18.781 Problem Set 6

Due Monday, October 24 in class.

1. Suppose that

$$Q(x,y) = Ax^2 + Bxy + Cy^2$$

is a binary integral quadratic form. Recall from class that the discriminant of Q is defined to be

$$D = B^2 - 4AC.$$

The form Q is said to represent zero if there are integers x and y, not both zero, such that Q(x,y)=0.

- 1(a). Suppose that either A or C is zero. Show that then Q represents zero, and the discriminant is a perfect square.
- **1(b).** Suppose that A and C are both non-zero, $(x, y) \neq (0, 0)$, but Q(x, y) = 0. Explain why x and y are both non-zero.
- **1(c).** Suppose that A and C are both non-zero, $(x, y) \neq (0, 0)$, but Q(x, y) = 0. Prove that (2Ax + By)/y is a (rational) square root of D. Explain why it follows that D must be a perfect square.
- 1(d). Suppose that A and C are both non-zero, and that D is a perfect square. Prove that Q represents zero.
- 1(e). Suppose that Q represents zero. Prove that there is a new coordinate system

$$u = px + qy,$$
 $v = rx + sy$

(with p,q,r,s integers satisfying ps-qr=1) so that in the new coordinates

$$Q(u,v) = A'u^2 + B'uv,$$

with B' a square root of D. (Hint: you can quote results from the exercises for section 5.7. This problem is still a bit more than I should really expect you to be able to do, so don't lose sleep over it.)

2. I proved in class Dirichlet's theorem that if ξ is any irrational number, then there are infinitely many rational numbers p/q so that

$$|\xi - p/q| < 1/q^2.$$

The point of this problem is to show that you can't do much better than this in general. Define

$$\xi_0 = (1 + \sqrt{5})/2,$$

the larger root of the equation

$$f(x) = x^2 - x - 1.$$

This is the Golden Ratio, about which you can read in art history classes as well as in mathematics. I'll talk about this equation using the binary quadratic form

$$Q(p,q) = p^2 - pq - q^2.$$

- 2(a). Calculate the discriminant of the quadratic form Q. Explain why Q is indefinite and does not represent zero.
- 2(b). List the pairs of numbers appearing on successive edges of John Conway's river for the quadratic form Q. (The sequence of pairs eventually repeats; you can list the pairs in one period, then put a bar over it.)
 - 2(c). Show that if p and q are any integers with q not zero, then

$$|f(p/q)| \ge 1/q^2.$$

2(d). Suppose that

$$1/2 \le x \le \xi_0$$
.

Prove that

$$|f(x)| \le (\xi_0 - x)(2\xi_0 - 1) = (\xi_0 - x)(\sqrt{5}).$$

Deduce that

$$|\xi_0 - x| \ge f(x)/\sqrt{5}$$
.

2(e). Suppose that p/q is a rational approximation to ξ_0 , and that $p/q < \xi_0$. Prove that

$$|\xi_0 - p/q| > 1/\sqrt{5}q^2$$
.

Remark. This problem says that ξ_0 can't be very well approximated by rational numbers from below; for example, you can't get something like Dirichlet's theorem with $1/3q^2$ in place of $1/q^2$. (It's also true that you can't get better-than- $1/\sqrt{5}q^2$ approximations from above, but the inequalities are not quite so simple as in 2(d) above.) The number $1/\sqrt{5}$ is best possible: a theorem of Hurwitz says that if ξ is any irrational, then there are infinitely many rationals p/q with

$$|\xi - p/q| < 1/\sqrt{5}q^2.$$

Do you see why this doesn't contradict 2(e)?

3. Write down a specific irrational number ξ_1 with the property that for every positive integer k, there are infinitely many rational numbers p/q such that

$$|\xi_1 - p/q| < 1/q^k$$
.

(Hint: taking a finite number of terms in the decimal expansion of ξ gives a rational approximation to ξ . Usually the error in this approximation is terrible (like 1/q), but sometimes it's much smaller.)