job rather than
another: professors are caused to work as plumbers, and taxi drivers are

.installed as hospital anesthetists.

Group I. Daughters are randomized to the various levels of ED, and
ŽAGE is observed as the response. The gedanken experimentalist strikes

again, forcing some women to stay in school longer than they wish, while
.preventing others from continuing their education.

Group II. Daughters are randomized to the various levels of AGE,
Žand ED is observed as the response. More gedanken intervention is

.needed.

The statistical model can now be translated. For the women in Group I,
AGE should not depend on DADSOCC}the ‘‘no arrow’’ assumption;
however, AGE should depend linearly on ED. For the women in Group II,
ED should not depend on FEC}the other ‘‘no arrow’’ assumption;

FIG. 4. A simpler version of the model.

12 w xAlso see Pearl 46, 47 .
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w xhowever, ED should depend linearly on DADSOCC. Rindfuss et al.’s 55
discovery is that ED would not depend on AGE.

There is one final assumption: the equations and parameters that
describe the responses of the women in the experiment must also describe
the natural situation. That is what ‘‘structural’’ means. For instance, a
women who freely chooses her educational level and her time to bear
children does so by using the same equations as a woman made to give
birth at a certain age. In short, with respect to the matters at issue, life in
Des Moines proceeds more or less along the same lines as life in the
Gulag.

The thought experiment provides the intellectual foundation for the
model, by articulating the background assumptions. These assumptions
have not been subjected}cannot be subjected}to direct empirical proof,
nor can assumptions be validated by appealing to thought experiments that
are almost unthinkable. Do the modelers have some other method in
reserve? If the assumptions remain unvalidated, what is the logical status
of their implications?

5.2. Exogeneity

Identifying the exogenous variables is a major problem. For example,
w xyou can obtain results quite different from those of Rindfuss et al., 56 by

using variables other than DADSOCC and FEC as ‘‘instruments.’’13 Rind-
w xfuss et al. 56, pp. 981]982 respond that estimates made by

instrumental variables . . . require strong theoretical assumptions . . . and can
give quite different results when alternative assumptions are made . . . it is
usually difficult to argue that behavioral variables are truly exogenous and that
they affect only one of the endogenous variables but not the other.

In short, results can depend quite strongly on assumptions of exogeneity,
and there is no good way to justify one set of assumptions rather than

w xanother. Also see Bartels 1 , who comments on the impact of exogeneity
assumptions and the difficulty of verification.

13 w xSee Hofferth and Moore 27, 42 . An ‘‘instrument’’ is an exogenous variable, used as part
of the two-stage least squares estimation procedure. Some investigators may draw a termino-
logical distinction: an ‘‘instrument’’ is exogenous, but does not appear as an explanatory
variable in the equation being estimated. For purposes of estimation, exogenous variables are

Žassumed to be independent of error terms; this does not suffice for causal inference Section
. w x11 . Even the independence assumption is not to be made lightly: see Clogg and Haritou 6 .
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6. AUTOMATED SEARCHES FOR CAUSALITY

w xSGS 62 have computerized algorithms that search for path models.
Using the algorithms, SGS claim to make rigorous inferences of causation
from association. For present purposes, a ‘‘path model’’ is a recursive
system of regression equations, in which the dependent variables from
some equations are used as explanatory variables in later equations.14

The basic idea in path models is this: putative causes combine with
parameters and random errors by multiplication and addition in order to
produce their effects. I have discussed such models elsewhere and do not
believe they offer much help in deducing causation from association,
because there is little evidence to support the basic assumptions
Ž w x.Freedman 18 . To pursue the discussion here, a slightly more explicit
definition of the models may be in order.

DEFINITION. A ‘‘path model’’ starts with variables at ‘‘level 0,’’ which
are exogenous in the minimal sense that they are not explained within the
model. Variables ‘‘at level 1’’ are built up as linear combinations of level 0
variables, plus independent random errors. More generally, variables ‘‘at
level k ’’ are built up as linear combinations of variables at previous levels;
again, there are additive, independent random errors. Variables at level 1,
level 2, . . . are ‘‘endogenous,’’ in the sense that they are explained within
the system. The path model may be presented as a ‘‘path diagram,’’ like
Fig. 1, or Fig. 5 below. Nodes represent variables in the model; if there are
arrows from X, Y, . . . to Z, then X, Y, . . . are explanatory variables in the
regression equation for Z. Nodes are often called ‘‘vertices,’’ and the
diagrams are referred to as ‘‘graphs’’ or ‘‘causal graphs.’’15

The path model may represent mere association}conditional depen-
dence and independence relations. Or the model may represent causation.
I will take that up later. For now, however, either interpretation suffices.

14 w xThe model used by Rindfuss et al. 55 would not fall into this category, if ED and AGE
w xreally influenced each other. The SGS 62 framework excludes reciprocal causation, by

assumption; so do path models, as I define them. However, some authors extend the
definition of path models to include simultaneous equation models for reciprocal causation.

15 w xSGS 62 seem to make the strong}and quite unusual}assumption that exogenous
variables are independent of each other. That may be part of the reason why their algorithms
estimate such peculiar models in Figs. 5 and 6 below. There is another, even more esoteric,
point. To estimate an equation, its error term need only be assumed independent of the
explanatory variables. If so, error terms from different equations may be correlated; then
standard procedures for computing the correlations among the variables will not apply: see

w x w xFreedman 18, pp. 112]114 ; Seneta 57, p. 199 . SGS seem to interpret correlated errors as
indicating the presence of ‘‘latent variables.’’ Such variables will be mentioned in notes to
Figs. 5 and 6, below.
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w xFIG. 5. The left-hand panel shows the model reported by SGS 62 . The right-hand panel
also shows connections among the regressors, as determined by the search program
TETRAD. BUILD indicates that latent variables are present, i.e., errors are correlated across
equations. BUILD asks whether it should assume ‘‘causal sufficiency’’; without this assump-

w xtion 62, p. 45 , the program output is uninformative. Therefore, I told BUILD to make the
w xassumption; I believe that is what SGS 62 did for the Rindfuss example. Also see Spirtes

w xet al. 63, pp. 13]15 . I told BUILD that ED and AGE could not cause the remaining
w x w xvariables, following SGS 62, p. 139 . However, SGS 62 actually made the stronger assump-

Ž . Ž .tion that i FEC, ED, and AGE could not cause YCIG, and ii FEC, ED, AGE, and YCIG
could not cause the remaining variables. With the assumption of causal sufficiency, BUILD
seems to use the PC algorithm; without the assumption, the FCI algorithm comes into play.

Ž .Much of this information comes from Richard Scheines personal communication . Data are
w x w xfrom Rindfuss et al. 55 , not SGS 62 ; with the SGS covariance matrix, FARM causes REGN

and YCIG causes ADOLF.

Suppose the graph is ‘‘sparse’’}each equation in the model involves
relatively few variables. Suppose, too, there are no troublesome algebraic
identities among the regression coefficients; in SGS terminology, the

w xdistribution is ‘‘faithful’’ to its graph 62, p. 35 ; see Section 11.2 below.
You have a sample}many independent realizations of variables
X, Y, Z, . . . . You are willing to assume the distribution conforms to a path
model, but do not know which model. You do not even know which
variables are at level 0, which are at level 1, and so forth.

w xSGS 62 claim their algorithms are likely to find the underlying path
model, or a rather similar model, and in short order. Their most convinc-



DAVID FREEDMAN76

ing evidence is based on simulation experiments, where the computer
generates data from a path model and the SGS algorithms try to infer the

w xmodel from the data 62, pp. 145ff, 152ff, 250ff, 320ff, 332ff ; in these
experiments, the algorithms do very well. Roughly speaking, the SGS
algorithms are variants of ‘‘best subsets’’ regression, the search being over
graphs rather than subsets. The data come into the SGS algorithms only
through the covariance structure. The rest of the apparatus}the dia-
grams, the Markov property, faithfulness, etc.}consists of assumptions.

w xSGS 62 seem to assert that their algorithms determine causality, as a
matter of mathematics. Such assertions are not defensible. In the SGS
formalism, causation is obtained not by mathematical proof but by mathe-
matical assumption. If you assume that the arrows in the underlying path
diagram represent causes, then the arrows found by the algorithms repre-
sent causes. If you assume that the underlying arrows represent mere
associations, then the arrows found by the algorithms represent associa-
tions. Causation has to do with empirical reality, not with mathematical
proofs based on axioms. The issue is not one of theorems, but of the
connection between theorems and reality.

w x ŽThe SGS algorithms 62 , like many earlier statistical procedures factor
.analysis, LISREL, etc. , proceed by analyzing the correlation matrix of a

set of variables. I will call such methods ‘‘correlational.’’ Sections 7]10
consider applications of the SGS algorithms to real examples. Sections
11]12 try to explain the key ideas in the SGS formalism and indicate by
mathematical example some of the intrinsic limitations. Before proceed-
ing, however, I discuss the SGS statement of assumptions.

