A CLT for Wishart Tensors

Dan Mikulincer

Weizmann Institute of Science

Wishart Tensors

Let $\left\{X_{i}\right\}_{i=1}^{d}$ be i.i.d. copies of an isotropic random vector $X \sim \mu$ in \mathbb{R}^{n}. Denote by $\mathcal{W}_{n, d}^{p}(\mu)$ the law of

$$
\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left(X_{i}^{\otimes p}-\mathbb{E}\left[X_{i}^{\otimes p}\right]\right) .
$$

We are interested in the behavior as $d \rightarrow \infty$. Specifically, when is
it true that $\mathcal{W}_{n, d}^{p}(\mu)$ is approximately Gaussian?

Wishart Tensors

Let $\left\{X_{i}\right\}_{i=1}^{d}$ be i.i.d. copies of an isotropic random vector $X \sim \mu$ in \mathbb{R}^{n}. Denote by $\mathcal{W}_{n, d}^{p}(\mu)$ the law of

$$
\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left(X_{i}^{\otimes p}-\mathbb{E}\left[X_{i}^{\otimes p}\right]\right)
$$

We are interested in the behavior as $d \rightarrow \infty$. Specifically, when is it true that $\mathcal{W}_{n, d}^{p}(\mu)$ is approximately Gaussian?

Technicalities

$\mathcal{W}_{n, d}^{p}(\mu)$ is a measure on the tensor space $\left(\mathbb{R}^{n}\right)^{\otimes p}$, which we identify with $\mathbb{R}^{n \cdot p}$, through the basis,

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \mid 1 \leq i_{1}, \ldots, i_{p} \leq n\right\}
$$

For simplicity we will focus on the sub-space of 'principal' tensors, with basis,

The projection of $\mathcal{W}_{n, d}^{p}(\mu)$ will be denoted by $\widetilde{\mathcal{W}}_{n, d}^{p}(\mu)$

Technicalities

$\mathcal{W}_{n, d}^{p}(\mu)$ is a measure on the tensor space $\left(\mathbb{R}^{n}\right)^{\otimes p}$, which we identify with $\mathbb{R}^{n \cdot p}$, through the basis,

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \mid 1 \leq i_{1}, \ldots, i_{p} \leq n\right\}
$$

For simplicity we will focus on the sub-space of 'principal' tensors, with basis,

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \mid 1 \leq i_{1}<\cdots<i_{p} \leq n\right\} .
$$

The projection of $\mathcal{W}_{n, d}^{p}(\mu)$ will be denoted by $\widetilde{\mathcal{W}}_{n, d}^{p}(\mu)$.

Technicalities

$\mathcal{W}_{n, d}^{p}(\mu)$ is a measure on the tensor space $\left(\mathbb{R}^{n}\right)^{\otimes p}$, which we identify with $\mathbb{R}^{n \cdot p}$, through the basis,

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \mid 1 \leq i_{1}, \ldots, i_{p} \leq n\right\}
$$

For simplicity we will focus on the sub-space of 'principal' tensors, with basis,

$$
\left\{e_{i_{1}} \otimes \cdots \otimes e_{i_{p}} \mid 1 \leq i_{1}<\cdots<i_{p} \leq n\right\} .
$$

The projection of $\mathcal{W}_{n, d}^{p}(\mu)$ will be denoted by $\widetilde{\mathcal{W}}_{n, d}^{p}(\mu)$.

Wishart Matrices

When $p=2$ and $X \sim \mu$ is isotropic, $\mathcal{W}_{n, d}^{2}(\mu)$ can be realized as the law of

$$
\frac{\mathbb{X}^{T}-d \cdot \mathrm{Id}}{\sqrt{d}}
$$

Here, \mathbb{X} is an $n \times d$ matrix, with columns being i.i.d. copies of X.

In this case, $\widetilde{\mathcal{W}}_{n, d}^{2}(\mu)$ is the law of the upper triangular part.

Some Observations

Let us restrict our attention to the case $p=2$.

- for fixed n, by the central limit theorem $\mathcal{W}_{n, d}^{2}(\mu) \rightarrow \mathcal{N}(0, \Sigma)$.
- If $n=d$, then the spectral measure of $\mathbb{X X}^{T}$ converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}_{n d}^{2}(\mu)$ is not Gaussian.

