Linear Algebra 18.700 Fall Semester, 2019

General Information

Class meetings: Monday, Wednesday, and Friday 10:00–11:00, in 4-237.

Text: Sheldon Axler, *Linear Algebra Done Right*, third edition. Read the text *before* class as well as after; your understanding and your chance of catching me in a *faux pas* will both be greatly increased. I **strongly recommend** using the third edition: it is extremely different in detail from the second. You can download a pdf from the library.

Lecturer: David Vogan, 2-355. Telephone: 617-253-4991. E-mail: dav@math.mit.edu. My office hours are Thursday 3–4, Friday 4–5, or by appointment.

Homework: There will be nine graded problem sets; due dates IN CLASS are on the schedule below. Late problem sets will not be accepted. (Really. If you need to miss one, the grading system won't destroy you for that.)

Exams: There will be three one-hour exams during the lecture hour: Sept 27, Oct 25, and Nov 18. There will be a three-hour final exam to be scheduled by the Registrar December 16–20. All exams will be closed book.

Grading: Each hour exam will be worth 100 points, the final exam will be worth 200 points, and the problem sets will be worth about 20 points each.

Schedule

Wed 9/4 Fri 9/6	Lecture 1 Lecture 2	Ch 1A–B Ch 1C	Definition of vector spaces Properties, subspaces	
Mon 9/9 Wed 9/11 Fri 9/13	Lecture 3 Lecture 4 Lecture 5	Ch 1C Ch 2A Ch 2B	Sums and direct sums Span and independence Bases	
Mon 9/16 Wed 9/18 Fri 9/20	Lecture 6 Lecture 7 Holiday	Ch 2C Ch 3A–B	Bases and dimension Linear maps, null space, range Study of roots	PS 1 due
Mon 9/23 Wed 9/25 Fri 9/27	Lecture 9 Lecture 10 Lecture 11	Ch 3C Ch 3D	matrices invertibility, isomorphism Exam 1 on Chapters 1–3	PS 2 due
Mon 9/30 Wed 10/2 Fri 10/4	Lecture 12 Lecture 13 Lecture 14	$ \begin{array}{c} \mathbb{F} \\ \mathrm{GE} \\ \mathrm{GE} \end{array} $	Finite fields Solving systems of equations Gaussian elimination	
Mon 10/7 Wed 10/9 Fri 10/11	Lecture 15 Lecture 16 Lecture 17	$ \begin{array}{c} \mathbb{F} \\ \mathrm{Ch} 5\mathrm{A} \\ \mathrm{Ch} 5\mathrm{B} \end{array} $	Counting matrices over \mathbb{F}_p Eigenvectors, invariant subspaces Upper triangular matrices	PS 3 due
Mon 10/14 Wed 10/16 Fri 10/18	Holiday Lecture 18 Lecture 19	Ch 5C	Columbus Day Diagonal matrices 2×2 real matrices	PS 4 due
Mon 10/21 Wed 10/23 Fri 10/25	Lecture 20 Lecture 21 Lecture 22	$ \begin{array}{c} {\rm Ch} \ 9{\rm A} \\ {\mathbb F} \end{array} $	Eigenvectors for real vector spaces Eigenvectors over \mathbb{F}_p Exam 2 on Chapters 1–5	PS 5 due

Mon 10/28 Wed 10/30 Fri 11/1	Lecture 23 Lecture 24 Lecture 25	Ch 6A Ch 6B Ch 6C	Inner products and norms Orthogonal bases, Gram-Schmidt Orthogonal projection, minimization		
Mon 11/4 Wed 11/6 Fri 11/8	Lecture 26 Lecture 27 Lecture 28	Ch 7A Ch 7B Ch 7C	Adjoint, self-adjoint, normal Spectral theorem Positive operators	PS 6 due	
Mon 11/11 Wed 11/13 Fri 11/15	Holiday Lecture 29 Lecture 30	Ch 7C Ch 7D	Veterans Day Isometries Polar decomposition	PS 7 due	
Mon 11/18 Wed 11/20 Fri 11/22	Lecture 31 Lecture 32 Lecture 33	Ch 8A Ch 8B	EXAM 3 on Chapters 1–7 Generalized eigenspaces Generalized eigenspace decomposition		
Mon 11/25 Wed 11/27 Fri 11/29	Lecture 34 Lecture 35 Holiday	Ch 8C Ch 8D	Characteristic polynomial Jordan canonical form Thanksgiving	PS 8 due	
Mon 12/2 Wed 12/4 Fri 12/6	Lecture 36 Lecture 37 Lecture 38	Ch 10B Ch 10B Ch 10B	Determinant Calculating determinant n-dimensional volume	PS 9 due	
Mon 12/9 Wed 12/11	Lecture 39 Lecture 40	Ch 10A	Trace, canonical commutation relation The rest of linear algebra, review	IS	
week of $12/16-12/20$			Final Exam		