6.1. The SGS Statement of Assumptions

w xSGS 62 discuss the role of assumptions in their theory several times
Ž .pp. 53]69, pp. 75]81, pp. 324]325, p. 351 . However, the clearest state-
ment can be found when SGS are trying to discredit the evidence that
smoking causes lung cancer:

effects )))) cannot be predicted from )))) sample conditional
w xprobabilities. p. 302

Readers may consult the original for context, to see whether the omitted
material affects the meaning. The advantage of the quote is clarity. If the
statement is generally applicable, then SGS}like Yule and Pearl before
them}have disavowed the ability to infer causation from association.
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7. THE SGS EXAMPLES

w xSGS 62 share my pessimistic views about regression. They claim,
however, that their algorithms will succeed where regression has failed:

In the absence of very strong prior causal knowledge, multiple regression
should not be used to select the variables that influence an outcome or
criterion variable in data from uncontrolled studies. So far as we can tell, the

w xpopular automatic regression search procedures like stepwise regression should
not be used at all in contexts where causal inferences are at stake. Such
contexts require improved versions of algorithms like those described here to
select those variables whose influence on an outcome can be reliably estimated
by regression. In applications, the power of the specification searches against
reasonable alternative explanations of the data is easy to determine by simula-

w xtion . . . . p. 257

At first reading, SGS seems to be filled with real examples showing the
successful application of their algorithms. That is an illusion. Many of the
examples are based on simulation, and I set those aside.16 The real

w x 17examples are mostly to be found in SGS 62, pp. 132]152, 243]256 .
w xThe main examples given in SGS 62 are path models. But these cannot

withstand scrutiny}see Section 5 above and Sections 8]9 below. One
w x wexception is the stratification model of Blau and Duncan 3 . SGS 62, pp.

x142]145 seem to be quite critical of this model; their current position is
w xalmost diametrically opposite to the one in Glymour et al. 24, pp. 33]39 .

Like SGS, I do not believe that the Blau]Duncan regressions are a
satisfactory causal model. On the other hand, as descriptions of the data,
the equations can tell us something important about our society: see

w xFreedman 18, pp. 122, 220 . The discussion in SGS adds little to our
understanding either of the model or of stratification.

w xSGS 62 appear to use the health effects of smoking as a running
example to illustrate their theory.18 Again, there is an illusion. The causal
diagrams are all hypotheticals, no contact is made with data, and no
substantive conclusions are drawn. If the diagrams were proposed as real
descriptions of causal mechanisms, they would not be credible.

What about the substantive question: does smoking cause lung cancer,
w xheart disease, and many other illnesses? SGS 62 appear not to believe the

16 Simulations tell us how well the SGS algorithms do if the underlying statistical assump-
tions hold good; the assumptions are built into the computer code that generates the
simulated data. When applying statistical algorithms to real data, a critical question is whether
those assumptions hold. The simulations do not address such questions.

17 w xParallel material is in 23, pp. 13]16, 21]23 .
18 w xSee, e.g., 62, pp. 18, 216]237 .
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epidemiological evidence. When they actually get down to arguing their
case, they use a rather old-fashioned method}a literature review with

w xarguments in ordinary English 62, pp. 291]302 . Causal models and search
algorithms have disappeared.

I approve of the method if not the implementation; the summary is
wrong in some places and tendentious in others. However, the review does
show the complexity of the issues. To make judgments about causation,
you need to consider death certificate data, necropsy data, case control
and cohort studies, twin studies, dose response curves, as well as animal
experiments and human experiments. The force of the epidemiological
evidence}and the SGS critique}depends on the complex interplay among
these various studies and data sets.

w xIn the end, SGS 62 do not really make bottom-line judgments on the
health effects of smoking, at least so far as I can see. Their principal
conclusion is methodological: nobody understood the issues.

Neither side understood what uncontrolled studies could and could not deter-
mine about causal relations and the effects of interventions. The statisticians
pretended to an understanding of causality and correlation they did not have;
the epidemiologists resorted to informal and often irrelevant criteria, appeals to
plausibility, and in the worst case to ad hominem . . . . While the statisticians
didn’t get the connections between causality and probability right, the . . . .
‘‘epidemiological criteria for causality’’ were an intellectual disgrace, and the
level of argument . . . was sometimes more worthy of literary critics than scien-

w xtists. 62, pp. 301]302 .

w xPart of a sentence in SGS 62, p. 4 does seem to grant one of the major
claims made by the epidemiologists, ‘‘smoking does cause lung cancer.’’
But that only complicates the puzzle. If you don’t believe the evidence,
why accept the claim?

w xDespite SGS 62 , the epidemiologists did have a good understanding of
the issues and made a strong case against smoking. The arguments were
imperfect, and some reasonable doubts may remain. But the data, taken
all in all, are compelling. The epidemiological literature on smoking is far
stronger than anything I have seen in the social sciences. For a survey of

w xthe evidence, see Cornfield et al. 7 ; this paper is still worth reading. More
w xrecent data are reviewed in 30 .

w xSGS 62 elected not to use their analytical machinery on the smoking
data}a remarkable omission. When applied to the examples that SGS
actually chose, the algorithms produce one small disaster after another, as

w xwill now be seen. In sum, SGS 62 claim to have developed techniques for
generating causal models; but they do not have any success stories.
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8. USING THE SGS SEARCH PROCEDURE

The SGS search procedures are embodied in a computer program called
w xTETRAD 62 . Version 2.1 of this program was kindly provided by Richard

Scheines and Peter Spirtes. The BUILD module is the part of TETRAD
used to discover path models with no latent variables. I ran BUILD on two

w x Ž .examples}Rindfuss et al. 55 and AFQT to be discussed in Section 9 .

8.1. Rindfuss et al.

Ž . w xTo explain AGE age at first birth in the Rindfuss et al. 55 example,
w xthe SGS 62 algorithms select the variables shown in Table III. Regression

TABLE III
w xThe SGS 62 model for age at first birth, computed using the SGS covariance matrix or the

w xRindfuss et al. 55 covariance matrix

SGS covariance Rindfuss et al. covariance

2 2R s 0.27 R s 0.24

Estimate SE t Estimate SE t

RACE y1.66 .30 y5.50 y1.66 .30 y5.46
REGN y0.56 .19 y3.01 y0.63 .19 y3.35
ADOLF 1.89 .22 8.60 2.01 .22 8.98
YCIG 2.14 .25 8.63 y0.89 .25 y3.53
FEC 2.72 .28 9.70 2.77 .28 9.72
ED 0.67 .04 18.00 0.60 .04 15.72

Ž .Note. i Intercepts are not reported; OLS estimates.
Ž .ii The first column in Table 3 shows parameter estimates. The second shows standard

errors, or SEs, which indicate the likely size of the differences between the estimates and the
true parameter values. The t-statistics in the third column are the ratios of estimates to SEs.
Generally, a t-statistic above 2 or 3 in absolute value indicates that the corresponding
parameter is unlikely to be truly 0. For details, see the Appendix.
Ž .iii The parameters are features of the model, and the SEs are computed using the model.

If you do not believe in the existence of the parameters apart from the data, or do not accept
the statistical assumptions in the model, the SEs and t-statistics are likely to be meaningless.
In any case, performing multiple tests}as in a search algorithm}complicates the interpreta-

w xtion of the t-statistics 17, 23 .
Ž . 2iv R is generally interpretable as a descriptive statistic, whether or not the assumptions

of the model hold true. An R2 of 0.27 indicates that about 27% of the variance in AGE has
been explained; that is not much, and models in the social science literature often have even

2 w xless explanatory power. For a discussion of R , see 20, pp. 78]81 .
Ž .v According to current epidemiological opinion, smoking does have some biological

effect, delaying conception by several weeks. However, the women who choose to smoke are
different from the nonsmokers and have their first child almost a year earlier. This effect
remains even after controlling for the measured background factors in the regression; the
coefficient of YCIG is y0.89 years.
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estimates for the coefficients, based on summary data in SGS, are reported
Žin the first three columns of the table. The coefficients for ADOLF the

. Žindicator for women from broken homes and YCIG an indicator for
.smoking by age 16 have positive signs. That is paradoxical: women from

broken homes and women who smoke should be having children earlier,
not later.19 The signs should be negative, not positive. SGS do not
comment on this issue.

w xRindfuss et al. 55 give standard deviations and correlations for their
w xdata; SGS 62, p. 139 used these statistics to compute a covariance matrix,

but reversed some of the signs. The last three columns of Table III report
regression estimates computed from the correct covariances. The problem
with YCIG disappears, but the sign for ADOLF stays positive. Anyone can
make a mistake entering data; ignoring paradoxical signs in a causal model
is quite another matter.

w xSGS 62 report only a graphical version of their model. They say,

Given the prior information that ED and AGE are not causes of the other
Ž .variables, the PC algorithm using the .05 significance level for tests directly

w Ž .xfinds the model in Figure 5 a where connections among the regressors are
w xnot pictured. 62, p. 139

However, connections among regressors can be of interest. Although
TETRAD is supposed to discover the causal ordering of explanatory

Ž .variables, it produces the very strange model shown in Fig. 5 b . For
example, the model says that race and religion cause region of residence.
Comments on the sociology may be out of place, but consider the statistics.
The equation is

REGN s a q b = RACE q c = REL q e . 7Ž .

