Bayesian Updating: Discrete Priors: 18.05 Spring 2017

STATISTICALLY SPEAKING, IF YOU PICK UP A SEASHELL AND DON'T HOLD IT TO YOUR EAR, YOU CAN PROBABLY HEAR THE OCEAN.

http://xkcd.com/1236/

Learning from experience

Which treatment would you choose?

- 1. Treatment 1: cured 100% of patients in a trial.
- 2. Treatment 2: cured 95% of patients in a trial.
- 3. Treatment 3: cured 90% of patients in a trial.

Which treatment would you choose?

- 1. Treatment 1: cured 3 out of 3 patients in a trial.
- 2. Treatment 2: cured 19 out of 20 patients treated in a trial.
- 3. Standard treatment: cured 90000 out of 100000 patients in clinical practice.

Which die is it?

- I have a bag containing dice of two types: 4-sided and 10-sided.
- Suppose I pick a die at random and roll it.
- Based on what I rolled which type would you guess I picked?

- Suppose you find out that the bag contained one 4-sided die and one 10-sided die. Does this change your guess?
- Suppose you find out that the bag contained one 4-sided die and 100 10-sided dice. Does this change your guess?

Board Question: learning from data

- A certain disease has a prevalence of 0.005.
- A screening test has 2% false positives an 1% false negatives.

Suppose a patient is screened and has a positive test.

- Represent this information with a tree and use Bayes' theorem to compute the probabilities the patient does and doesn't have the disease.
- Identify the data, hypotheses, likelihoods, prior probabilities and posterior probabilities.
- Make a full likelihood table containing all hypotheses and possible test data.
- Redo the computation using a Bayesian update table. Match the terms in your table to the terms in your previous calculation.

Solution on next slides.

Solution

1. Tree based Bayes computation

Let \mathcal{H}_+ mean the patient has the disease and \mathcal{H}_- they don't.

Let \mathcal{T}_+ : they test positive and \mathcal{T}_- they test negative.

We can organize this in a tree:

Bayes' theorem says $P(\mathcal{H}_+ | \mathcal{T}_+) = \frac{P(\mathcal{T}_+ | \mathcal{H}_+)P(\mathcal{H}_+)}{P(\mathcal{T}_+)}$.

Using the tree, the total probability

$$P(T_{+}) = P(T_{+} | \mathcal{H}_{+}) P(\mathcal{H}_{+}) + P(T_{+} | \mathcal{H}_{-}) P(\mathcal{H}_{-})$$

= 0.99 \cdot 0.005 + 0.02 \cdot 0.995 = 0.02485

Solution continued on next slide.

March 12, 2017 5 / 21

So,

$$P(\mathcal{H}_{+} \mid \mathcal{T}_{+}) = \frac{P(\mathcal{T}_{+} \mid \mathcal{H}_{+})P(\mathcal{H}_{+})}{P(\mathcal{T}_{+})} = \frac{0.99 \cdot 0.005}{0.02485} = 0.199$$

$$P(\mathcal{H}_{-} \mid \mathcal{T}_{+}) = \frac{P(\mathcal{T}_{+} \mid \mathcal{H}_{-})P(\mathcal{H}_{-})}{P(\mathcal{T}_{+})} = \frac{0.02 \cdot 0.995}{0.02485} = 0.801$$

The positive test greatly increases the probability of \mathcal{H}_+ , but it is still much less probable than \mathcal{H}_- .

Solution continued on next slide.

2. Terminology

The data are the results of the experiment. In this case, the positive test.

Hypotheses: The hypotheses are the possible answers to the question being asked. In this case they are \mathcal{H}_+ the patient has the disease; $\mathcal{H}_$ they don't.

Likelihoods: The likelihood given a hypothesis is the probability of the data given that hypothesis. In this case there are two likelihoods, one for each hypothesis

$$P(T_{+} | \mathcal{H}_{+}) = 0.99$$
 and $P(T_{+} | \mathcal{H}_{-}) = 0.02$.

We repeat: the likelihood is a probability given the hypothesis, not a probability of the hypothesis.

Continued on next slide.

