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Wishart Tensors

Let {Xi}di=1 be i.i.d. copies of an isotropic random vector X ∼ µ in

Rn. Denote by Wp
n,d(µ) the law of

1√
d

d∑
i=1

(
X⊗pi − E

[
X⊗pi

])
.

We are interested in the behavior as d →∞. Specifically, when is

it true that Wp
n,d(µ) is approximately Gaussian?
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Technicalities

Wp
n,d(µ) is a measure on the tensor space (Rn)⊗p, which we

identify with Rn·p, through the basis,

{ei1 ⊗ · · · ⊗ eip |1 ≤ i1, . . . , ip ≤ n}.

For simplicity we will focus on the sub-space of ’principal’ tensors,

with basis,

{ei1 ⊗ · · · ⊗ eip |1 ≤ i1 < · · · < ip ≤ n}.

The projection of Wp
n,d(µ) will be denoted by W̃p

n,d(µ).
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Wishart Matrices

When p = 2 and X ∼ µ is isotropic, W2
n,d(µ) can be realized as

the law of
XXT − d · Id√

d
.

Here, X is an n × d matrix, with columns being i.i.d. copies of X .

In this case, W̃2
n,d(µ) is the law of the upper triangular part.
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Some Observations

Let us restrict our attention to the case p = 2.

� for fixed n, by the central limit theorem W2
n,d(µ)→ N (0,Σ).

� If n = d , then the spectral measure of XXT converges to the

Marchenko-Pastur distribution. In particular, W2
n,d(µ) is not

Gaussian.

Question

How should n depend on d so that Wp
n,d(µ) is approximately

Gaussian.
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Random Geometric Graphs

From now on, let γ stand for the standard Gaussian, in different

dimensions. In (Bubeck, Ding, Eldan, Rácz 15’) and independently

in (Jiang, Li 15’) it was shown,

� If n3

d → 0, then TV
(
W̃2

n,d(γ), γ
)
→ 0.

This is tight, in the sense,

� If n3

d →∞, then TV
(
W̃2

n,d(γ), γ
)
→ 1.

(Rácz, Richey 16’) shows that the phase transition is smooth.
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Extensions

(Bubeck, Ganguly 15’) extended the result to any log-concave

product measure. That is, Xi ,j are i.i.d. as e−ϕ(x)dx for some

convex ϕ.

� Original motivation came from random geomteric graphs.

� (Fang, Koike 20’) removed the log-concavity assumption.
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Extensions

(Nourdin, Zheng 18’) gave the following results, as an answer to

questions raised in (Bubeck, Ganguly 15’)

� If the rows of X are i.i.d. N (0,Σ), for some positive definite

Σ. Then

W1

(
W̃2

n,d , γ
)
.

√
n3

d
.

(See also (Eldan, M 16’))

� W1

(
W̃p

n,d(γ), γ
)
.
√

n2p−1

d .
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Main Result

Today:

Theorem

If µ is a measure on Rn which is uniformly log-concave and

unconditional, then

dist
(
W̃ p

n,d(µ), γ
)
.

√
n2p−1

d
.

� dist stands from some notion of distance to be introduced

soon. But could be replaced with W2.

� The assumptions of uniform log-concavity and

unconditionality may be relaxed.

� The result also holds for a large class of product measures.
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The Challenge

By considering, 1√
d

d∑
i=1

(
X⊗pi − E

[
X⊗pi

])
, one may hope to be

able to apply an estimate of the high-dimensional central limit

theorem.

Optimistically, such estimates give:

dist
(
W̃ p

n,d(µ), γ
)
≤

E
[
‖X⊗p‖3

]
√
d

.

Thus, to obtain optimal convergence rates, we need to exploit the

low dimensional structure of W̃ p
n,d(µ).
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Stein’s Method

Basic observation: If G ∼ γ on Rn. Then, for any smooth test

function f : Rn → Rn,

E [〈G , f (G )〉] = E [divf (G )] .

Moreover, the Gaussian is the only measure which satisfies this

relation.