REGN is a dummy variable, coded 1 for respondents who grew up in the
South, 0 for others; RACE is 1 for black respondents and 0 for others;
REL is 1 for Catholics, 0 for others; e is normally distributed. In conse-
quence, this equation forces impossible values on REGN: the left-hand
side is 0 or 1, the right-hand side varies from y` to q`. Now R2 is only

Ž .0.16, so e contributes most of the variance; Eq. 7 can hardly be defended
as an approximation. Having dummy variables in the middle of path

Ždiagrams is a blunder. FARM creates a similar problem; so does NOSIB,
.although less extreme. In short, the SGS algorithms have produced a

model that fails the most basic test}internal consistency.

19 Smoking, broken homes, and early childbearing seem to be correlates of social disadvan-
tage and indicators of personality traits. DADSOCC and RACE are quite imperfect controls
for family background; therefore, YCIG and ADOLF are likely to pick up the effects of

Ž .background, as well as the effects of omitted personality variables. See note v to Table III.
w xThis sort of bias is discussed in Section 12.2 below. Also see Clogg and Haritou 6 .
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9. THE ARMED FORCES QUALIFICATION TEST

w xSGS 62 discuss an example based on the Armed Forces Qualification
Ž . 20Test AFQT . The AFQT is a linear combination with fixed weights of

scores on certain subtests. Some of these subtests, as well as subtests that
are not part of the AFQT, are listed in Table IV. The problem is to decide
which subtests go into the AFQT and which do not.

The problem may be stated more algebraically as

AFQT score s a = NO q a = WK q ??? qa = GS1 2 7

q b = UN q ??? qb = UN , 8Ž .1 1 n n

where UN , . . . , UN are unobservable. Some of the a’s are zero, and the1 n
challenge is to figure out which ones.

We have data on 6224 subjects, summarized as a covariance matrix.
w xAccording to SGS 62, pp. 243]244 :

a linear multiple regression of AFQT on the other seven variables gives
significant regression coefficients to all seven and thus fails to distinguish the
tests that are in fact linear components of AFQT . . . . Given the prior informa-
tion that AFQT is not a cause of any of the other variables, the PC algorithm in

� 4TETRAD II correctly picks out AR, NO, WK as the only . . . variables that can
be components of AFQT . . . .

To test the claims about regression, I ran AFQT on all the observable
subtests. As Table V shows, EI and MC are related to AFQT only at the
chance level. Moreover, MK and GS have negative coefficients, but
psychometric practice frowns on subtests that are negatively related to
overall test scores. It is a natural conjecture that NO, WK, and AR go into
AFQT, while the other four subtests do not. Contrary to the claims of
SGS, the AFQT can be handled by ordinary statistical methods.

TABLE IV
w xSubtests Analyzed by SGS 62

1. Numerical Operations NO
2. Word Knowledge WK
3. Arithmetical Reasoning AR
4. Mathematical Knowledge MK
5. Electronics Information EI
6. Mechanical Comprehension MC
7. General Science GS

Note. Some go into the AFQT and some do
not.

20 w xSGS 62, p. 243 . Institutional background on the AFQT will be found in Section 12.5.
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TABLE V
Regression of AFQT on All the Observable Subtests

Estimate SE t

NO 0.24 .022 10.8
WK 1.17 .029 40.5
AR 1.03 .028 36.4
MK y0.24 .028 y8.7
EI y0.03 .024 y1.3
MC 0.03 .024 1.3
GS y0.13 .029 y4.6

Note. Variables were centered at their means.

The AFQT problem is in some ways quite easy. By definition, the
‘‘causes’’ or subtests combine linearly with the parameters to produce the
AFQT as an ‘‘effect.’’ Joint normality of test scores seems to follow from
the procedures used to construct the tests: consequently, scores on any one
subtest can be presented as a linear combination of other subtest scores,
with additive random errors. Thus, critical issues in most empirical studies
have disappeared.21

9.1. TETRAD

According to SGS, given the prior information that AFQT does not
cause the other variables, TETRAD correctly picks out AR, NO, and WK
as the components of the AFQT.22 Without that prior information, how-
ever, TETRAD declares AFQT to be the cause of these subtests, rather
than the effect. With the prior information, TETRAD produces the strange
results shown in Figure 6.23 Now, for instance, the subtest NO may
‘‘cause’’ the overall test score AFQT, but it can hardly cause the other
subtests AR or MK. Furthermore, there is a cycle in the figure:

MC ª AR ª WK ª GS ª MC.

In principle, such cycles were excluded by prior assumption, as well they
might be. Subtests should not cause themselves, even indirectly. To sum
up:

Ž .i ordinary least squares techniques pick out NO, AR, and WK for
the probable components of the AFQT, just as TETRAD does;

Ž .ii TETRAD produces the curious model in Figure 6.

21 Ž .On the other hand, unobserved variables may create serious problems Section 12.4 .
22 w xSGS 62, p. 243 .
23 w xThe program output is given in Spirtes et al. 63, pp. 10]11 .
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FIG. 6. AFQT and its subtests arranged in causal order by the search program TETRAD.
w xI believe SGS 62, pp. 243]244 used BUILD, with the assumption of causal sufficiency, for

w xthe AFQT example. Also see Spirtes et al. 63, pp. 8]11 . The program indicates there are
latent variables, i.e., correlations in the errors.

10. FOREIGN INVESTMENT AND POLITICAL
OPPRESSION

As noted in Section 7, SGS are quite pessimistic about typical social-sci-
ence applications of regression. While I agree with the bottom line, their
specific objections seem misplaced. One example is enough to make the

w xpoint. Timberlake and Williams 65 offer a regression model to explain
Ž . Ž .political exclusion PO in terms of foreign investment FI , energy devel-

Ž . Ž .opment EN , and civil liberties CV . High values of PO correspond to
authoritarian regimes that exclude most citizens from political participa-
tion; high values of CV indicate few civil liberties. Data come from 72
countries. Correlations among the Timberlake]Williams variables are
shown in Table VI.

w xThe equation proposed by Timberlake and Williams 65 is

PO s a q b = FI q c = EN q d = CV q error. 9Ž .

Empirical results are shown in the first three columns of Table VII. The
estimated coefficients of FI is significantly positive and is interpreted as
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TABLE VI
The Timberlake and Williams Correlation Matrix

PO FI EN CV

PO 1.000 y.175 y.480 .868
FI y.175 1.000 .330 y.391
EN y.480 .330 1.000 y.430
CV .868 y.391 y.430 1.000

Ž .Note. Correlation matrix for political oppression PO ,
Ž . Ž .foreign investment FI , energy development EN , and civil

Ž . w xliberties CV . Source: 62, p. 249 .

measuring the effect of foreign investment on political exclusion:
w xsee Timberlake and Williams 65, p. 143 .

w xSGS discuss this example 62, pp. 248]250 , suggesting that Timberlake
and Williams have confused cause and effect. The alternative causal
sequence is not spelled out. Presumably, the idea is that dictators ‘‘cause’’
foreign investment in the sense that investors think dictatorial regimes
offer greater stability, etc.

The main step in the SGS statistical argument comes down to this: the
correlation of y0.175 between political exclusion and foreign investment

Ž .is at the chance level. The calculation rides on two assumptions: i the 72
countries in the data set are a random sample from some much larger set

Ž .of countries and ii the variables follow a multivariate normal distribution.
These time-honored but madcap assumptions are not stated explicitly by

TABLE VII
The Timberlake and Williams Model

2 2R s .81 R s .93

Estimate SE t Estimate SE t

FI .23 .059 3.9 .44 .036 12
EN y.18 .060 y2.9 y.22 .037 y6
CV .88 .061 14.4 .95 .038 25

Ž . Ž .Note. Political exclusion PO is regressed on foreign investment FI , energy
Ž . Ž .development EN , and civil liberties CV . The first three columns show results

Ž .for the observed correlation matrix Table VI . The last three columns show what
Ž .happens when r PO, FI is set to 0. Coefficients in Table VII are standardized, that

is, computed from variables standardized to have mean 0 and variance 1. The
w xcoefficients reported by SGS 62, p. 249 are not standardized and therefore do not

match the correlation matrix.
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ŽSGS, let alone justified. Of course, the assumptions behind the statistics
.in Timberlake and Williams might seem equally antic.

w xHowever, for the sake of argument, let us grant SGS 62 their assump-
tions. On that basis, the standard error for the correlation in question is

'about 1r 72 f .12. I change the suspect correlation coefficient from its
observed value of y0.175 to the new value of 0, a difference of about 1.5

Ž .SEs. I then recompute the model last three columns in Table VII . The
results are even better for Timberlake and Williams: the estimated coeffi-
cients are bigger and more significant; the signs stay the same; and R2

moves closer to 1.24

I will not defend the model any further. Measurement problems are
extreme, and the list of omitted variables very long. SGS may well be right,
that cause and effect have been confused. But the demonstration is
peculiar. The correlation matrix cannot show that FI, EN and CV cause

ŽPO}the fatal flaw in the Timberlake-Williams model. Of course,
.Timberlake and Williams are not alone in this respect. Nor can the matrix

show that FI, EN and CV do not cause PO}the corresponding flaw in
SGS. Indeed, it is trivial to construct four variables labelled FI, EN, CV
and PO, such that FI, EN and CV do cause PO; but sample correlation
matrices will look rather like the one in Table VI. This only sharpens the
basic question. What do any of these calculations tell us about the world
outside the computer?

