
18.755 fourth problems, due in class Wednesday, March 4, 2020

It turns out that most of the interesting Lie groups can be described as groups
of linear transformations preserving various bilinear forms. This problem set is
therefore about some of those groups. We can say a lot of things over any field k,
and that’s worth doing. Recall that a bilinear form on a k vector space V is a map

β:V × V → k

satisfying

β(au + bv, w) = aβ(u,w) + bβ(v, w), β(x, cy + dz) = cβ(x, y) + dβ(x, z);

here u, v, w, x, y, z ∈ V are vectors and a, b, c, d ∈ k are scalars.
Bilinear forms may be identified with linear maps

Bβ ∈ Hom(V, V ∗), β(v, w) = [Bβ(v)](w).

The form is called symmetric if

β(v, w) = β(w, v), equivalently tBβ = Bβ ,

and skew-symmetric if
β(v, v) = 0.

(Applying the definition of skew-symmetric to v + w and using bilinearity shows
that a skew-symmetric form must also have the perhaps more familiar property

β(v, w) = −β(w, v), equivalently tBβ = −Bβ.

If the characteristic of k is not 2, this familiar property is easily seen to be equiv-

alent to the first. But in characteristic 2 it is the condition β(v, v) = 0 that is
more interesting. We will mostly not worry about characteristic 2.) The form is
nondegenerate if for every nonzero v ∈ V there is a w ∈ V so that β(v, w) 6= 0, and
for every nonzero w′ there is a v′ so that β(v′, w′) 6= 0. If V is finite-dimensional,
this is equivalent to Bβ being invertible.

If V = kn, then Hom(V, V ∗) can be identified with n× n matrices. The identi-
fication of forms is

β(v, w) = twBβv, (Bβ)ij = β(ej , ei).

Clearly symmetric (respectively skew-symmetric, except in characteristic 2) forms
correspond to symmetric (respectively skew-symmetric) matrices. Nondegenerate
forms correspond to invertible matrices.

The group GL(V ) of invertible linear transformations acts on bilinear forms by
change of variable

(g · β)(v, w) = β(g−1 · v, g−1 · w).

The corresponding action of GL(V ) on linear maps is

g ·B = tg−1Bg−1.

This action preserves the property of being symmetric or skew symmetric.



1. (This problem is over any field k.) If β is a symmetric bilinear form on V ,
the orthogonal group of β is by definition

Oβ = {g ∈ GL(V ) | g · β = β}.

(If the characteristic of k is two, this definition still makes sense but it is not
correct—that is, it is not what is called an orthogonal group in characteristic two.
Just ignore that for this problem.) Prove that if x ∈ GL(V ), then

Ox·β = xOβx
−1.

That is, equivalence classes of symmetric forms give rise to conjugacy classes of

subgroups of GL(V ).

2. Describe all possible symmetric bilinear forms on R
n up to the action of

GL(n,R). That is, describe the orbits of GL(n,R) on symmetric n × n matrices.
(Hint: there are (n+1)(n+2)/2 orbits. You can if you like say “by XXX’s theorem,
the answer is . . . ” but in this case you should cite some place where the theorem
you use is stated.)

3. If V = R
n, and β corresponds to a symmetric matrix B, then the definition

says that
Oβ = {g ∈ GL(n,R) | tg−1Bg−1 = B}.

Find a simple description for the set of matrices X in the Lie algebra oβ of Oβ .
(Hint: you can use the fact that the Lie algebra of a Lie subgroup H of G consists
of all X ∈ g such that exp(tX) ∈ H for every real t.)

4. Describe the Lie algebra o(p, q) by saying exactly which matrices

(

A B
C D

)

(A p× p, B p× q, C q × p, D q × q)

belong to the Lie algebra. (This means writing some conditions on and relations
among the four matrices A, B, C, and D. A good answer is one that can be
understood just by knowing about matrices, without knowing about bilinear forms.)
Use your description to calculate the dimension of O(p, q).

5. Describe all possible skew-symmetric bilinear forms on R
2n up to the action

of GL(2n,R). That is, describe the orbits of GL(2n,R) on skew-symmetric 2n×2n
matrices. (Hint: there are n+1 orbits. You can if you like say “by XXX’s theorem,
the answer is . . . ” but in this case you should cite some place where the theorem
you use is stated.)