Stein’s idea:

E [〈X , f (X )〉] ' E [divf (X )] =⇒ X ' G .
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Stein Kernels

A Stein kernel of X ∼ µ is a matrix valued map τ : Rn → Mn(R),

such that

E [〈X , f (X )〉] = E [〈τ(X ),Df (X )〉HS ] .

We have that τ ≡ Id iff µ = γ. The discrepancy is then defined as

S2(µ) = Eµ
[
‖τ − Id‖2HS

]
.
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Stein Kernels - Properties

Stein kernels are well behaved under linear transformations. If τX

is a stein kernel for X , and A is a linear transformation. Then

τAX (x) := AE [τX (X )|AX = x ]AT ,

is a Stein kernel for AX .

In particular, if Sd := 1√
d

d∑
i=1

Xi ,

τSd (x) =
1

d

d∑
i=1

E [τX (Xi )|Sd = x ] ,

is a Stein kernel for Sd .
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Stein’s Discrepancy Along the CLT

If X is isotropic and f (x) := xiej , we get

δi ,j = E [〈X , f (X )〉] = E [〈τX (X ),Df (X )〉] = E [τX (X )i ,j ] .

So, E [τX (X )] = Id.

Thus,

S2(Sd) = E
[
||τSd (Sd)− Id||2HS

]
= E

∣∣∣∣∣
∣∣∣∣∣ 1

d

d∑
i=1

E [τX (Xi )− Id|Sd ]

∣∣∣∣∣
∣∣∣∣∣
2

HS


≤ 1

d2

∣∣∣∣∣
∣∣∣∣∣E
[

d∑
i=1

τX (Xi )− Id

]∣∣∣∣∣
∣∣∣∣∣
2

HS

=
1

d
E
[
||τX (X )− Id||2HS

]
=

S2(X )

d
.
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Stein’s Discrepancy Compared to Other Distances

It’s a nice exercise to show,

W1(µ, γ) ≤ S(µ).

What is more impressive is that

W2(µ, γ) ≤ S(µ),

as well, as shown in (Ledoux, Nourdin, Pecatti 14’).

In fact,

Ent(µ||γ) ≤ 1

2
S2(µ) ln

(
1 +

I(µ||γ)

S2(µ)

)
.
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Proof of Main Theorem

The main theorem is implied by

Lemma (Rank 1 Lemma)

Let X ∼ µ be an isotropic random vector in Rn. Then, for any

transport map, such that ϕ∗γ = µ, there exists a Stein kernel τ ,

such that

E
[
‖τ
(
X⊗p − E

[
X⊗p

])
‖2HS

]
≤ p4n

√
E
[
‖X‖8(p−1)

]
E
[
‖Dϕ(G )‖8op

]
.
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Proof of Main Theorem

Proof of Main Theorem.

Let A be the linear projection, such that A∗W
p
n,d(µ) = W̃ p

n,d(µ).

Take ϕ, with Dϕ < L, almost surely. Then

S2(W̃ p
n,d(µ)) ≤ S2 (A (X⊗p − E [X⊗p]))

d

≤ C

d

(
E
[
‖τ
(
X⊗p − E

[
X⊗p

])
‖2HS

]
+ E

[
‖Id‖2HS

])
≤ C

d

(√
E
[
‖X‖8(p−1)

]
E
[
‖Dϕ(G )‖8op

]
+ np

)
≤ C

n2p−1

d
.
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Plan

The plan for the rest of the talk is to prove the rank 1 lemma. We

need the following ingredients:

� Given a transport map ψ such that ψ∗γ = ν. Construct a

Stein kernel for ν with small norm.

� Show that if ϕ is such that ϕ∗γ = µ has tame tails, then this

is also true for that map x → ϕ(x)⊗p.

� Use the fact that x → ϕ(x)⊗p is a map from a

low-dimensional space.
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Analysis in Finite Dimensional Gauss Space

Let us first show how to construct a Stein kernel from a given

transport map:

� We work in the space L2(γ). Introduce D as the total (weak)

derivative operator and δ as its adjoint.

� The Orenstein-Uhlenbeck operator is defined as L := −δ ◦ D.

� Fact:

there exists an operator L−1 such that for any f with

Eγ [f ] = 0, LL−1f = f .