11. SOME MATHEMATICAL ISSUES

Sections 11 and 12 address by mathematical example two questions:

Ž .i To what extent can correlational methods recover an underlying
path diagram?

Ž .ii When can the arrows in the diagram be interpreted as indicating
causation, rather than conditional independence and dependence?

w xThe examples will indicate how SGS 62 use the ‘‘faithfulness’’ assump-
tion to help them answer such questions. Issues of identifiability and
consistency will be discussed, and methodological contributions in SGS will
be delineated. Sections 11 and 12 are more technical than previous
material; readers can skip to Section 13 without losing the thread of the
argument.

The focus is on linear models. Suppose you have a covariance matrix
that describes certain variables. Assume these variables are jointly normal,

24 The new matrix is still positive definite, so it is a legitimate correlation matrix. Section
12.1 discusses the connection between the Timberlake-Williams model and the faithfulness

w xassumption. Also see Cartwright 5, pp. 79]84 .
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with mean 0; that avoids all questions of linearity etc. and all problems
created by having only finite amounts of data. However, the statistical
procedures I am considering}like the SGS algorithms}will operate on
that covariance matrix and on nothing else. Such procedures may be called
‘‘correlational.’’

Path models were defined in Section 6. Briefly, you start with variables
at level 0; variables at level k are linear combinations of variables at lower
levels, plus independent random errors. In a path diagram, nodes repre-
sent variables. There is an arrow from X to Y if X is used as an
explanatory variable in the equation for Y.

Exogeneity is a critical concept. As indicated before, the term is used in
at least three senses. The weakest definition is purely mechanical: exoge-
nous variables are not explained within the model, but are supplied to the
model. Variables at level 0 in a path model are exogenous in this minimal
sense. A more restrictive definition: exogenous variables are statistically
independent of the error terms in the equations. The third idea is the one
that is relevant to causal inference: X is exogenous if selecting subjects
with X s x gives the same results as intervening to set X s x.

There are tests for exogeneity in the literature, as well as model
specification tests. However, these have limited relevance to causal infer-

w xence. For example, Hausman 26 assumes that certain variables are known
a priori to be exogenous and then tests whether other variables are
exogenous; he interprets exogeneity as orthogonality to disturbance terms.
He also has a test that detects correlation between errors from equations

w xin a path model. White 69, 70 focuses on similar issues}for instance,
testing whether the variables have a jointly normal distribution.

Another reference in the econometric literature is Engle, Hendry, and
w xRichard 15 . These authors distinguish several kinds of exogeneity; ‘‘strict’’

exogeneity means independence of variables and error terms, but only
‘‘super’’ exogeneity permits estimating the effects of interventions. Exam-

w xples are given to illustrate the definitions 15, pp. 287]294 . There is
w xfurther discussion in Leamer 35 .

11.1. The Basic Statistical Problem

Suppose you have n random variables with a jointly normal distribution;
all the variables have mean 0, and you know the covariance matrix, which
is positive definite. You wish to present this covariance matrix as a path
model. In a sense, nothing is easier. Simply order the variables, arbitrarily,
as X , X , . . . , X . By successively applying regression, we can find coeffi-1 2 n
cients a and error terms e , such that X , e , . . . , e are all independenti j i 1 2 n
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Ž .with mean 0, and Eq. 10 holds:
X s a X q e2 21 1 2

X s a X q a X q e3 31 1 32 2 3
...

X s a X q ??? qa X q e . 10Ž .n n1 1 n , ny1 ny1 n

Then X is presented as exogenous and the ‘‘cause’’ of X ; next, X and1 2 1
X ‘‘cause’’ X ; and so forth. In short, there are many ways to present a2 3
covariance matrix as a path diagram; few if any will be relevant for causal
inference.25

11.2. The Faithfulness Assumption

How can you single out one path diagram from the many that corre-
w xspond to a given covariance matrix? At this point, SGS 62 seem to use the

‘‘faithfulness’’ assumption; this assumption is also used to handle con-
founding, as discussed in Section 12.1 below. Basically, a covariance matrix
is faithful to a diagram provided conditional dependencies and indepen-
dencies are determined by the presence or absence of arrows in the
diagram, rather than specific numerical values of parameters.

By way of example, Fig. 7 shows two path diagrams. On the left, X
causes W through the intervening variables Y and Z; on the right, the flow
of causality is reversed.26 The lower case letters on the arrows stand for
‘‘path coefficients,’’ that is, standardized regression coefficients. How could

w xSGS 62 distinguish between the two theories in the figure? Their idea
seems to be as follows:

In the left hand diagram, Y and Z are conditionally independent given X ; on
the right, however, Y and Z are conditionally dependent given X.

Another contrast:
In the left-hand diagram, Y and Z are conditionally dependent given W; on the
right, however, Y and Z are conditionally independent given W.

25 Ž . � < 4For the construction in 10 , simply choose a so E X X s a X ; choose a and a21 2 1 21 1 31 32
� < 4so E X X , X s a X q a X ; and so forth. For details, see the Appendix. Since the3 1 2 31 1 32 2

Ž .ordering of the variables in 10 is arbitrary, fitting such equations or drawing path diagrams
cannot determine which variables are causes and which are effects. In particular, X may be1
exogenous in the sense that it is statistically independent of disturbance terms; that by itself
does not suffice to estimate the results of manipulating X , since we cannot tell whether X1 1
is a cause or an effect.

26 Ž .In this section, I use ‘‘cause’’ in its ordinary perhaps undefinable sense. However, the
technical point}about the possibility of estimating path diagrams from covariance matrices
}still holds if the arrows are interpreted as merely representing association. ‘‘Causation’’ is

Ž .then colorful shorthand perhaps too colorful for a certain kind of covariation.
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FIG. 7. If two path diagrams have the same covariance matrix, correlational methods
cannot tell them apart; the faithfulness assumption is made to rule out such problems. The
lower case letters on the arrows denote ‘‘path coefficients,’’ that is, standardized regression
coefficients.

Therefore, the pattern of conditional dependence and independence iden-
Žtifies the diagram. In both diagrams, X and W are conditionally indepen-
.dent given Y and Z.

This idea works for many path diagrams, but fails for others. Indeed, the
path coefficients can be chosen so the pattern of conditional dependence
and independence is the same in the two diagrams. Even worse, both
diagrams can give rise to the same covariance matrix}so correlational

w xmethods cannot tell which is right. SGS 62 make the ‘‘faithfulness
Žassumption’’ in order to rule out such indeterminacies. The workings of

.the assumption will be explained below.
However, that only moves the difficulty to another place. Faithfulness is

hardly an empirical fact; it is an assumption about unobservables, made to
rule out situations that cannot be handled by correctional methods. The
SGS analytical program can now be stated rather simply. If the arrows in a
path diagram represent causation not association, and if the path diagram
can be estimated from data, then SGS can indeed infer causation from
association.

The balance of Section 11.2 provides technical backup; readers can skip
to Section 11.3. The left-hand panel in Fig. 7 is described by

Y s aX q d , Z s bX q d , W s cY q dZ q d . 11Ž .1 2 3

In this equation, X, d , d , d are independent and normal, with mean 0;1 2 3
X, Y, Z, W all have variance 1. The covariance matrix of X, Y, Z, W can be
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Ž .computed from the four parameters a, b, c, d as shown in 12 :

X Y Z W
X 1 a b ac q bd

12Ž .Y a 1 ab c q abd
Z b ab 1 d q abc
W ac q bd c q abd d q abc 1

Ž .It is a little theorem, which follows by a tedious calculation from 48 in
the Appendix, that

<cov X , W Y , Z s 0. 13Ž . Ž .

This is an example of a conditional independence relation forced by a
Ž .graph; 13 holds whatever the path coefficients in Fig. 7 may be.

The diagram on the left in Fig. 7 is reversible, provided

<cov Y , Z W s 0. 14Ž . Ž .

Ž . Ž .By 48 below, Eq. 14 is equivalent to

cov Y , Z s cov Y , W = cov Z, W . 15Ž . Ž . Ž . Ž .

Ž .By 12 , this means

ab s c q abd d q abc . 16Ž . Ž . Ž .

Ž .Rearranging 16 gives the quadratic equation

2 2 2cd ab y 1 y c y d ab q cd s 0. 17Ž . Ž . Ž .

Ž .One solution to 17 is

22 2 2 2 2 2'1 y c y d y 1 y c y d y 4c dŽ .
ab s . 18Ž .