Question
How should r depend on d so that $\mathcal{W}_{n, d}^{p}(\mu)$ is approximately
Gaussian.

Some Observations

Let us restrict our attention to the case $p=2$.

- for fixed n, by the central limit theorem $\mathcal{W}_{n, d}^{2}(\mu) \rightarrow \mathcal{N}(0, \Sigma)$.
- If $n=d$, then the spectral measure of $\mathbb{X X}^{T}$ converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}_{n, d}^{2}(\mu)$ is not Gaussian.

Question
How should n depend on d so that $\mathcal{W}_{n, d}^{p}(\mu)$ is approximately Gaussian

Some Observations

Let us restrict our attention to the case $p=2$.

- for fixed n, by the central limit theorem $\mathcal{W}_{n, d}^{2}(\mu) \rightarrow \mathcal{N}(0, \Sigma)$.
- If $n=d$, then the spectral measure of \mathbb{X}^{T} converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}_{n, d}^{2}(\mu)$ is not Gaussian.

Question How should n depend on d so that $\mathcal{W}_{n, d}^{p}(\mu)$ is approximately Gaussian.

Some Observations

Let us restrict our attention to the case $p=2$.

- for fixed n, by the central limit theorem $\mathcal{W}_{n, d}^{2}(\mu) \rightarrow \mathcal{N}(0, \Sigma)$.
- If $n=d$, then the spectral measure of \mathbb{X}^{T} converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}_{n, d}^{2}(\mu)$ is not Gaussian.

Question

How should n depend on d so that $\mathcal{W}_{n, d}^{p}(\mu)$ is approximately Gaussian.

Random Geometric Graphs

From now on, let γ stand for the standard Gaussian, in different dimensions. In (Bubeck, Ding, Eldan, Rácz 15') and independently in (Jiang, Li 15') it was shown,

- If $\frac{n^{3}}{d} \rightarrow 0$, then $\operatorname{TV}\left(\widetilde{\mathcal{W}}_{n, d}^{2}(\gamma), \gamma\right) \rightarrow 0$.

This is tight, in the sense,

- If $\frac{n^{3}}{d} \rightarrow \infty$, then $\operatorname{TV}\left(\widetilde{\mathcal{W}}_{n, d}^{2}(\gamma), \gamma\right) \rightarrow 1$.
(Rácz, Richey 16 ') shows that the phase transition is smooth.

Extensions

(Bubeck, Ganguly 15') extended the result to any log-concave product measure. That is, $\mathbb{X}_{i, j}$ are i.i.d. as $e^{-\varphi(x)} d x$ for some convex φ.

- Original motivation came from random geomteric graphs.
- (Fang, Koike 20 ') removed the log-concavity assumption.

Extensions

(Nourdin, Zheng 18') gave the following results, as an answer to questions raised in (Bubeck, Ganguly 15')

(See also (Eldan, M 16'))

Extensions

(Nourdin, Zheng 18') gave the following results, as an answer to questions raised in (Bubeck, Ganguly 15')

- If the rows of \mathbb{X} are i.i.d. $\mathcal{N}(0, \Sigma)$, for some positive definite Σ. Then

$$
W_{1}\left(\widetilde{\mathcal{W}}_{n, d}^{2}, \gamma\right) \lesssim \sqrt{\frac{n^{3}}{d}}
$$

(See also (Eldan, M 16'))

Extensions

(Nourdin, Zheng 18') gave the following results, as an answer to questions raised in (Bubeck, Ganguly 15')

- If the rows of \mathbb{X} are i.i.d. $\mathcal{N}(0, \Sigma)$, for some positive definite Σ. Then

$$
W_{1}\left(\widetilde{\mathcal{W}}_{n, d}^{2}, \gamma\right) \lesssim \sqrt{\frac{n^{3}}{d}}
$$

(See also (Eldan, M 16'))

- $W_{1}\left(\widetilde{\mathcal{W}}_{n, d}^{p}(\gamma), \gamma\right) \lesssim \sqrt{\frac{n^{2 p-1}}{d}}$.

Main Result

Today:

Theorem

If μ is a measure on \mathbb{R}^{n} which is uniformly log-concave and unconditional, then

$$
\operatorname{dist}\left(\widetilde{W}_{n, d}^{p}(\mu), \gamma\right) \lesssim \sqrt{\frac{n^{2 p-1}}{d}}
$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W_{2}.
- The assumptions of uniform log-concavity and unconditionality may be relaxed.
- The result also holds for a large class of product measures.

