## 18.781 Problem Set 5

Due Monday, October 17 in class.

1. You might remember from calculus Newton's method for finding roots of the equation f(t) = 0. The idea is to begin with an approximation  $t_0$  to a root; to write down the linear approximation

$$f(t) \approx f(t_0) + f'(t_0)(t - t_0),$$

and then to choose as a (hopefully better) approximation to a root of f a root  $t_1$  of the linear equation

$$0 = f(t_0) + f'(t_0)(t_1 - t_0);$$

that is, to define

$$t_1 = t_0 - f(t_0) / f'(t_0).$$

Now you can repeat the process starting with  $t_1$  in place of  $t_0$ . This makes sense as long as  $f'(t_i) \neq 0$ , and under favorable conditions the sequence  $\{t_i\}$  converges to a root of f. In this problem I'll look at the function  $f(t) = t^2 - N$ , with N a positive integer; approximating roots of f means approximating  $\sqrt{N}$ .

1(a). Show that if  $t_0$  is any positive number (regarded as an approximation to  $\sqrt{N}$ ) then Newton's method leads to the new approximation

$$t_1 = \frac{1}{2}(t_0 + \frac{N}{t_0}).$$

(You can think of this as saying that if  $t_0$  is (for instance) a little smaller than  $\sqrt{N}$ , then  $N/t_0$  is roughly the same amount *larger* than  $\sqrt{N}$ , so the average of these two numbers is quite close to  $\sqrt{N}$ .)

1(b). Show that if  $x_0$  and  $y_0$  are positive integers, and we think of  $t_0 = x_0/y_0$  as a rational approximation to  $\sqrt{N}$ , then Newton's method leads to a new rational approximation

$$t_1 = x_1/y_1,$$
  $x_1 = x_0^2 + Ny_0^2,$   $y_1 = 2x_0y_0.$ 

**1(c).** Suppose that  $(x_0, y_0)$  is a solution of Pell's equation  $x^2 - Ny^2 = 1$ . Prove that the pair  $(x_1, y_1)$  defined in (b) is also a solution.

1(d). You may notice that the new solutions to Pell's equation provided by (c) all have y even. Suppose that N is an even integer not divisible by 4. Prove that if (x, y) is any solution of Pell's equation  $x^2 - Ny^2 = 1$ , then y must be even.

2. I'll be proving in class that if  $\xi$  is any irrational real number, then there are infinitely many rational numbers p/q such that

$$|\xi - p/q| < 1/q^2$$

Prove that this assertion is *false* for every rational number: that is, that if r is a rational number, then there are only finitely many distinct rational numbers p/q such that

$$|r - p/q| < 1/q^2$$

**3.** Problem 5.4.5 in the text on page 83.