Bayesian Updating: Discrete Priors: 18.05 Spring 2017

http://xkcd.com/1236/

Learning from experience

Which treatment would you choose?

1. Treatment 1: cured 100% of patients in a trial.
2. Treatment 2: cured 95% of patients in a trial.
3. Treatment 3: cured 90% of patients in a trial.

Which treatment would you choose?

1. Treatment 1: cured 3 out of 3 patients in a trial.
2. Treatment 2: cured 19 out of 20 patients treated in a trial.
3. Standard treatment: cured 90000 out of 100000 patients in clinical practice.

Which die is it?

- I have a bag containing dice of two types: 4-sided and 10-sided.
- Suppose I pick a die at random and roll it.
- Based on what I rolled which type would you guess I picked?
- Suppose you find out that the bag contained one 4-sided die and one 10 -sided die. Does this change your guess?
- Suppose you find out that the bag contained one 4-sided die and 100 10-sided dice. Does this change your guess?

Board Question: learning from data

- A certain disease has a prevalence of 0.005 .
- A screening test has 2% false positives an 1% false negatives.

Suppose a patient is screened and has a positive test.
(1) Represent this information with a tree and use Bayes' theorem to compute the probabilities the patient does and doesn't have the disease.
(2) Identify the data, hypotheses, likelihoods, prior probabilities and posterior probabilities.
(3) Make a full likelihood table containing all hypotheses and possible test data.
(9) Redo the computation using a Bayesian update table. Match the terms in your table to the terms in your previous calculation.

Solution on next slides.

Solution

1. Tree based Bayes computation

Let \mathcal{H}_{+}mean the patient has the disease and \mathcal{H}_{-}they don't.
Let \mathcal{T}_{+}: they test positive and \mathcal{T}_{-}they test negative.
We can organize this in a tree:

Bayes' theorem says $P\left(\mathcal{H}_{+} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right) P\left(\mathcal{H}_{+}\right)}{P\left(\mathcal{T}_{+}\right)}$.
Using the tree, the total probability

$$
\begin{aligned}
P\left(\mathcal{T}_{+}\right) & =P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right) P\left(\mathcal{H}_{+}\right)+P\left(\mathcal{T}_{+} \mid \mathcal{H}_{-}\right) P\left(\mathcal{H}_{-}\right) \\
& =0.99 \cdot 0.005+0.02 \cdot 0.995=0.02485
\end{aligned}
$$

Solution continued on next slide.

Solution continued

So,

$$
\begin{aligned}
& P\left(\mathcal{H}_{+} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right) P\left(\mathcal{H}_{+}\right)}{P\left(\mathcal{T}_{+}\right)}=\frac{0.99 \cdot 0.005}{0.02485}=0.199 \\
& P\left(\mathcal{H}_{-} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}_{-}\right) P\left(\mathcal{H}_{-}\right)}{P\left(\mathcal{T}_{+}\right)}=\frac{0.02 \cdot 0.995}{0.02485}=0.801
\end{aligned}
$$

The positive test greatly increases the probability of \mathcal{H}_{+}, but it is still much less probable than \mathcal{H}_{-}.

Solution continued on next slide.

Solution continued

2. Terminology

Data: The data are the results of the experiment. In this case, the positive test.

Hypotheses: The hypotheses are the possible answers to the question being asked. In this case they are \mathcal{H}_{+}the patient has the disease; \mathcal{H}_{-} they don't.

Likelihoods: The likelihood given a hypothesis is the probability of the data given that hypothesis. In this case there are two likelihoods, one for each hypothesis

$$
P\left(\mathcal{T}_{+} \mid \mathcal{H}_{+}\right)=0.99 \quad \text { and } \quad P\left(\mathcal{T}_{+} \mid \mathcal{H}_{-}\right)=0.02
$$

We repeat: the likelihood is a probability given the hypothesis, not a probability of the hypothesis.

Continued on next slide.