19
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Constructing a Kernel

Lemma

Let γm be the standard Gaussian measure on Rm and let

ϕ : Rm → RN . Set ν = ϕ∗γm and suppose that
∫
RN

xdν = 0.

Then

τϕ(x) := EG∼γm

[
(−DL−1)ϕ(G )(Dϕ(G ))T |ϕ(G ) = x

]
,

is a Stein kernel of ν.
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Proof of Construction

Proof.

E [〈Df (Y ), τϕ(Y )〉HS ]

= E
[
〈Df (Y ),E

[
(−DL−1)ϕ(G )(Dϕ(G ))T |ϕ(G ) = Y

]
〉HS
]

= E
[
〈Df (ϕ(G ))Dϕ(G ), (−DL−1)ϕ(G )〉HS

]
= E

[
〈Df (ϕ(G )), (−DL−1)ϕ(G )〉HS

]
(Chain rule)

= E
[
〈f ◦ ϕ(G ), (−δDL−1)ϕ(G )〉

]
(Adjoint operator)

= E
[
〈f ◦ ϕ(G ), LL−1ϕ(G )〉

]
L = −δD

= E [〈f ◦ ϕ(G ), ϕ(G )〉] E[ϕ(G )] = 0

= E [〈f (Y ),Y 〉] . ϕ∗γm = ν
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Contraction

We have for any matrix norm, the following contraction property

‖τϕ(x)‖2 ≤ EG∼γm

[∥∥∥(−DL−1)ϕ(G )(Dϕ(G ))T
∥∥∥2|ϕ(G ) = x

]
≤ EG∼γm

[
‖Dϕ(G )‖4|ϕ(G ) = x

]
.

Thus, for example, if ϕ is 1-Lipschitz, ‖τϕ‖op ≤ 1.
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Contraction

The contraction property can be obtained from the commutation

relation

−DL−1ϕ =

∞∫
0

e−tPtDϕdt,

where Pt is the Ornstein-Uhlenbeck semi-group.

For then

τϕ(x) =

∞∫
0

e−tEG∼γm [Dϕ(G )Pt (Dϕ(G )) |ϕ(G ) = x ] .
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Back to Rank 1 Tensors

Suppose we have a transport map, such that ϕ∗γ = µ and X ∼ µ.

We now consider the map u → ϕ(u)⊗p − E
[
X⊗p

]
. Define

τ(ṽ⊗p) :=E
[
(−DL−1)ϕ(G )⊗p(Dϕ(G )⊗p)T |ϕ(G )⊗p = v⊗p

]
=E

[
(−DL−1)ϕ(G )⊗p(Dϕ(G )⊗p)T |ϕ(G ) = (±1)pv

]
,

which is a Stein kernel for X⊗p − E
[
X⊗p

]
.
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Back to Rank 1 Tensors

Recall, we wish to bound E
[
‖τ(X⊗p − E

[
X⊗p

]
)‖2HS

]
. For any

two matrices A,B, we have

‖AB‖HS ≤ rank(A)‖AB‖op.

So, since rank(Dϕ(v)⊗p) ≤ n, contraction gives

E
[
‖τ(X⊗p − E

[
X⊗p

]
)‖2HS

]
≤ nE

[
‖Dϕ(G )⊗p‖4op

]
.
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A Little Algebra

Write, for the Kronecker product,

Dϕ(v)⊗p =

p∑
i=1

ϕ(x)⊗i−1 ⊗ Dϕ(v)⊗ ϕ(v)⊗p−i .

This gives

E
[
‖τ(X⊗p − E

[
X⊗p

]
)‖2HS

]
≤ np4E

[
‖Dϕ(G )‖4op‖ϕ(G )‖4(p−1)

]
≤ np4

√
E
[
‖Dϕ(G )‖8op

]
E
[
‖X‖8(p−1)

]
.
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Future Directions

� What about the full tensor Wp
n,d(µ)? (Related to

anti-concentration of polynomials)

� What about general log-concave measures (Related to the

KLS and thin shell conjectures).

� What about other dependence structures?

� What about lower bounds when p > 2?
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Thank you!


