
18.781 Problem Set 7 solutions

Due Monday, April 8 in class.

This problem set is about continued fractions. To fix the notation, I’ll write here
a little of what’s written in the text. The starting point is two integers

u0, u1, u1 ≥ 1.

The algorithm for computing the continued fraction expansion is very much like
the Euclidean algorithm: repeated division with remainder

u0 = u1a0 + u2, (0 ≤ u2 < u1)

u1 = u2a1 + u3, (0 ≤ u3 < u2)

...

un−1 = unan−1 + un+1 (0 ≤ un+1 < un)

un = un+1an.

Then
u0

u1

= a0 +
1

a1 +
1

a2 +
1

. . . an−1 +
1

an
=def 〈a0, . . . , an〉.

1a. The text says that you should start with a fraction u0/u1 in lowest
terms; that is, with the property that u0 and u1 have no common factor.
If you do that, what is the value of un+1?

The calculation is exactly the Euclidian algorithm for calculating

gcd(u0, u1) = gcd(u1, u2) = · · · = gcd(un+1, 0) = un+1.

The assumption is that gcd(u0, u1) = 1, so un+1 = 1.

1b. Explain what happens in the algorithm above if you start with a
fraction u0/u1 that is not in lowest terms.

The algorithm still calculates gcd(u0, u1) = un+1; so un+1 must divide every uj .
The calculation with these not-relatively-prime u0 and u1 is just un+1 times the
calculation with u0/un+1 and u1/un+1. The aj appearing are exactly the same:
the conclusion is

u0/u1 = 〈a0, a1, . . . , an〉 = (u0/un+1)/(u1/un+1).

That is, the algorithm for calculating the continued fraction expansion is still ex-
actly correct even if u0/u1 is not in lowest terms.

2. Define

Aj =

(

aj 1
1 0

)

,



2

and define
(

Pj Pj−1

Qj Qj−1

)

= A0A1 · · ·Aj . (n ≥ j ≥ 0

Prove that for all 0 ≤ j ≤ n

〈a0, . . . , aj〉 = Pj/Qj ,

PjQj−1 − Pj−1Qj = (−1)j+1,

Q0 = 1, Qj ≥ Qj−1,

with equality only if j = 1 and a1 = 1. Finally, for 1 ≤ j ≤ n,

Pj

Qj

− Pj−1

Qj−1

=
(−1)j+1

QjQj−1

.

I’ll prove each of these formulas by induction on j. For j = 0 we have

P0 = a0, Q0 = 1, P
−1 = 1, Q

−1 = 0.

Therefore

P0/Q0 = a0 = 〈a0〉, P0Q−1 − P
−1Q0 = a0 · 0− 1 · 1 = −1,

proving the first two formulas. The third is also clear. For any value of j, the fourth
formula arises by dividing the second by QjQj−1. According to the third formula,
this division is legal for 1 ≤ j ≤ n; so I’ll say no more about the fourth formula.

Now for the induction step: we suppose that 1 ≤ j ≤ n, and that the first three
formulas are known for j − 1; we want to prove them for j. Notice first of all that
by definition

(

Pj Pj−1

Qj Qj−1

)

= A0A1 · · ·Aj−1

(

aj 0
1 0

)

=

(

Pj−1 Pj−2

Qj−1 Qj−2

)(

aj 0
1 0

)

=

(

Pj−1aj + Pj−2 Pj−1

Qj−1aj +Qj−2 Qj−1

)

.

Multiplying matrices gives recursion formulas

Pj = Pj−1aj + Pj−2, Qj = Qj−1aj +Qj−2.

For the first formula, I will cheat and use the result of Problem 3. (You can
check that the solution of Problem 3 won’t use the result of Problem 2, so this is
not really cheating.) We get

〈a0, . . . , aj〉 =
Pj−1aj + Pj−2

Qj−1aj +Qj−2

=
Pj

Qj

,

where at the end I used the recursion formula established above.
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Once we know these four matrix entries, the second formula is the determinant:

PjQj−1 − Pj−1Qj = det(A0A1 · · ·Aj) = det(A0) det(A1) · · · det(Aj).

Each factor Ai clearly has determinant −1, so the product is (−1)j+1..
For the third formula, we already know that Q0 = 1 and Q

−1 = 0. The recursion
above is

Qj = Qj−1aj +Qj−2;

the first term is greater than or equal to Qj−1 since aj > 0, and the second is
nonnegative. This proves that Qj ≥ Qj−1. Equality can hold only if Qj−2 = 0 (so
that j = 1) and aj = 1.

3. If x > 0 is any real number, define

〈a0, . . . , an, x〉 =def= a0 +
1

a1 +
1

a2 +
1

. . . an−1 +
1

an +
1

x

(If x is a positive integer, this is consistent with our notation for contin-
ued fractions.) Using the notation of Problem 2, prove that

〈a0, . . . , an, x〉 =
Pnx+ Pn−1

Qnx+Qn−1

.

We prove this by induction on n. If n = 0, the desired formula is

a0 +
1

x
=

a0x+ 1

1 · x+ 0
,

which is true. If n ≥ 1, then (by inductive hypothesis)

〈a0, . . . , an−1, an, x〉 = 〈a0, . . . , an−1, an +
1

x
〉

=
Pn−1(an +

1

x
) + Pn−2

Qn−1(an +
1

x
) +Qn−2

=
x(Pn−1an + Pn−2) + Pn−1

x(Qn−1an +Qn−2) +Qn−1

=
Pnx+ Pn−1

Qnx+Qn−1

Here we first multiplied numerator and denominator by x to clear fractions, then
used the recursion formulas for Pn and Qn from Problem 2.
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4. Find an explicit formula (something like 4 − 2
√
3) for the periodic

continued fraction

〈1, 2, 3, 1, 2, 3, 1, 2, 3, . . . 〉 = 〈1, 2, 3〉.

(Hint: if you use the previous problems, you can make most of the
arithmetic into multiplying some 2× 2 matrices.)

Write x = 〈1, 2, 3〉. Then by definition

x = 1 +
1

2 +
1

3 +
1

x

Matrix multiplication gives

(

1 1
1 0

)(

2 1
1 0

)(

3 1
1 0

)

=

(

10 3
7 2

)

.

According to Problem 2, the definition written above simplifies to

x =
10x+ 3

7x+ 2
, 7x2 + 2x = 10x+ 3, 7x2 − 8x− 3 = 0.

The roots of this last equation are
4±

√
37

7
. Our x is clearly greater than 1, so we

need the positive square root:

x =
4±

√
37

7
= 1.44039464 . . .

This is consistent with the first few continued fraction approximations computed
above:

1,
3

2
= 1.5,

10

7
= 1.42857 . . . .

The next two are
13

9
= 1.444 . . . ,

36

25
= 1.44.

Notice that the approximations are alternately above and below the limit.


