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Let {X;}¢_, be i.i.d. copies of an isotropic random vector X ~ y in
R". Denote by W” (u) the law of

d
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We are interested in the behavior as d — oo. Specifically, when is
it true that WP _(u) is approximately Gaussian?
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Technicalities

WP (i) is a measure on the tensor space (R")®P, which we
identify with R™P, through the basis,

{ei1®...®e,p|1§il,...,ipﬁn}-

For simplicity we will focus on the sub-space of 'principal’ tensors,
with basis,

{i®---®e,|1<ih<---<ip < n}

The projection of Wy (1) will be denoted by Wp g1



Wishart Matrices

When p =2 and X ~ p is isotropic, Wid(,u) can be realized as

the law of
XXT —d-1d

Vd

Here, X is an n x d matrix, with columns being i.i.d. copies of X.

In this case, )/erz,d(,u) is the law of the upper triangular part.
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Some Observations

Let us restrict our attention to the case p = 2.

e for fixed n, by the central limit theorem Wid(u) — N(0,X).

e If n = d, then the spectral measure of XX converges to the
Marchenko-Pastur distribution. In particular, W2 ,(u) is not
Gaussian.

How should n depend on d so that WP () is approximately
Gaussian.



Random Geometric Graphs

From now on, let  stand for the standard Gaussian, in different
dimensions. In (Bubeck, Ding, Eldan, Récz 15') and independently
in (Jiang, Li 15") it was shown,

o If 2 0, then TV (W2 4(7),7) — 0.
This is tight, in the sense,
o If B — oo, then TV (W2 4(7),7) — 1.

(Racz, Richey 16') shows that the phase transition is smooth.



Extensions

(Bubeck, Ganguly 15") extended the result to any log-concave
product measure. That is, X;; are i.i.d. as e~ *(X) dx for some

convex .

e Original motivation came from random geomteric graphs.

e (Fang, Koike 20") removed the log-concavity assumption.
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Main Result

Today:

If v is a measure on R™ which is uniformly log-concave and

unconditional, then

dist (WP, (1).7) S n221

e dist stands from some notion of distance to be introduced
soon. But could be replaced with W.

e The assumptions of uniform log-concavity and
unconditionality may be relaxed.

e The result also holds for a large class of product measures.
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The Challenge

d
By considering, ﬁ 21 (X,-®p —-E [X,@pD, one may hope to be
=]
able to apply an estimate of the high-dimensional central limit

theorem.
Optimistically, such estimates give:

. ®p||3
dist (W,ﬁd(u),’y) < E[HX\FdM

Thus, to obtain optimal convergence rates, we need to exploit the

. . NP
low dimensional structure of W ().

10



Stein’s Method

Basic observation: If G ~ ~ on R”. Then, for any smooth test
function f : R" — R",

E[(G,f(G))] = E[divf(G)].

Moreover, the Gaussian is the only measure which satisfies this
relation.
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Stein’s Method

Basic observation: If G ~ ~ on R”. Then, for any smooth test
function f : R" — R",

E[(G,f(G))] = E[divf(G)].

Moreover, the Gaussian is the only measure which satisfies this
relation.
Stein’s idea:

E[(X, f(X))] = E[divf(X)] = X ~G.

11



Stein Kernels

A Stein kernel of X ~ p is a matrix valued map 7 : R” — M,(R),
such that
E[(X, F(X)] = E[{r(X), Df (X)) ns]
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Stein Kernels

A Stein kernel of X ~ p is a matrix valued map 7 : R” — M,(R),
such that
E[(X, F(X)] = E[{r(X), Df (X)) ns]

We have that 7 = Id iff u = 7. The discrepancy is then defined as

S%(u) = Ep [II7 — 1d|l}s] -

12



Stein Kernels - Properties

Stein kernels are well behaved under linear transformations. If Tx
is a stein kernel for X, and A is a linear transformation. Then

Tax(x) == AE [rx(X)|AX = x] AT,

is a Stein kernel for AX.

13



Stein Kernels - Properties

Stein kernels are well behaved under linear transformations. If Tx
is a stein kernel for X, and A is a linear transformation. Then

Tax(x) == AE [rx(X)|AX = x] AT,

is a Stein kernel for AX. )
In particular, if Sy := wE /;1 Xi,

7s,(x ZE[TX )|Sq4 = x],
is a Stein kernel for Sj.

13



Stein’s Discrepancy Along the CLT

If X is isotropic and f(x) := xje;, we get
6ij = E[(X, f(X))] = E[(7x(X), DF(X))] = E [7x(X)i,].

So, E [rx(X)] = Id.
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Stein’s Discrepancy Along the CLT

If X is isotropic and f(x) := xje;, we get

6ij = E[(X, f(X))] = E[(7x(X), DF(X))] = E [7x(X)i,].
So, E [rx(X)] = Id.
Thus,

d

Z [7x(X;) — 1d|S,]

2
H5:|

S%(Sq) =E [HTSd(sd) —IdHiS} _ {
2

_ %E [ll7x(X) = Td|I3s]

HS
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Stein’s Discrepancy Compared to Other Distances

It's a nice exercise to show,
Wi(,v) < S(k).
What is more impressive is that

Wa(p,v) < S(w),

as well, as shown in (Ledoux, Nourdin, Pecatti 14").