2cd

I chose a, c, d more or less at random, getting 0.1925, 0.2873, and
27 Ž .0.1245, respectively. I computed b from 18 , getting 0.2063. This choice

Ž .forces the conditional independence relation 14 and violates the faithful-
ness assumption; conditional independence comes from the parameter
values, not the presence or absence of arrows.

27 There was a bit of luck here, because some values for a, c, d will not produce correlation
matrices.



DAVID FREEDMAN90

Given the values for the four parameters a, b, c, d, the covariance
Ž .matrix 12 can be evaluated as

1.0000 0.1925 0.2063 0.0810
0.1925 1.0000 0.0397 0.2922 . 19Ž .
0.2063 0.0397 1.0000 0.1359� 0
0.0810 0.2922 0.1359 1.0000

The path coefficients in the right-hand panel of Fig. 7 are easily
Ž .computed from 19 :

X Ž .the path coefficient from W to Y is c s cov Y, W s 0.2922;
X Ž .the path coefficient from W to Z is d s cov Z, W s 0.1359;

the path coefficients from Y and Z to X are obtained by multiple
regression, as aX s 0.1846 and bX s 0.1990.

Ž .With these choices, faithfulness does not hold and 19 can be represented
Žby either diagram in Fig. 7. For details on multiple regression, see the

.Appendix. In effect, the faithfulness assumption precludes certain alge-
Ž .braic identities among the parameters, like 16 . Since parameters are not

observable, the faithfulness assumption is not subject to direct empirical
tests based on finite amounts of data.

11.3. Complete Graphs

Even if the covariance matrix is faithful to a graph, however, problems
of indeterminacy remain}particularly if the graph is ‘‘complete’’ in the
sense that every pair of vertices is joined by an arrow. Figure 8 illustrates

Ž .this indeterminacy. The same covariance matrix 20 for the variables

Ž . Ž .FIG. 8. Graphs a and b have the same covariance matrix. Both are complete; there is
an arrow from every variable to every other variable. The numbers on the arrows are path
coefficients, that is, standardized regression coefficients.
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Ž .X, Y, Z is represented either by the diagram in panel a or the one in
Ž .panel b , where the flow of ‘‘causality’’ is reversed:

X Y Z
X 1 .46 .50 20Ž .
Y .46 1 .42
Z .50 .42 1

For a second example of indeterminacy when the graph is complete,
consider four variables X, Y, Z, W with covariance matrix S given by

3 3 31 4 4 4

3 3 314 4 4
S s . 21Ž .3 3 314 4 4� 03 3 3 14 4 4

Figure 9 shows two complete path diagrams, both of which are compati-
ble with the given covariance matrix. In the left-hand panel, X is exoge-
nous and ‘‘causes’’ Y; then X and Y ‘‘cause’’ Z; finally, X, Y, Z ‘‘cause’’ W.

Ž .In panel b , the flow of ‘‘causality’’ is reversed. The equations correspond-
Ž . Ž . Ž .ing to the left-hand panel are given as 22 ; panel b is described in 23 :

3Y s X q d14

3 3Z s X q Y q d27 7

3 3 3W s X q Y q Z q d ; 22Ž .310 10 10

3Z s W q e14

3 3Y s Z q W q e27 7

3 3 3X s Y q Z q W q e . 23Ž .310 10 10

The covariance matrix S is also compatible with the factor analysis
Ž .model 24 , where the unobservable exogenous variable U causes all four

Ž .observables right-hand panel of Fig. 9 :

X s U q z , Y s U q z , Z s U q z , W s U q z . 24Ž .1 2 3 4

Ž . Ž .In each system of Eqs. 22 ] 24 , the error terms are assumed to be
independent and normally distributed with mean 0; error terms are inde-
pendent of the exogenous variable. As a technical matter, the covariance

Ž .matrix 20 is faithfully represented by both graphs in Fig. 8. Likewise, the
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FIG. 9. Two complete path diagrams and a factor analysis model, all having the same
covariance matrix.

Ž . Ž . Ž .covariance matrix 21 is faithful to Fig. 9 a and to 9 b . Proofs may be
Ž .based on 48 below.

ŽTo sum up, if a covariance matrix is faithful to a complete graph with
.all pairs of vertices joined by arrows , it is faithful to many such graphs.

Then correlational methods cannot tell the causes from the effects. SGS
w x62 techniques work best when the graph is sparse; that is, relatively few

Ž .pairs of vertices are joined by arrows Section 6 .

11.4. Identifiability and Consistency

The focus continues to be on linear models. In statistical terminology,
models are ‘‘identifiable’’ when they make different predictions about
observables. For example, suppose you have two models for your data. If,
for all data sets,

< <P data model 1 s P data model 2 ,Ž . Ž .

there is an obvious problem}the data cannot distinguish between the
models. If a path model is complete, or the faithfulness assumption is not
imposed, then the graph underlying a covariance matrix is not identifiable;
that is, the message of Sections 11.1]11.3. By way of illustration, the
models in Fig. 7 are identifiable only if faithfulness holds.

However, even if we assume that a covariance matrix is faithful to a
w xgraph that is not complete, there may be several such graphs 62, p. 89 .

For example, the following three graphs can generate the same covariance
matrix:

X ª Y ª Z, X ¤ Y ª Z, X ¤ Y ¤ Z.

Thus, SGS do not seem to have succeeded in defining a class of graphs and
w xcovariance matrices for which identifiability holds 62, p. 194 .
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In statistical terminology, estimators are ‘‘consistent,’’ provided that, as
the sample gets larger and larger, these estimators come closer and closer
to the population parameters. If the parameters are not identifiable,
however, consistency is problematic.

w xSGS 62 seem to claim that their algorithms will find all the path
diagrams compatible with a given covariance matrix. However, the theo-
rems suggest that the algorithms will at best find one such graph. SGS also
seem to claim that their algorithms are consistent. However, without an
identifiability theory for linear models, they cannot really be talking about
consistency.

Statisticians do have the weaker notion of ‘‘Fisher consistency,’’ named
after R. A. Fisher: when applied to data for the whole population, an
estimator should reproduce the population parameters exactly. Theorems

w xlike 5.1 in SGS 62, p. 405 seem to demonstrate the analog of Fisher
consistency, rather than anything stronger. Such theorems show that, given
the population covariance matrix, the algorithms will produce one graph
consistent with that matrix.

11.5. Methodological Contributions

There is a connection between the theory of ‘‘directed acyclic graphs’’
Ž . ŽDAGs and the conditional independence of random variables. See

w x w x w xDarroch et al. 10 , Kiiveri and Speed 34, 61 , Pearl 43, 44 , Verma and
w x w x . w xPearl 49, 67 , Geiger 22 . Much of this work is reviewed in SGS 62 .

However, the mathematics of nonlinear causal diagrams seems to be
irrelevant to the big question: how do we infer causation from association?

Most the applications in SGS are linear, i.e., based on path models. The
‘‘nonlinear causal diagrams’’ turn out to be multinomial models for cate-

w xgorical data; examples are in 62, pp. 147]151 . The issues about causation
are quite similar to those for linear models, although the technical details
are different.

This section will focus on path models. To describe the novelty in the
SGS approach to estimation, suppose you have data from a path model
and wish to estimate the model. Consider two cases:

Case I. You know the classification of variables as to level; that is,
you know which variables are at level 0, which are at level 1, and so forth.

Case II. You do not know the classification of variables as to level.

w xIn Case I, SGS 62 have little to tell us about estimation; as to
confounding, see Section 12.1. Some of their algorithms seem to be
equivalent to regression; others may be less efficient. In Case II, SGS try
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to estimate the classification of variables as well as the path coefficients.
That is the methodological contribution. To estimate the classification,

Ž .SGS must impose the faithfulness assumption Section 11.2 . It is disap-
pointing that SGS do not pin down the sense in which their algorithms are

Ž .successful Section 11.4 .

12. MORE EXAMPLES AND SOME THEORY

Section 12.1 explains how the faithfulness assumption and conditional
independence are supposed to eliminate confounding. Section 12.2 dis-
cusses omitted variables. Sections 12.3]12.5 revisit two examples from a
more mathematical perspective; the idea is to show the limits of correla-
tional methods.

12.1. Faithfulness, Conditional Independence, and Confounding

The problems created by unobservable variables are well known. As
w xindicated above, SGS 62 handle such problems by imposing the faithful-

ness assumption. More specifically, the assumption is used to rule out
confounding. If confounding can be eliminated, the goal is in sight}
association may soon be converted into causation. This section, which is

Ž .based on work by Jamie Robins personal communication , examines the
w xlogic in more detail. Also see Pearl and Verma 49 .

With some models, exact conditional independence forces a choice:

v either there is no confounding by unmeasured common causes,

v or the faithfulness assumption is violated.

Near-independence is not good enough; associations may then be entirely
spurious. Thus, causal inferences made by the SGS technique need exact
conditional independence as well as the faithfulness assumption.