Prior probabilities of the hypotheses: The priors are the probabilities of the hypotheses prior to collecting data. In this case,

$$P(\mathcal{H}_{+}) = 0.005$$
 and $P(\mathcal{H}_{-}) = 0.995$

Posterior probabilities of the hypotheses: The posteriors are the probabilities of the hypotheses **given** the data. In this case

$$P(\mathcal{H}_{+} | \mathcal{T}_{+}) = 0.199$$
 and $P(\mathcal{H}_{-} | \mathcal{T}_{+}) = 0.801$.

March 12, 2017 8 / 21

3. Full likelihood table

The table holds likelihoods $P(\mathcal{D}|\mathcal{H})$ for every possible hypothesis and data combination.

hypothesis ${\cal H}$	likelihood $P(\mathcal{D} \mathcal{H})$		
disease state	$P(\mathcal{T}_{+} \mathcal{H})$	$P(\mathcal{T}_{-} \mathcal{H})$	
\mathcal{H}_+	0.99	0.01	
\mathcal{H}	0.02	0.98	

Notice in the next slide that the $P(T_+ | \mathcal{H})$ column is exactly the likelihood column in the Bayesian update table.

4. Calculation using a Bayesian update table

 $\mathcal{H}=$ hypothesis: \mathcal{H}_+ (patient has disease); \mathcal{H}_- (they don't).

Data: \mathcal{T}_+ (positive screening test).

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{T}_+ \mathcal{H})$	$P(\mathcal{T}_+ \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{T}_+)$	
\mathcal{H}_+	0.005	0.99	0.00495	0.199	
\mathcal{H}	0.995	0.02	0.0199	0.801	
total	1	NO SUM	$P(T_+) = 0.02485$	1	

Data $\mathcal{D} = \mathcal{T}_+$

Total probability: $P(\mathcal{T}_+) = \mathsf{sum} \ \mathsf{of} \ \mathsf{Bayes} \ \mathsf{numerator} \ \mathsf{column} = \mathsf{0.02485}$

Bayes' theorem:
$$P(\mathcal{H}|\mathcal{T}_+) = \frac{P(\mathcal{T}_+|\mathcal{H})P(\mathcal{H})}{P(\mathcal{T}_+)} = \frac{\mathsf{likelihood} \times \mathsf{prior}}{\mathsf{total} \ \mathsf{prob.} \ \mathsf{of} \ \mathsf{data}}$$

Board Question: Dice

Five dice: 4-sided, 6-sided, 8-sided, 12-sided, 20-sided.

Suppose I picked one at random and, without showing it to you, rolled it and reported a 13.

- 1. Make the full likelihood table (be smart about identical columns).
- **2.** Make a Bayesian update table and compute the posterior probabilities that the chosen die is each of the five dice.
- **3.** Same question if I rolled a 5.
- **4.** Same question if I rolled a 9.

(Keep the tables for 5 and 9 handy! Do not erase!)

 $\mathcal{D}=$ 'rolled a 13'

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	0	0	0	
\mathcal{H}_8	1/5	0	0	0	
\mathcal{H}_{12}	1/5	0	0	0	
\mathcal{H}_{20}	1/5	1/20	1/100	1	
total	1		1/100	1	

 $\mathcal{D} = \text{`rolled a 5'}$

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	1/6	1/30	0.392	
\mathcal{H}_8	1/5	1/8	1/40	0.294	
\mathcal{H}_{12}	1/5	1/12	1/60	0.196	
\mathcal{H}_{20}	1/5	1/20	1/100	0.118	
total	1		0.085	1	

 $\mathcal{D}=$ 'rolled a 9'

		Bayes				
hypothesis	prior	likelihood	numerator	posterior		
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$		
\mathcal{H}_4	1/5	0	0	0		
\mathcal{H}_6	1/5	0	0	0		
\mathcal{H}_8	1/5	0	0	0		
\mathcal{H}_{12}	1/5	1/12	1/60	0.625		
\mathcal{H}_{20}	1/5	1/20	1/100	0.375		
total	1		.0267	1		

Iterated Updates

Suppose I rolled a 5 and then a 9.

Update in two steps:

First for the 5

Then update the update for the 9.

