18.034 Problem Set 7

Due Wednesday, April 19 in class.

1. Text page 404, problem 19. (First write an explicit formula for $e^{t A}$, with A the matrix appearing in the problem.)
2. Text page 404, problem 24.
3. Same as previous problem, but replace the driving function $\binom{\cos t}{2 t}$ with $\binom{e^{2 t}}{0}$.
4. Text page 404 , problem $28(\mathrm{~d})$.
5. Same as previous problem, but add a driving function $F(t)=\binom{e^{2 t}}{0}$. (This is more or less the same differential equation as in problem 3, but you're supposed to solve it by a very different method.)
6. You may know that the ratio of the nth to the $(n+1)$ st Fibonacci numbers approaches $(\sqrt{5}-1) / 2$ as n approaches infinity. This problem is a continuous version of the same fact. Consider the initial value system

$$
y_{1}^{\prime}(t)=y_{2}(t), \quad y_{2}^{\prime}(t)=y_{1}(t)+y_{2}(t), \quad y_{1}(0)=0, \quad y_{2}(0)=1
$$

Prove that

$$
\lim _{t \rightarrow \infty} y_{1}(t) / y_{2}(t)=(\sqrt{5}-1) / 2
$$

Can you find a generalization that applies to a large family of systems $y^{\prime}=A y$? (It's reasonable to look only at 2×2 matrices A.)
7. (This one has almost nothing to do with differential equations, but it's fun.) Let A be the matrix from the preceding problem:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)
$$

Consider the successive powers of A :

$$
A^{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad A^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \quad A^{2}=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right), \quad A^{3}=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right), \quad A^{4}=\left(\begin{array}{ll}
2 & 3 \\
3 & 5
\end{array}\right) .
$$

Find a closed formula for the entries of A^{n}. (Hint: some of the methods discussed in recitation for calculating $e^{t A}$ apply equally well to this problem.)