This use of the faithfulness assumption has some theoretical interest.
However, in order to base empirical work on such mathematical ideas, it
would seem necessary to resolve the following questions, which SGS have
not addressed:

v Can the basic models be validated?

v Can exact conditional independence be demonstrated?

v Given exact independence, why is exact cancellation of confounded
effects overwhelmingly less likely than the total absence of such effects?

As a practical matter, exact independence seems quite unusual. How-
ever, the theory is worth understanding, and an example will make the



REGRESSION 95

FIG. 10. The faithfulness assumption, conditional independence, and confounding. Vari-
ables X, Y, Z are observable; U is unobservable. Arrows represent causation, not just
association. The lower-case letters on the arrows denote path coefficients. If a path coeffi-
cient vanishes, the corresponding arrow must be deleted.

position clearer. Figure 10 shows a relatively simple diagram where faith-
fulness and conditional independence would eliminate confounding. The
arrows denote causation, not mere association. Variables X, Y, Z are
observable; U is unobservable. Such unobservables are also called ‘‘con-
founders’’ or ‘‘unmeasured common causes.’’ The joint distribution is
normal, and variables are standardized to have mean 0 and variance 1. The

Ž . 28covariance matrix for all four variables is shown in 25 .

U X Y Z
U 1

25Ž .X d 1
Y e de 1
Z f q ad q be a q bde q fd b q ade q fe 1

Ž . Ž .Of course, only the covariance matrix 26 of the observables X, Y, Z
can be estimated from the data. In particular, de is determined from the

Ž .observables, as cov X, Y :

X Y Z
X 1 26Ž .
Y de 1
Z a q bde q fd b q ade q fe 1

It may help to review the idea of faithfulness, in the context of our
example. Faithfulness is an assumption about unobservables; more specifi-

28 Covariance matrices are symmetric; only the lower triangular part is shown. Entries are
assumed to be positive but less than 1. The matrix is assumed to be positive definite.
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cally, it is a constraint on the relationship between the full covariance
Ž .matrix 25 and the graph in Fig. 10. The assumption amounts to this:

Ž .independence relationships conditional and unconditional are deter-
mined by the presence or absence of arrows in the diagram, not specific
parameter values.

Ž .In particular, if the covariance matrix 25 is faithful to the diagram in
Fig. 10, you cannot set any of the path coefficients to 0, except by deleting
the corresponding arrow. An arrow from X to Z, say, entails that X has
some causal effect on Z, no matter how small that effect may turn out to
be.

I return to more conventional issues. In our example, the parameter of
interest is b, the causal effect of Y on Z. Due to the unmeasured
confounder U, a regression of Z on X and Y produces a biased estimate
of b. By a slightly tedious calculation, the coefficient of Y in the regres-
sion equation is

b q fe 1 y d2 r 1 y d2e2 . 27Ž . Ž . Ž .
Ž .For details on multiple regression, see the Appendix. The bias in the

Ž .regression estimate is the second term in 27 . From a slightly different
Ž . Ž .perspective, cov Y, Z in 26 measures the total association between Y

and Z. Part of this association is real: b measures the causal effect of Y
on Z. Alas, part of the association is spurious: ade q fe represents the
effects of the confounder U.

The goal is to separate the real part of the association from the spurious
Ž . Ž . Ž .part. The familiar obstacle is that we have only 26 , not 25 . And 26

does not suffice to separate b q ade q fe into its components. But, SGS
might say, suppose that X and Z are conditionally independent given Y:

<cov X , Z Y s 0. 28Ž . Ž .
Ž .By 48 below, this means

cov X , Z s cov X , Y = cov Y , Z . 29Ž . Ž . Ž . Ž .
Ž . Ž .A bit of algebra based on 25 shows that 29 is equivalent to

a 1 y d2e2 q df s de2 f . 30Ž . Ž .

Although de is known and 0 - de - 1, there are many possible ways to
Ž .solve Eq. 30 . At this point, SGS would invoke the faithfulness assump-

tion, concluding that

a s 0, f s 0. 31Ž .

The implication is that we have to remove the arrow from X to Z, as well
as the arrow from U to Z.
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Ž .Confounding has now been eliminated. On this basis, cov Y, Z s b, the
whole of the association is real, and regression produces an unbiased
estimate for the causal effect of Y on Z. At last, association has been

Žconverted into causation. Of course, quite a lot of causality was built into
.Fig. 10 from the beginning}by assumption.

Those were the implications of exact conditional independence. On the
other hand, suppose we have approximate conditional independence:

Ž < .cov X, Z Y s .00001. Now the faithfulness assumption has no force.
Ž .Given the covariances in 26 , we can match them by suitable choice of the

other parameters, even if a s b s 0.29

With approximate conditional independence, observed associations can
be entirely spurious. Thus, even in the realm of mathematics, faithfulness
and conditional independence preclude confounding only when the inde-
pendence is exact. To make the contrast sharper, let us assume faithful-
ness:

v Ž < .If cov X, Z Y s 0, then the association between Y and Z is purely
causal; the effects of the unmeasured common cause U do not confound
the relationship between Y and Z.

v Ž < .If cov X, Z Y s .00001, then confounding by unmeasured common
causes may account for all of the observed association between Y and Z.

A similar problem must be considered when estimating path models
Ž .from data Section 11 . Exact conditional independence, together with the

faithfulness assumption, often permits us to identify the path diagram from
the covariance matrix. However, approximate conditional independence is
not enough; then, the covariance matrix will be faithful to a variety of
complete graphs.

Ž .A final example is the Timberlake]Williams model Section 10 . This
Ž . Ž .model explains political exclusion PO in terms of foreign investment FI ,

Ž . Ž .energy development EN , and civil liberties CV ; the sample correlation
matrix was shown in Table VI. Consider three scenarios for the ‘‘true’’
correlation matrix r :

Ž .i Suppose r happens to equal the sample correlation matrix.
Then, faithfulness obtains.

29 This matching assumes, for instance, that any two of the variables have positive
covariance, given the third. To avoid violating the faithfulness assumption, if you set a and b
to 0, erase the corresponding arrows; if that is distasteful, set a and b to small but positive
values. The SGS logic would apply to a wide variety of diagrams; however, an arrow from Y
to X, no matter how small the coefficient, spoils the show.
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Ž . Ž .ii Suppose the true correlation r PO, FI between foreign invest-
ment and political exclusion happens to vanish exactly. Then, the
Timberlake]Williams model violates the faithfulness condition; presum-
ably, that is SGS’s real complaint.

Ž . Ž .iii If r PO, FI s .00001, faithfulness is restored. According to the
SGS criteria, Timberlake and Williams are back in business.

Ž .Within the framework of path models, scenario ii cannot be rejected at
Ž . Ž .conventional significance levels; neither can iii ; and i represents our

Ž .best estimate, subject to large uncertainties. SGS seize on hypothesis ii ,
the only one that legitimates their critique. They are balking at shadows.

12.2. Omitted Variables

The problem of omitted variables was raised by Cliff Clogg at the Notre
Dame conference, and this section paraphrases one of his points. There is
a response variable Y, with explanatory variables X and Z; these may be
construed as vectors. Suppose the data are generated according to the

Ž .‘‘true’’ model 32T :

Y s Xb q d . 32TŽ .R

The parameter vectors b and g are unknown and to be estimated from
data by regression; it is b that is of primary interest. Subjects are assumed

Ž .to be independent and identically distributed; X, Z and the error term e
are independent and jointly normal; all variables have expected value 0.

Ž .Consider, too, the ‘‘restricted’’ model 32R , where b is defined so thatR
� < 4 Ž .E Y X s Xb ; the constituents of 32R may be computed from the trueR

model.30

Y s Xb q Zg q e . 32RŽ .

In principle, the variables X, Y, and Z are all observable; X and Z may
be correlated. However, investigators who do not know that Z is relevant
may fit the restricted model R rather than the true model T. If so, the
estimate of b can be quite biased. In the vernacular, b includes theR

Ž .effect of X on Y through Z. The covariance matrix of X, Y cannot
distinguish between the two models, because the matrix can be generated

30 Indeed, b s b q a , where a is obtained by the regression of Zg on X. In other terms,R
Zg s Xa q h, where h is normal with mean 0, independent of X. Then d s e q h. It may
be seen that a depends linearly on g .
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by either model. Therefore, no statistical procedure based on that matrix
can tell you whether the restricted model is right or wrong.31

12.3. On the Direction of Causality

Ž .This section uses ‘‘cause’’ in its ordinary perhaps undefinable meaning,
not as shorthand for certain kinds of covariation. I return to Judea Pearl’s

Ž .example, shown in Fig. 2 a . Given the covariance matrix for X, Y, and Z,
w x Ž .the SGS 62 algorithm will produce the graph shown in panel a . If you

tell the algorithm that omitted variables are a possibility, it will tell you
that Y cannot cause X or Z.

In the example, X, Y, and Z are the only observables, and their
Ž .covariance matrix is faithful to the graph in Fig. 2 a . I claim that such

information cannot by itself determine the direction of the causal flow. To
substantiate this claim, I now construct two theories. In both, the observ-
ables X, Y, and Z will have the same covariance matrix, faithful to the

Ž .graph in Fig. 2 a . However, the direction of the causal flow will be
different in the two theories.