Solution continued

Prior probabilities of the hypotheses: The priors are the probabilities of the hypotheses prior to collecting data. In this case,

$$
P\left(\mathcal{H}_{+}\right)=0.005 \quad \text { and } \quad P\left(\mathcal{H}_{-}\right)=0.995
$$

Posterior probabilities of the hypotheses: The posteriors are the probabilities of the hypotheses given the data. In this case

$$
P\left(\mathcal{H}_{+} \mid \mathcal{T}_{+}\right)=0.199 \quad \text { and } \quad P\left(\mathcal{H}_{-} \mid \mathcal{T}_{+}\right)=0.801
$$

Solution continued

3. Full likelihood table

The table holds likelihoods $P(\mathcal{D} \mid \mathcal{H})$ for every possible hypothesis and data combination.

hypothesis \mathcal{H}	likelihood $P(\mathcal{D} \mid \mathcal{H})$	
disease state	$P\left(\mathcal{T}_{+} \mid \mathcal{H}\right)$	$P\left(\mathcal{T}_{-} \mid \mathcal{H}\right)$
\mathcal{H}_{+}	0.99	0.01
\mathcal{H}_{-}	0.02	0.98

Notice in the next slide that the $P\left(\mathcal{T}_{+} \mid \mathcal{H}\right)$ column is exactly the likelihood column in the Bayesian update table.

Solution continued

4. Calculation using a Bayesian update table

$\mathcal{H}=$ hypothesis: \mathcal{H}_{+}(patient has disease); \mathcal{H}_{-}(they don't).
Data: \mathcal{T}_{+}(positive screening test).

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{T}_{+} \mid \mathcal{H}\right)$	$P\left(\mathcal{T}_{+} \mid \mathcal{H}\right) P(\mathcal{H})$	$P\left(\mathcal{H} \mid \mathcal{T}_{+}\right)$
\mathcal{H}_{+}	0.005	0.99	0.00495	0.199
\mathcal{H}_{-}	0.995	0.02	0.0199	0.801
total	1	NO SUM	$P\left(\mathcal{T}_{+}\right)=0.02485$	1

Data $\mathcal{D}=\mathcal{T}_{+}$
Total probability: $P\left(\mathcal{T}_{+}\right)=$sum of Bayes numerator column $=0.02485$
Bayes' theorem: $P\left(\mathcal{H} \mid \mathcal{T}_{+}\right)=\frac{P\left(\mathcal{T}_{+} \mid \mathcal{H}\right) P(\mathcal{H})}{P\left(\mathcal{T}_{+}\right)}=\frac{\text { likelihood } \times \text { prior }}{\text { total prob. of data }}$

Board Question: Dice

Five dice: 4 -sided, 6 -sided, 8 -sided, 12 -sided, 20 -sided.
Suppose I picked one at random and, without showing it to you, rolled it and reported a 13.

1. Make the full likelihood table (be smart about identical columns).
2. Make a Bayesian update table and compute the posterior probabilities that the chosen die is each of the five dice.
3. Same question if I rolled a 5 .
4. Same question if I rolled a 9 .
(Keep the tables for 5 and 9 handy! Do not erase!)

Tabular solution

$$
\mathcal{D}=\text { 'rolled a } 13 \text { ' }
$$

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	0	0	0
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	1
total	1		$1 / 100$	1

Tabular solution

$$
\mathcal{D}=\text { 'rolled a } 5 \text { ' }
$$

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0.392
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0.294
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.196
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.118
total	1		0.085	1

Tabular solution

$\mathcal{D}=$ 'rolled a 9 '

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.625
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.375
total	1		.0267	1

Iterated Updates

Suppose I rolled a 5 and then a 9 .

Update in two steps:
First for the 5
Then update the update for the 9 .

Tabular solution

$\mathcal{D}_{1}='$ rolled a $5 '$
$\mathcal{D}_{2}=$ 'rolled a $9 '$
Bayes numerator ${ }_{1}=$ likelihood $_{1} \times$ prior.
Bayes numerator $_{2}=$ likelihood $_{2} \times$ Bayes numerator $_{1}$

		Bayes			Bayes		
hyp.	prior	likel. 1	num. 1	likel. 2	num. 2	posterior	
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	$* * *$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}\right)$	$* * *$	$P\left(\mathcal{H} \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right)$	
\mathcal{H}_{4}	$1 / 5$	0	0	0	0	0	
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0	0	0	
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0	0	0	
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	$1 / 12$	$1 / 720$	0.735	
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	$1 / 20$	$1 / 2000$	0.265	
total	1				0.0019	1	

Board Question

Suppose I rolled a 9 and then a 5 .