Main Result

Today:

Theorem

If μ is a measure on \mathbb{R}^{n} which is uniformly log-concave and unconditional, then

$$
\operatorname{dist}\left(\widetilde{W}_{n, d}^{p}(\mu), \gamma\right) \lesssim \sqrt{\frac{n^{2 p-1}}{d}}
$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W_{2}.
- The assumptions of uniform log-concavity and unconditionality may be relaxed
- The result also holds for a large class of product measures.

Main Result

Today:

Theorem

If μ is a measure on \mathbb{R}^{n} which is uniformly log-concave and unconditional, then

$$
\operatorname{dist}\left(\widetilde{W}_{n, d}^{p}(\mu), \gamma\right) \lesssim \sqrt{\frac{n^{2 p-1}}{d}}
$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W_{2}.
- The assumptions of uniform log-concavity and unconditionality may be relaxed.
- The result also holds for a large class of product measures.

Main Result

Today:

Theorem

If μ is a measure on \mathbb{R}^{n} which is uniformly log-concave and unconditional, then

$$
\operatorname{dist}\left(\widetilde{W}_{n, d}^{p}(\mu), \gamma\right) \lesssim \sqrt{\frac{n^{2 p-1}}{d}}
$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W_{2}.
- The assumptions of uniform log-concavity and unconditionality may be relaxed.
- The result also holds for a large class of product measures.

The Challenge

By considering, $\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left(X_{i}^{\otimes p}-\mathbb{E}\left[X_{i}^{\otimes p}\right]\right)$, one may hope to be able to apply an estimate of the high-dimensional central limit theorem.
Optimistically, such estimates give:

Thus, to obtain optimal convergence rates, we need to exploit the low dimensional structure of $W_{n d}^{p}(\mu)$

The Challenge

By considering, $\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left(X_{i}^{\otimes p}-\mathbb{E}\left[X_{i}^{\otimes p}\right]\right)$, one may hope to be able to apply an estimate of the high-dimensional central limit theorem.
Optimistically, such estimates give:

$$
\operatorname{dist}\left(\widetilde{W}_{n, d}^{p}(\mu), \gamma\right) \leq \frac{\mathbb{E}\left[\left\|X^{\otimes p}\right\|^{3}\right]}{\sqrt{d}}
$$

Thus, to obtain optimal convergence rates, we need to exploit the low dimensional structure of $W_{n, d}^{p}(\mu)$

The Challenge

By considering, $\frac{1}{\sqrt{d}} \sum_{i=1}^{d}\left(X_{i}^{\otimes p}-\mathbb{E}\left[X_{i}^{\otimes p}\right]\right)$, one may hope to be able to apply an estimate of the high-dimensional central limit theorem.
Optimistically, such estimates give:

$$
\operatorname{dist}\left(\widetilde{W}_{n, d}^{p}(\mu), \gamma\right) \leq \frac{\mathbb{E}\left[\left\|X^{\otimes p}\right\|^{3}\right]}{\sqrt{d}}
$$

Thus, to obtain optimal convergence rates, we need to exploit the low dimensional structure of $\widetilde{W}_{n, d}^{p}(\mu)$.

Stein's Method

Basic observation: If $G \sim \gamma$ on \mathbb{R}^{n}. Then, for any smooth test function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
\mathbb{E}[\langle G, f(G)\rangle]=\mathbb{E}[\operatorname{div} f(G)] .
$$

Moreover, the Gaussian is the only measure which satisfies this relation.
Stein's idea:
$\mathbb{E}[\langle X, f(X)\rangle] \simeq \mathbb{E}[\operatorname{div} f(X)] \Longrightarrow X \simeq G$.