Ž .THEORY 1. I first generate X, Z, U as independent N 0, 1 variables; U
Žis an unobservable error term. If you want to intervene and change X or

.Z, now is your moment. Then

Y s X q Z q U. 33Ž .

Ž .According to Theory 1, X and Z cause Y, as suggested by Fig. 2 a .

Ž . ŽTHEORY 2. I first generate Y as N 0, 3 . If you want to intervene and
.change Y, now is your moment. After a suitable pause, so that time’s

arrow will delineate the flow of causality, I generate the errors V , V , and1 2
1Ž .V as independent N 0, variables and then produce X, Z, and U,3 3

according to
1X s Y q V y V1 23

1Z s Y q V y V2 33

1U s Y q V y V . 34Ž .3 13

In the second theory, Y causes X and Z. As far as the observables are
concerned}namely, the joint distribution of X, Y, and Z}Theories 1
and 2 agree. Furthermore, the joint distribution is faithful to the graph in

31 w xSee Clogg and Haritou 6 , who make the following very interesting point. Adding
variables that are correlated with e can also bias the estimate of b ; this ‘‘included variable’’
bias can be just as troublesome as the more familiar ‘‘omitted variable’’ bias; the latter
problem cannot be solved by throwing variables into the model. The SGS treatment of
omitted variables was discussed in Section 12.1.
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Ž .Fig. 2 a . But the direction of causality is determined neither by the data
nor by the mathematics. With correlational methods, causality follows
from the assumptions about the unobservables.

12.3. The AFQT Problem

w xSGS 62, p. 242 seem to claim that, as a demonstrable mathematical
fact, their procedures will find the right answers:

Assuming the right variables have been measured, there is a straightforward
solution to these problems: apply the PC, FCI, or other reliable algorithm, and
appropriate theorems from the preceding chapters, to determine which X
variables influence the outcome Y, which do not, and for which the question
cannot be answered . . . . Then estimate the dependencies by whatever methods
seem appropriate and apply the results of the previous chapter to obtain
predictions of the effect of manipulating the X variables. No extra theory is
required. We will give a number of illustrations . . . .

ŽThe first example given by SGS to illustrate this claim is AFQT Section
.9 above . To demonstrate that SGS are exaggerating more than a little, I

pose a sharp mathematical question with the essential features of the
AFQT problem. Then, I show the question to be undecidable by correla-

Žtional methods. Of course, when applied to the real example, both SGS
.and ordinary least squares made the right guess.

To set up the question, assume that X and Y are random variables: X is
a vector; Y is scalar.

Y is a linear combination of X ’s, with fixed weights. 35Ž .
The observables are Y and V , . . . , V . 36Ž .1 7

ŽSome V ’s are X ’s; some V ’s are ringers. A ‘‘ringer’’ is a variable that does
.not enter into the linear combination for Y. There are also unobservables,

including the X ’s that are not V ’s. Assume too that

The full joint distribution is multivariate normal, with mean 0. 37Ž .

You are given the covariance matrix for the observables, but not the full
covariance matrix. The problem is to say which of the V ’s are X ’s and
which are ringers. I claim this problem is not solvable, because I can
produce two different theories leading to different classifications of the
V ’s, but having the same joint distribution for the observables.

THEORY 1. I use the covariance matrix for the seven observable sub-
tests V s NO, . . . , V s GS, together with the three unobservable sub-1 7

Žtests, CS, AS, and PC. The subtests are listed in Table VIII, Section 12.5
.below. The full distribution is defined to be jointly normal, and all
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variables have mean 0. Let Y s .5 = NO q AR q WK q PC, where NO,
AR, and WK are observable but PC is unobservable. In this theory,
V , V , V are X ’s, the remaining V ’s are ringers. This theory happens to1 2 3

Ž .have been more or less correct, prior to 1989; see Eq. 42 in Section 12.5.

THEORY 2. Again, I use the covariance matrix for the seven observable
subtests V s NO, . . . , V s GS, together with the other three unobserv-1 7
able subtests CS, AS, PC. I create an auxiliary variable U, which is
independent of the 10 subtests and has small variance. The distribution of
these 11 variables is defined to be jointly normal, and all variables have
mean 0. There are three additional unobservables, defined as

T s .25 AR q NO q .5PC q U, 38Ž . Ž .1

T s .25 WK q NO q .5PC q U, 39Ž . Ž .2

T s .75 AR q WK y 2U. 40Ž . Ž .3

Let

Y s T q T q T . 41Ž .1 2 3

In Theory 2, T , T , T are the unobservables; all the V ’s are ringers. The1 2 3
auxiliary variables U, CS, AS, PC serve only to define the joint distribution.

Theory 1 and Theory 2 provide the same joint distribution for the
observables. Therefore, no statistical procedure based on the joint distri-
bution}like the SGS algorithms or any other correlational methods}can
adjudicate between the two theories.

This section and the previous one demonstrate the obvious: you cannot
infer cause and effect relationships by doing arithmetic on a correlation
matrix, because association is not causation. The mathematical develop-
ment in SGS avoids such problems only by imposing more or less arbitrary

Ž .conditions like faithfulness on unobservable variables, as discussed in
Sections 11.2 and 12.1.

In the present section, neither Theory 1 nor Theory 2 fits into the SGS
framework; Y is a deterministic function of the explanatory variables, with

Ž .no stochastic error term: see Eq. 35 . Furthermore, if U and PC are
Ž . Ž .treated as variables rather than error terms in 38 ] 40 , the joint distribu-

tion in Theory 2 is, presumably, unfaithful to its causal graph. Similar
comments apply to the previous section.

12.5. Institutional Background on the AFQT

Ž .The ‘‘Armed Services Vocational Aptitude Battery’’ ASVAB has 10
subtests, including the seven listed in Table IV, Section 9 above. All 10 are
shown in Table VIII.
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TABLE VIII
The 10 Subtests in ASVAB

1. Numerical Operations NO
2. Word Knowledge WK
3. Arithmetical Reasoning AR
4. Mathematical Knowledge MK
5. Electronics Information EI
6. Mechanical Comprehension MC
7. General Science GS
8. Coding Speed CS
9. Auto & Shop Information AS
10. Paragraph Comprehension PC

Notes. The first seven were analyzed by
SGS. ASVAB Form 17, July 1990.

Until January, 1989 the AFQT was computed as

AFQT s .5 = NO q AR q WK q PC. 42Ž .

After that date, NO was replaced by MK; a ‘‘verbal’’ score VE was defined
as VE s WK q PC; and terms were standardized to have mean 0 and
variance 1 on some calibration data}the ‘‘NORC 1985 sample.’’ AFQT
was redefined as

AFQT s MK q AR q 2 = VE , 43Ž .Z Z Z

where the subscript Z denotes standardization. Throughout the period,
raw scores were by Congressional requirement converted to percentiles

w xbased on the NORC sample. Presumably, the data used by SGS 62 come
Ž . Ž .from 1988 or before, since they pick up formula 42 rather than 43 ; see

Section 9 above.32

13. RESPONSES

Formal statistical inference is, by its nature, conditional. If assumptions
A, B, C, . . . hold, then H can be tested against the data. However, if
A, B, C, . . . remain in doubt, so must inferences about H. Indeed, the
statistical calculations may prove to be quite misleading.

Many assumptions are made but only a few are tested. Those made
without testing are called ‘‘maintained hypotheses.’’ They are usually

32 w xSGS 62 appear to be considering raw scores, and I follow suit. The material in this
Ž . wsection was reported by Larry Hanser personal communication ; he refers to Welsh et al. 68,

x w xp. 5, Table 3 and Eitelberg 14, p. 73 .
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statistical and often rather technical}linearity, independence, exogeneity,
etc. Careful scrutiny of such assumptions would therefore seem to be a
critical part of empirical work.

In the social sciences, however, statistical assumptions are rarely made
explicit, let alone validated. Questions provoke reactions that cover the
gamut from indignation to obscurantism. We know all that. Nothing is
perfect. Linearity has to be a good first approximation. The assumptions are
reasonable. The assumptions do not matter. The assumptions are conser̈ atï e.
You cannot pro¨e the assumptions are wrong. The biases will cancel. We can
model the biases. We are only doing what e¨erybody else does. Now we use
more sophisticated techniques. What would you do? The decision-maker has to
be better off with us than without us. We all ha¨e mental models; not using a
model is still a model.

With the SGS approach, responses are more subtle but no more empiri-
cal. Proponents often seem to take a Bayesian stance; faithfulness is
justified on the grounds that the exceptional cases have measure 0 and
must therefore be viewed as negligible a priori.33 However, the SGS
approach is frequentist not Bayesian; the simulations, being done on
finite-state computers, must concentrate in a set of measure 0; and the
SGS class of models has measure 0 within larger classes of models. Indeed,
from my perspective, the whole class of path models seems rather unlikely
}given the intensity of the research effort and the paucity of convincing
examples. The assumptions that diagrams are sparse and faithful stretch
credibility even further.