1. Do the Bayesian update in two steps:

First update for the 9 .
Then update the update for the 5 .
2. Do the Bayesian update in one step

The data is $\mathcal{D}=9$ followed by 5 '

Tabular solution: two steps

$\mathcal{D}_{1}=$ 'rolled a $9 '$
$\mathcal{D}_{2}=$ 'rolled a 5 '
Bayes numerator $_{1}=$ likelihood $_{1} \times$ prior.
Bayes numerator $_{2}=$ likelihood $_{2} \times$ Bayes numerator $_{1}$

hyp.	prior	likel. 1	Bayes num. 1	likel. 2	Bayes num. 2	posterior
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	***	$P\left(\mathcal{D}_{2} \mid \mathcal{H}\right)$	***	$P\left(\mathcal{H} \mid \mathcal{D}_{1}, \mathcal{D}_{2}\right)$
\mathcal{H}_{4}	1/5	0	0	0	0	0
\mathcal{H}_{6}	1/5	0	0	1/6	0	0
\mathcal{H}_{8}	1/5	0	0	1/8	0	0
\mathcal{H}_{12}	1/5	1/12	1/60	1/12	1/720	0.735
\mathcal{H}_{20}	1/5	1/20	1/100	1/20	1/2000	0.265
total	1				0.0019	1

Tabular solution: one step

$\mathcal{D}=$ 'rolled a 9 then a 5^{\prime}

hypothesis	prior	likelihood	Bayes numerator	posterior
\mathcal{H}	$P(\mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H})$	$P(\mathcal{D} \mid \mathcal{H}) P(\mathcal{H})$	$P(\mathcal{H} \mid \mathcal{D})$
\mathcal{H}_{4}	$1 / 5$	0	0	0
\mathcal{H}_{6}	$1 / 5$	0	0	0
\mathcal{H}_{8}	$1 / 5$	0	0	0
\mathcal{H}_{12}	$1 / 5$	$1 / 144$	$1 / 720$	0.735
\mathcal{H}_{20}	$1 / 5$	$1 / 400$	$1 / 2000$	0.265
total	1		0.0019	1

Board Question: probabilistic prediction

Along with finding posterior probabilities of hypotheses. We might want to make posterior predictions about the next roll.

With the same setup as before let:
$\mathcal{D}_{1}=$ result of first roll
$\mathcal{D}_{2}=$ result of second roll
(a) Find $P\left(\mathcal{D}_{1}=5\right)$.
(b) Find $P\left(\mathcal{D}_{2}=4 \mid \mathcal{D}_{1}=5\right)$.

Solution

$\mathcal{D}_{1}=$ 'rolled a 5 '
$\mathcal{D}_{2}=$ 'rolled a 4 '

Bayes

Bayes						
hyp.	prior	likel. 1	num. 1	post. 1	likel. 2	post. 1 \times likel. 2
\mathcal{H}	$P(\mathcal{H})$	$P\left(\mathcal{D}_{1} \mid \mathcal{H}\right)$	$* * *$	$P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right)$	$P\left(\mathcal{D}_{2} \mid \mathcal{H}, \mathcal{D}_{1}\right) P\left(\mathcal{H} \mid \mathcal{D}_{1}\right)$
\mathcal{H}_{4}	$1 / 5$	0	0	0	$*$	0
\mathcal{H}_{6}	$1 / 5$	$1 / 6$	$1 / 30$	0.392	$1 / 6$	$0.392 \cdot 1 / 6$
\mathcal{H}_{8}	$1 / 5$	$1 / 8$	$1 / 40$	0.294	$1 / 8$	$0.294 \cdot 1 / 40$
\mathcal{H}_{12}	$1 / 5$	$1 / 12$	$1 / 60$	0.196	$1 / 12$	$0.196 \cdot 1 / 12$
\mathcal{H}_{20}	$1 / 5$	$1 / 20$	$1 / 100$	0.118	$1 / 20$	$0.118 \cdot 1 / 20$
total	1		0.085	1		0.124

The law of total probability tells us $P\left(\mathcal{D}_{1}\right)$ is the sum of the Bayes numerator 1 column in the table: $P\left(\mathcal{D}_{1}\right)=0.085$
The law of total probability tells us $P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)$ is the sum of the last column in the table: $P\left(\mathcal{D}_{2} \mid \mathcal{D}_{1}\right)=0.124$