Stein's Method

Basic observation: If $G \sim \gamma$ on \mathbb{R}^{n}. Then, for any smooth test function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$,

$$
\mathbb{E}[\langle G, f(G)\rangle]=\mathbb{E}[\operatorname{div} f(G)]
$$

Moreover, the Gaussian is the only measure which satisfies this relation.
Stein's idea:

$$
\mathbb{E}[\langle X, f(X)\rangle] \simeq \mathbb{E}[\operatorname{div} f(X)] \Longrightarrow X \simeq G
$$

Stein Kernels

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau: \mathbb{R}^{n} \rightarrow M_{n}(\mathbb{R})$, such that

$$
\mathbb{E}[\langle X, f(X)\rangle]=\mathbb{E}\left[\langle\tau(X), D f(X)\rangle_{H S}\right] .
$$

We have that $\tau \equiv \operatorname{Id}$ iff $\mu=\gamma$. The discrepancy is then defined as $S^{2}(\mu)=\mathbb{E}_{\mu}\left[\|\tau-\mathrm{Id}\|_{H S}^{2}\right]$

Stein Kernels

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau: \mathbb{R}^{n} \rightarrow M_{n}(\mathbb{R})$, such that

$$
\mathbb{E}[\langle X, f(X)\rangle]=\mathbb{E}\left[\langle\tau(X), D f(X)\rangle_{H S}\right] .
$$

We have that $\tau \equiv$ Id iff $\mu=\gamma$. The discrepancy is then defined as

$$
S^{2}(\mu)=\mathbb{E}_{\mu}\left[\|\tau-\mathrm{Id}\|_{H S}^{2}\right] .
$$

Stein Kernels - Properties

Stein kernels are well behaved under linear transformations. If τ_{X} is a stein kernel for X, and A is a linear transformation. Then

$$
\tau_{A X}(x):=A \mathbb{E}\left[\tau_{X}(X) \mid A X=x\right] A^{\top},
$$

is a Stein kernel for $A X$.
In particular, if $S_{d}:=\frac{1}{\sqrt{d}} \sum_{i=1}^{d} X_{i}$,

is a Stein kernel for S_{d}

Stein Kernels - Properties

Stein kernels are well behaved under linear transformations. If τ_{X} is a stein kernel for X, and A is a linear transformation. Then

$$
\tau_{A X}(x):=A \mathbb{E}\left[\tau_{X}(X) \mid A X=x\right] A^{\top},
$$

is a Stein kernel for $A X$.
In particular, if $S_{d}:=\frac{1}{\sqrt{d}} \sum_{i=1}^{d} X_{i}$,

$$
\tau S_{d}(x)=\frac{1}{d} \sum_{i=1}^{d} \mathbb{E}\left[\tau x\left(X_{i}\right) \mid S_{d}=x\right],
$$

is a Stein kernel for S_{d}.

Stein's Discrepancy Along the CLT

If X is isotropic and $f(x):=x_{i} e_{j}$, we get

$$
\delta_{i, j}=\mathbb{E}[\langle X, f(X)\rangle]=\mathbb{E}\left[\left\langle\tau_{X}(X), \operatorname{Df}(X)\right\rangle\right]=\mathbb{E}\left[\tau_{X}(X)_{i, j}\right] .
$$

So, $\mathbb{E}\left[\tau_{X}(X)\right]=\mathrm{Id}$.

Stein's Discrepancy Along the CLT

If X is isotropic and $f(x):=x_{i} e_{j}$, we get

$$
\delta_{i, j}=\mathbb{E}[\langle X, f(X)\rangle]=\mathbb{E}\left[\left\langle\tau_{X}(X), \operatorname{Df}(X)\right\rangle\right]=\mathbb{E}\left[\tau_{X}(X)_{i, j}\right] .
$$

So, $\mathbb{E}\left[\tau_{X}(X)\right]=\mathrm{Id}$.
Thus,

$$
\begin{aligned}
S^{2}\left(S_{d}\right) & =\mathbb{E}\left[\left\|\tau_{S_{d}}\left(S_{d}\right)-\mathrm{Id}\right\|_{H S}^{2}\right]=\mathbb{E}\left[\left\|\frac{1}{d} \sum_{i=1}^{d} \mathbb{E}\left[\tau_{X}\left(X_{i}\right)-\mathrm{Id} \mid S_{d}\right]\right\|_{H S}^{2}\right] \\
& \leq \frac{1}{d^{2}}\left\|\mathbb{E}\left[\sum_{i=1}^{d} \tau_{X}\left(X_{i}\right)-\mathrm{Id}\right]\right\|_{H S}^{2}=\frac{1}{d} \mathbb{E}\left[\left\|\tau_{X}(X)-\mathrm{Id}\right\|_{H S}^{2}\right] \\
& =\frac{S^{2}(X)}{d}
\end{aligned}
$$

Stein's Discrepancy Compared to Other Distances

It's a nice exercise to show,

$$
W_{1}(\mu, \gamma) \leq S(\mu)
$$

What is more impressive is that
as well, as shown in (Ledoux, Nourdin, Pecatti 14').