I(plly)
S2(p) > '

In fact,

Bur(ul}) < 5520} in (1+

15



Proof of Main Theorem

The main theorem is implied by

Lemma (Rank 1 Lemma)

Let X ~ u be an isotropic random vector in R". Then, for any

transport map, such that @,y = u, there exists a Stein kernel T,
such that

E[llr (X®P — E [X®P]) [|fs]

< p*ny/E[IIX||5e-D] E [| D(G)2,].




Proof of Main Theorem

Proof of Main Theorem.

Let A be the linear projection, such that A,W? (1) = W,fd(u).
Take ¢, with Dy < L, almost surely. Then

e~ 2 ®p _ ®
52(Wrﬁd(,"b))§ S (A(X pd E[X p]))

< = (E[lr (X — & [x*7]) |s] + E[id]fis])
< S (VEIXIE=D]E[IDAG)IE,] + )

g 2p—1

- d



The plan for the rest of the talk is to prove the rank 1 lemma. We
need the following ingredients:

e Given a transport map % such that ¢,y = v. Construct a
Stein kernel for v with small norm.

e Show that if ¢ is such that ¢,y = pu has tame tails, then this
is also true for that map x — ¢(x)®P.

e Use the fact that x — p(x)®P is a map from a
low-dimensional space.

18
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transport map:
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Analysis in Finite Dimensional Gauss Space

Let us first show how to construct a Stein kernel from a given
transport map:

e We work in the space L?(7). Introduce D as the total (weak)
derivative operator and ¢ as its adjoint.

e The Orenstein-Uhlenbeck operator is defined as L := —d o D.
e Fact:

there exists an operator L~ such that for any f with
E,[f]=0, LL7}f = f.

19



Constructing a Kernel

Lemma

Let v, be the standard Gaussian measure on R™ and let
¢ :R™ RN Set v = p,ym and suppose that [ xdv = 0.

]RN
Then

7 (%) i= Egns,y | (=DL)e(G)(D(6)) TIer(6) = x|

is a Stein kernel of v.



Proof of Construction

E[(DF(Y), 7o(Y)) ]

Df(p(G

(
(DF(Y),E [(=DL™)p(6)(Dp(6))TI9(G) = ¥ | )ns|

))D¢(G), (~DL™)p(G)) hs]

), (=DL™)¢(G))ns]

(G), (=6DL™1)e(G))]
(G), LL™ p(G))]

(Chain rule)
(Adjoint operator)
L=-0D
E[p(G)] =0
PxYm =V



We have for any matrix norm, the following contraction property

I ()| < B, [H(DLl)w(G)(D¢<G>>T)]2\¢<G) - ]

< Errn [1D9(G)[*0(G) = x].

22



We have for any matrix norm, the following contraction property

eGP < Bavny |[(-0L 26X 06| 1o(6) =]
< Egnny, [ID0(6)*1(6) = x]-

Thus, for example, if ¢ is 1-Lipschitz, ||7p[/op < 1.

22



The contraction property can be obtained from the commutation
relation

o0

—DL7Yp = /etPtDc,odt,
0

where P; is the Ornstein-Uhlenbeck semi-group.
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The contraction property can be obtained from the commutation
relation

o0

—DL7Yp = /etPtDc,odt,
0

where P; is the Ornstein-Uhlenbeck semi-group.
For then

7o) = [ € Ecs, [DA(G)P: (D4(6) [0(6) = .
0

23



Back to Rank 1 Tensors

Suppose we have a transport map, such that ¢,y = and X ~ pu.
We now consider the map u — ¢(u)®P — E [X®P]. Define

r(79P) :=E [(—DL™)p(G)*P(Dp(6)*) T|p(G)®P = v ]

—E [(~DL)p(6)*P(D(6)%") TI(G) = (+1)PV]

which is a Stein kernel for X®P — E [X®”].

24



Back to Rank 1 Tensors

Recall, we wish to bound E [[|7(X®P — E [X®p])Hf45] . For any
two matrices A, B, we have

|AB]| s < rank(A)[AB][op.
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Back to Rank 1 Tensors

Recall, we wish to bound E [[|7(X®P — E [X®p])Hf45] . For any
two matrices A, B, we have

|AB||1s < rank(A) | AB]|op
So, since rank(Dyp(v)®P) < n, contraction gives

E [|7(X®P —E [X®P])I}s] < nE [IIDo(G)*lep] -

25



A Little Algebra

Write, for the Kronecker product,

p

Do(v)® = " ¢(x)®""! © Dip(v) ® p(v)*P~".
i=1
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A Little Algebra

Write, for the Kronecker product,

p

Do(v)® = " ¢(x)®""! © Dip(v) ® p(v)*P~".
i=1

This gives

IN

E [IIr(x®" ~E [X**])li%s] < no"E [ Do(6)4l1(6)[*¢ )]

o [E [1D6(6) 18] & [1x1°6-2).

IN

26
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Future Directions

What about the full tensor W,';d(,u)? (Related to
anti-concentration of polynomials)

What about general log-concave measures (Related to the
KLS and thin shell conjectures).

What about other dependence structures?

What about lower bounds when p > 27

27



Thank you!