 $\mathcal{D}_1=$ 'rolled a 5'

 $\mathcal{D}_2=$ 'rolled a 9'

 $\mathsf{Bayes}\ \mathsf{numerator}_1 = \mathsf{likelihood}_1 \times \ \mathsf{prior}.$

 $\mathsf{Bayes}\ \mathsf{numerator}_2 = \mathsf{likelihood}_2 \times \ \mathsf{Bayes}\ \mathsf{numerator}_1$

			Bayes		Bayes	
hyp.	prior	likel. 1	num. 1	likel. 2	num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	***	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_6	1/5	1/6	1/30	0	0	0
\mathcal{H}_8	1/5	1/8	1/40	0	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Board Question

Suppose I rolled a 9 and then a 5.

- Do the Bayesian update in two steps: First update for the 9. Then update the update for the 5.
- 2. Do the Bayesian update in one step The data is $\mathcal{D}=$ '9 followed by 5'

Tabular solution: two steps

 $\mathcal{D}_1 = \text{`rolled a 9'}$

 $\mathcal{D}_2=$ 'rolled a 5'

Bayes $numerator_1 = likelihood_1 \times prior$.

 $\mathsf{Bayes}\ \mathsf{numerator}_2 = \mathsf{likelihood}_2 \times \ \mathsf{Bayes}\ \mathsf{numerator}_1$

			Bayes		Bayes	
hyp.	prior	likel. 1	num. 1	likel. 2	num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	* * *	$P(\mathcal{D}_2 \mathcal{H})$	***	$P(\mathcal{H} \mathcal{D}_1,\mathcal{D}_2)$
\mathcal{H}_4	1/5	0	0	0	0	0
\mathcal{H}_6	1/5	0	0	1/6	0	0
\mathcal{H}_8	1/5	0	0	1/8	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Tabular solution: one step

 $\mathcal{D}=$ 'rolled a 9 then a 5'

		Bayes			
hypothesis	prior	likelihood	numerator	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mathcal{H})$	$P(\mathcal{D} \mathcal{H})P(\mathcal{H})$	$P(\mathcal{H} \mathcal{D})$	
\mathcal{H}_4	1/5	0	0	0	
\mathcal{H}_6	1/5	0	0	0	
\mathcal{H}_8	1/5	0	0	0	
\mathcal{H}_{12}	1/5	1/144	1/720	0.735	
\mathcal{H}_{20}	1/5	1/400	1/2000	0.265	
total	1		0.0019	1	

Board Question: probabilistic prediction

Along with finding posterior probabilities of hypotheses. We might want to make posterior predictions about the next roll.

With the same setup as before let:

 $\mathcal{D}_1 = \text{result of first roll}$

 $\mathcal{D}_2 = \text{result of second roll}$

- (a) Find $P(\mathcal{D}_1 = 5)$.
- (b) Find $P(\mathcal{D}_2 = 4 | \mathcal{D}_1 = 5)$.

Solution

 $\mathcal{D}_1 =$ 'rolled a 5'

 $\mathcal{D}_2 =$ 'rolled a 4'

			Bayes			
hyp.	prior	likel. 1	num. 1	post. 1	likel. 2	post. $1 imes$ likel. 2
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D}_1 \mathcal{H})$	***	$P(\mathcal{H} \mathcal{D}_1)$	$P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)$	$P(\mathcal{D}_2 \mathcal{H},\mathcal{D}_1)P(\mathcal{H} \mathcal{D}_1)$
\mathcal{H}_4	1/5	0	0	0	*	0
\mathcal{H}_6	1/5	1/6	1/30	0.392	1/6	$0.392 \cdot 1/6$
\mathcal{H}_8	1/5	1/8	1/40	0.294	1/8	$0.294 \cdot 1/40$
\mathcal{H}_{12}	1/5	1/12	1/60	0.196	1/12	$0.196\cdot 1/12$
\mathcal{H}_{20}	1/5	1/20	1/100	0.118	1/20	$0.118 \cdot 1/20$
total	1		0.085	1		0.124

The law of total probability tells us $P(\mathcal{D}_1)$ is the sum of the Bayes numerator 1 column in the table: $P(\mathcal{D}_1) = 0.085$.

The law of total probability tells us $P(\mathcal{D}_2|\mathcal{D}_1)$ is the sum of the last column in the table: $P(\mathcal{D}_2|\mathcal{D}_1) = 0.124$