Stein's Discrepancy Compared to Other Distances

It's a nice exercise to show,

$$
W_{1}(\mu, \gamma) \leq S(\mu)
$$

What is more impressive is that

$$
W_{2}(\mu, \gamma) \leq S(\mu)
$$

as well, as shown in (Ledoux, Nourdin, Pecatti 14').

Stein's Discrepancy Compared to Other Distances

It's a nice exercise to show,

$$
W_{1}(\mu, \gamma) \leq S(\mu)
$$

What is more impressive is that

$$
W_{2}(\mu, \gamma) \leq S(\mu)
$$

as well, as shown in (Ledoux, Nourdin, Pecatti 14').
In fact,

$$
\operatorname{Ent}(\mu \| \gamma) \leq \frac{1}{2} S^{2}(\mu) \ln \left(1+\frac{\mathrm{I}(\mu \| \gamma)}{S^{2}(\mu)}\right)
$$

Proof of Main Theorem

The main theorem is implied by

Lemma (Rank 1 Lemma)

Let $X \sim \mu$ be an isotropic random vector in \mathbb{R}^{n}. Then, for any transport map, such that $\varphi_{*} \gamma=\mu$, there exists a Stein kernel τ, such that

$$
\begin{aligned}
\mathbb{E}[\| \tau & \left.\left(X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]\right) \|_{H S}^{2}\right] \\
& \leq p^{4} n \sqrt{\mathbb{E}\left[\|X\|^{8(p-1)}\right] \mathbb{E}\left[\|D \varphi(G)\|_{o p}^{8}\right]}
\end{aligned}
$$

Proof of Main Theorem

Proof of Main Theorem.

Let A be the linear projection, such that $A_{*} W_{n, d}^{p}(\mu)=\widetilde{W}_{n, d}^{p}(\mu)$. Take φ, with $D \varphi<L$, almost surely. Then

$$
\begin{aligned}
S^{2}\left(\widetilde{W}_{n, d}^{p}(\mu)\right) & \leq \frac{S^{2}\left(A\left(X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]\right)\right)}{d} \\
& \leq \frac{C}{d}\left(\mathbb{E}\left[\left\|\tau\left(X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]\right)\right\|_{H S}^{2}\right]+\mathbb{E}\left[\|\mathrm{Id}\|_{H S}^{2}\right]\right) \\
& \leq \frac{C}{d}\left(\sqrt{\mathbb{E}\left[\|X\|^{8(p-1)}\right] \mathbb{E}\left[\|D \varphi(G)\|_{o p}^{8}\right]}+n^{p}\right) \\
& \leq C \frac{n^{2 p-1}}{d} .
\end{aligned}
$$

The plan for the rest of the talk is to prove the rank 1 lemma. We need the following ingredients:

- Given a transport map ψ such that $\psi_{*} \gamma=\nu$. Construct a Stein kernel for ν with small norm.
- Show that if φ is such that $\varphi_{*} \gamma=\mu$ has tame tails, then this is also true for that map $x \rightarrow \varphi(x)^{\otimes p}$.
- Use the fact that $x \rightarrow \varphi(x)^{\otimes p}$ is a map from a low-dimensional space.

Analysis in Finite Dimensional Gauss Space

Let us first show how to construct a Stein kernel from a given transport map:

Analysis in Finite Dimensional Gauss Space

Let us first show how to construct a Stein kernel from a given transport map:

- We work in the space $L^{2}(\gamma)$. Introduce D as the total (weak) derivative operator and δ as its adjoint.
- The Orenstein-Uhlenbeck operator is defined as $L:=-\delta \circ D$.
- Fact:
there exists an operator L^{-1} such that for any f with $\mathbb{E}_{\gamma}[f]=0, L L^{-1} f=f$

Analysis in Finite Dimensional Gauss Space

Let us first show how to construct a Stein kernel from a given transport map:

- We work in the space $L^{2}(\gamma)$. Introduce D as the total (weak) derivative operator and δ as its adjoint.
- The Orenstein-Uhlenbeck operator is defined as $L:=-\delta \circ D$.
- Fact:
there exists an operator L^{-1} such that for any f with
$\mathbb{E}_{\gamma}[f]=0, L L^{-1} f=f$

Analysis in Finite Dimensional Gauss Space

Let us first show how to construct a Stein kernel from a given transport map:

- We work in the space $L^{2}(\gamma)$. Introduce D as the total (weak) derivative operator and δ as its adjoint.
- The Orenstein-Uhlenbeck operator is defined as $L:=-\delta \circ D$.
- Fact:
there exists an operator L^{-1} such that for any f with $\mathbb{E}_{\gamma}[f]=0, L L^{-1} f=f$.

Constructing a Kernel

Lemma

Let γ_{m} be the standard Gaussian measure on \mathbb{R}^{m} and let $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{N}$. Set $\nu=\varphi_{*} \gamma_{m}$ and suppose that $\int_{\mathbb{R}^{N}} x d \nu=0$.
Then

$$
\tau_{\varphi}(x):=\mathbb{E}_{G \sim \gamma_{m}}\left[\left(-D L^{-1}\right) \varphi(G)(D \varphi(G))^{T} \mid \varphi(G)=x\right]
$$

is a Stein kernel of ν.

Proof of Construction

Proof.

$$
\begin{array}{ll}
\mathbb{E}\left[\left\langle D f(Y), \tau_{\varphi}(Y)\right\rangle_{H S}\right] & \\
=\mathbb{E}\left[\left\langle D f(Y), \mathbb{E}\left[\left(-D L^{-1}\right) \varphi(G)(D \varphi(G))^{T} \mid \varphi(G)=Y\right]\right\rangle_{H S}\right] \\
=\mathbb{E}\left[\left\langle D f(\varphi(G)) D \varphi(G),\left(-D L^{-1}\right) \varphi(G)\right\rangle_{H S}\right] \\
=\mathbb{E}\left[\left\langle D f(\varphi(G)),\left(-D L^{-1}\right) \varphi(G)\right\rangle_{H S}\right] & \\
\text { (Chain rule) } \\
=\mathbb{E}\left[\left\langle f \circ \varphi(G),\left(-\delta D L^{-1}\right) \varphi(G)\right\rangle\right] & \\
=\mathbb{E}\left[\left\langle f \circ \varphi(G), L L^{-1} \varphi(G)\right\rangle\right] & L=-\delta D \\
=\mathbb{E}[\langle f \circ \varphi(G), \varphi(G)\rangle] & \mathbb{E}[\varphi(G)]=0 \\
=\mathbb{E}[\langle f(Y), Y\rangle] . & \varphi_{*} \gamma_{m}=\nu
\end{array}
$$

Contraction

We have for any matrix norm, the following contraction property

$$
\begin{array}{r}
\|\tau \varphi(x)\|^{2} \leq \mathbb{E}_{G \sim \gamma_{m}}\left[\left\|\left(-D L^{-1}\right) \varphi(G)(D \varphi(G))^{T}\right\|^{2} \mid \varphi(G)=x\right] \\
\leq \mathbb{E}_{G \sim \gamma_{m}}\left[\|D \varphi(G)\|^{4} \mid \varphi(G)=x\right]
\end{array}
$$

Thus, for example, if φ is 1-Lipschitz, $\|\tau \varphi\|_{o p} \leq 1$.

Contraction

We have for any matrix norm, the following contraction property

$$
\begin{array}{r}
\|\tau \varphi(x)\|^{2} \leq \mathbb{E}_{G \sim \gamma_{m}}\left[\left\|\left(-D L^{-1}\right) \varphi(G)(D \varphi(G))^{T}\right\|^{2} \mid \varphi(G)=x\right] \\
\leq \mathbb{E}_{G \sim \gamma_{m}}\left[\|D \varphi(G)\|^{4} \mid \varphi(G)=x\right] .
\end{array}
$$

Thus, for example, if φ is 1 -Lipschitz, $\left\|\tau_{\varphi}\right\|_{o p} \leq 1$.