Attempts have also been made to justify the faithfulness assumption by
appeals to continuity. If a covariance matrix is unfaithful, small changes to
parameter values make it faithful. However, the same argument can be
turned against correlational methods. For example, if a covariance matrix
is faithful to an incomplete graph, small changes to hidden parameters
make the graph complete and vitiate the SGS search procedures. Section
12.1 points to another kind of instability in the SGS framework. The

Ž .continuity defense like the Bayesian argument reflects an aesthetic
judgment about modeling styles. Taste is no substitute for empirical
verification.

The SGS criteria for causality may also be defended as follows}it is
unlikely that anything could produce the patterns of intercorrelation
identified by SGS, other than causation; thus, correlational methods shift

33 The ‘‘measure’’ here is the uniform distribution in Euclidean space, e.g., length, area,
w xvolume . . . . The SGS argument 62, p. 95 seems to be a variation on Laplace’s ‘‘principle of
w xinsufficient reason’’: see Stigler 64, p. 127 .
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the burden of argument. Figures 5 and 6 should dispose of this idea. In
real examples, the patterns identified by the SGS search algorithms can
hardly represent cause-and-effect relationships. The burden would seem to
be on the modelers: how can they recommend an algorithm that gives such
results?

Proponents of modeling can also be heard to argue that all of us make
assumptions about unobservables. However, what is unobservable with one
design may become observable with another. And some investigators still
deal with unobservables the hard way}by doing the right studies. For
example, take Fisher’s ‘‘constitutional hypothesis’’: there may be a genetic
factor that predisposes you to smoke and to get lung cancer, heart disease,
etc.34 This putative genetic factor is the unobservable common cause for
smoking and illness.

The epidemiologists did not deal with the constitutional hypothesis by
introducing special assumptions. Instead, they studied the matter empiri-
cally, using data from twin studies. For a recent report on the Swedish twin

w xregistry, see Floderus et al. 16 . On the Finnish twin registry, see Kaprio
w xand Koskenvuo 31 . Data on the Danish twin registry are fragmentary.

There are forthcoming data on the U.S. twin registry, which are quite
w xstrong 72 . The numbers on lung cancer are suggestive, but still small}this

is a rare disease, even among smokers. The data on heart disease and total
mortality, however, make the constitutional hypothesis untenable.

13.1. A Comment from Judea Pearl

Ž .Judea Pearl personal communication writes that

Correlation-based model-searching schemes produce causal inferences with
only limited guarantees. Yet such schemes have potential, if conducted under
conditions that screen out accidental independencies while maintaining struc-
tural independencies}for example, longitudinal studies under slightly varying
conditions. This assumes, of course, that under such varying conditions the
parameters of the model will be perturbed, while its structure remains stable.
Maintaining such delicate balance under changing conditions may be hard in
real-life studies. However, considering the alternative of resorting to controlled,
randomized experiments, such longitudinal studies are still an exciting opportu-
nity.

Additionally, any investigator who is searching for a causal model knowing
Ž .that the parameters might be tied together by some hidden equation, like 17

w x Ž .Section 11.2 , is wasting time and public funds . Such a model, even if correct,
Žis bound to be useless, because without the assumption of autonomy i.e., that

.each parameter can be perturbed without altering the others , the model
cannot predict the effect of interventions or other changes . . . .

w x w xAlso see Pearl 45 ; Pearl and Wermuth 50 .

34 w xSee SGS 62, pp. 298]299 .
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14. OTHER LITERATURE

There is an extensive literature on the evaluation of models, going back
Ž w xat least to the Keynes]Tinbergen exchange Keynes 32, 33 ; Tinbergen

w x. w x66 . Also see 37, 38 . For more recent discussions, with other citations to
w xthe literature, see Freedman 18, 19 . Many authors have tried to explain

wthe basis for inferring causation by using regression. See, for example, 52,
x w x53 , or 28, 29 . Of enthusiastic views on social-science modeling, there is

w x w xno shortage; see, for instance, 60 , or 2 . For recent discussions of causal
w x w xmodeling, see Humphreys and Freedman 73 , Cox and Wermuth 8 , or

w xPearl 74 .

15. CONCLUSIONS

w xSGS 63 have not succeeded in clarifying the circumstances under which
causal inferences can be drawn from observed associations, nor have they
invented a reliable engine for performing this feat. Their algorithms have
some technical interest, but will make causal inferences only when causa-
tion is assumed in the first place. To be more explicit: If we assume that
the arrows in a path diagram represent causation rather than association,
and we also assume that the path diagram can be estimated from data,
then indeed SGS can infer causation from association. The faithfulness
assumption and exact conditional independence will together eliminate
certain kinds of confounding. Even so, causality is assumed into the picture
at the beginning, not proved at the end. As Nancy Cartwright says, ‘‘No
causes in, no causes out.’’35

The larger problem remains. Can quantitative social scientists infer
causality by applying statistical technology to correlation matrices? That is
not a mathematical question, because the answer turns on the way the
world is put together. As I read the record, correlational methods have not
delivered the goods. We need to work on measurement, design, theory.
Fancier statistics are not likely to help much.

APPENDIX: REGRESSION AND CONDITIONING

For ease of reference, this appendix presents the usual formulas for
computing regressions and conditional covariances. I begin with regres-
sion. Suppose j and h are random variables; j may be a row vector. We
seek the column vector b of regression coefficients for h on j . Let

35 w x w xCartwright 5, Chaps. 2, 3 . Also see Pearl and Verma 49 .
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� X 4 � X 4C s E j j and D s E j h ; the prime denotes matrix transposition.
Assume C is positive definite. Then

b s Cy1D. 44Ž .

Now h s jb q u, where u is automatically orthogonal to j . The mean
square of u may be computed as follows:

E u2 s E h 2 y b XCb . 45Ž . Ž .Ž .
Ž . Ž .If j and h have mean 0, then C s cov j and D s cov j , h ; also,

Ž .E u s 0. Likewise, if some component of j is a nonzero constant,
Ž .E u s 0. If now the variables are jointly normal, u is independent of j .

Ž .I turn to estimation. Recall Eq. 2 , repeated here for ease of reference.

Y s Xb q e . 2Ž .

In this equation, X is the ‘‘design matrix,’’ representing the explanatory
variables. There is one row for each unit in the study, and one column for
each variable. The entry in the ith row and jth column represents the jth
variable, as observed on the ith unit in the study. X may include a column
of ones if there is to be an intercept in the equation. Y is a column vector
representing the dependent variable, whose ith component represents the
value of Y for the ith unit in the study. e is also a column vector, with one
component for each unit in the study, representing the impact on Y of
chance factors unrelated to X. Typically, there will be many fewer parame-
ters than data points, so b has relatively few components.

The ordinary least squares estimator for b is denoted by a hat and may
be computed as

y1X Xb̂ s X X X Y . 46Ž . Ž .
ˆThe covariance matrix for b , conditional on the design matrix, is computed

as
y1Xˆ < <cov b X s X X var e X . 47Ž . Ž .Ž .Ž . i

Ž . Ž . Ž .Of course, 46 is related to 44 ; this is seen by defining j , h as a row
Ž .chosen at random from X, Y .

ˆ ˆThe ‘‘predicted values’’ and ‘‘residuals’’ are defined as Y s Xb and
ˆe s Y y Y. The residuals are automatically orthogonal to X. The residual

5 5 2 2sum of squares, minimized by the choice of b , is RSS s e s S e . Theni i
Ž < . Ž . Ž .var e X in 47 may be estimated as RSSr n y p , where n is thei

number of data points and p is the number of explanatory variables.
Variances will be found along the diagonal of the covariance matrix, and
the standard error is computed as the square root of the variance. In
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deriving these formulas, it is assumed that, given X, the components of e
are conditionally independent and identically distributed, with mean 0.

Suppose the model has an intercept. Then R2 may be defined as
2 ˆ� 4 � 4R s var Y rvar Y , where, e.g.,

n n1 12� 4var Y s Y y Y , Y s Y .Ž .Ý Ýi in nis1 is1

2 ˆX X ˆ Ž � 4.If all variables have mean 0, then R s b X Xbr n = var Y .
The usual formula for computing conditional covariances may be pre-

sented as follows. Let n ) 2. Suppose X , X , . . . , X are jointly normal.1 2 n
We seek the conditional covariance of X and X , given X , X , . . . , X .1 2 3 4 n
Let S be the covariance matrix of X , X , . . . , X . Let k be the covari-3 4 n 1
ance of X with X , X , . . . , X ; let k be the covariance of X with1 3 4 n 2 2

Ž .X , X , . . . , X . We view k and k as n y 2 = 1 column vectors. The3 4 n 1 2
conditional covariance is given by

< X y1cov X , X X , . . . , X s cov X , X y k S k . 48Ž . Ž .Ž .1 2 3 n 1 2 1 2

The prime denotes matrix transposition. Details on the material in this
w xappendix may be found in standard texts, for instance, 54 .
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