18.781 Problem Set 8

Due Wednesday April 17 in class.

1. Prove that for any positive integer m, $\langle \overline{2m} \rangle = m + \sqrt{m^2 + 1}$.

2. Write down *all* the quadratic irrationals whose continued fraction is periodic of period 1. (Problem 1 writes down some of them.)

3. Write down *all* the quadratic irrationals whose continued fraction is periodic of period 2.

4. Suppose that a and b are strictly positive integers. Explain why $a^2b^2 + 4ab$ is *not* a perfect square. (It's OK to say "this follows from Problem 3" if you add a couple of additional words of explanation. But it's also possible to solve this problem independently.)

5. Calculate the continued fraction expansion of $\sqrt{61}$.

Summary of the method from the text and class for calculating the expansion of $(m_0 + \sqrt{d})/q_0$: make a table with rows numbered i = 0, 1, 2, ..., and four columns of data: m_i , q_i , $\xi_i = (m_i + \sqrt{d})/q_i$, and $a_i = [\xi_i]$. Calculate row i + 1 from row i by the formulas

$$m_{i+1} = q_i a_i - m_i, \qquad q_{i+1} = (d - m_{i+1}^2)/q_i.$$

This works as long as m_0 is an integer, d is a positive integer non-square, and q_0 is a positive divisor of $d - m_0^2$. Then (for all $i \ge 1$) $d - m_i^2 > 0$, and q_i is a positive divisor of $d - m_i^2$.