Contraction

The contraction property can be obtained from the commutation relation

$$
-D L^{-1} \varphi=\int_{0}^{\infty} e^{-t} P_{t} D \varphi d t
$$

where P_{t} is the Ornstein-Uhlenbeck semi-group.
For then

Contraction

The contraction property can be obtained from the commutation relation

$$
-D L^{-1} \varphi=\int_{0}^{\infty} e^{-t} P_{t} D \varphi d t
$$

where P_{t} is the Ornstein-Uhlenbeck semi-group.
For then

$$
\tau_{\varphi}(x)=\int_{0}^{\infty} e^{-t} \mathbb{E}_{G \sim \gamma_{m}}\left[D \varphi(G) P_{t}(D \varphi(G)) \mid \varphi(G)=x\right]
$$

Back to Rank 1 Tensors

Suppose we have a transport map, such that $\varphi_{*} \gamma=\mu$ and $X \sim \mu$. We now consider the map $u \rightarrow \varphi(u)^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]$. Define

$$
\begin{aligned}
\tau\left(\tilde{v}^{\otimes p}\right) & :=\mathbb{E}\left[\left(-D L^{-1}\right) \varphi(G)^{\otimes p}\left(D \varphi(G)^{\otimes p}\right)^{T} \mid \varphi(G)^{\otimes p}=v^{\otimes p}\right] \\
& =\mathbb{E}\left[\left(-D L^{-1}\right) \varphi(G)^{\otimes p}\left(D \varphi(G)^{\otimes p}\right)^{T} \mid \varphi(G)=(\pm 1)^{p} v\right],
\end{aligned}
$$

which is a Stein kernel for $X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]$.

Back to Rank 1 Tensors

Recall, we wish to bound $\mathbb{E}\left[\left\|\tau\left(X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]\right)\right\|_{H S}^{2}\right]$. For any two matrices A, B, we have

$$
\|A B\|_{H S} \leq \operatorname{rank}(A)\|A B\|_{o p} .
$$

So, since $\operatorname{rank}\left(D \varphi(v)^{\otimes P}\right) \leq n$, contraction gives

Back to Rank 1 Tensors

Recall, we wish to bound $\mathbb{E}\left[\left\|\tau\left(X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]\right)\right\|_{H S}^{2}\right]$. For any two matrices A, B, we have

$$
\|A B\|_{H S} \leq \operatorname{rank}(A)\|A B\|_{o p} .
$$

So, since $\operatorname{rank}\left(D \varphi(v)^{\otimes p}\right) \leq n$, contraction gives

$$
\mathbb{E}\left[\left\|\tau\left(X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]\right)\right\|_{H S}^{2}\right] \leq n \mathbb{E}\left[\left\|D \varphi(G)^{\otimes p}\right\|_{o p}^{4}\right] .
$$

A Little Algebra

Write, for the Kronecker product,

$$
D \varphi(v)^{\otimes p}=\sum_{i=1}^{p} \varphi(x)^{\otimes i-1} \otimes D \varphi(v) \otimes \varphi(v)^{\otimes p-i}
$$

This gives

A Little Algebra

Write, for the Kronecker product,

$$
D \varphi(v)^{\otimes p}=\sum_{i=1}^{p} \varphi(x)^{\otimes i-1} \otimes D \varphi(v) \otimes \varphi(v)^{\otimes p-i}
$$

This gives

$$
\begin{aligned}
\mathbb{E}\left[\left\|\tau\left(X^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]\right)\right\|_{H S}^{2}\right] & \leq n p^{4} \mathbb{E}\left[\|D \varphi(G)\|_{o p}^{4}\|\varphi(G)\|^{4(p-1)}\right] \\
& \leq n p^{4} \sqrt{\mathbb{E}\left[\|D \varphi(G)\|_{o p}^{8}\right] \mathbb{E}\left[\|X\|^{8(p-1)}\right]}
\end{aligned}
$$

Future Directions

- What about the full tensor $\mathcal{W}_{n, d}^{p}(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when $p>2$?

Future Directions

- What about the full tensor $\mathcal{W}_{n, d}^{p}(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when $p>2$?

Future Directions

- What about the full tensor $\mathcal{W}_{n, d}^{p}(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when $p>2$?

Future Directions

- What about the full tensor $\mathcal{W}_{n, d}^{p}(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when $p>2$?

Future Directions

- What about the full tensor $\mathcal{W}_{n, d}^{p}(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when $p>2$?

Thank you!

