A CLT for Wishart Tensors

Dan Mikulincer

Weizmann Institute of Science

Wishart Tensors

Let $\{X_i\}_{i=1}^d$ be *i.i.d.* copies of an isotropic random vector $X \sim \mu$ in \mathbb{R}^n . Denote by $\mathcal{W}_{n,d}^p(\mu)$ the law of

$$\frac{1}{\sqrt{d}}\sum_{i=1}^{d} \left(X_i^{\otimes p} - \mathbb{E}\left[X_i^{\otimes p}\right]\right).$$

We are interested in the behavior as $d \to \infty$. Specifically, when is it true that $\mathcal{W}_{n,d}^p(\mu)$ is approximately Gaussian?

Wishart Tensors

Let $\{X_i\}_{i=1}^d$ be *i.i.d.* copies of an isotropic random vector $X \sim \mu$ in \mathbb{R}^n . Denote by $\mathcal{W}_{n,d}^p(\mu)$ the law of

$$\frac{1}{\sqrt{d}}\sum_{i=1}^{d} \left(X_i^{\otimes p} - \mathbb{E}\left[X_i^{\otimes p}\right]\right).$$

We are interested in the behavior as $d \to \infty$. Specifically, when is it true that $\mathcal{W}_{n,d}^p(\mu)$ is approximately Gaussian?

Technicalities

 $\mathcal{W}^p_{n,d}(\mu)$ is a measure on the tensor space $(\mathbb{R}^n)^{\otimes p}$, which we identify with $\mathbb{R}^{n\cdot p}$, through the basis,

$$\{e_{i_1}\otimes\cdots\otimes e_{i_p}|1\leq i_1,\ldots,i_p\leq n\}.$$

For simplicity we will focus on the sub-space of 'principal' tensors, with basis,

$$\{e_{i_1} \otimes \cdots \otimes e_{i_p} | 1 \leq i_1 < \cdots < i_p \leq n\}$$

The projection of $\mathcal{W}^p_{n,d}(\mu)$ will be denoted by $\widetilde{\mathcal{W}}^p_{n,d}(\mu)$

Technicalities

 $\mathcal{W}^p_{n,d}(\mu)$ is a measure on the tensor space $(\mathbb{R}^n)^{\otimes p}$, which we identify with $\mathbb{R}^{n \cdot p}$, through the basis,

$$\{e_{i_1}\otimes\cdots\otimes e_{i_p}|1\leq i_1,\ldots,i_p\leq n\}.$$

For simplicity we will focus on the sub-space of 'principal' tensors, with basis,

$$\{e_{i_1} \otimes \cdots \otimes e_{i_p} | 1 \leq i_1 < \cdots < i_p \leq n\}.$$

The projection of $\mathcal{W}^p_{n,d}(\mu)$ will be denoted by $\widetilde{\mathcal{W}}^p_{n,d}(\mu)$

Technicalities

 $\mathcal{W}^p_{n,d}(\mu)$ is a measure on the tensor space $(\mathbb{R}^n)^{\otimes p}$, which we identify with $\mathbb{R}^{n \cdot p}$, through the basis,

$$\{e_{i_1}\otimes\cdots\otimes e_{i_p}|1\leq i_1,\ldots,i_p\leq n\}.$$

For simplicity we will focus on the sub-space of 'principal' tensors, with basis,

$$\{e_{i_1} \otimes \cdots \otimes e_{i_p} | 1 \leq i_1 < \cdots < i_p \leq n\}.$$

The projection of $\mathcal{W}^p_{n,d}(\mu)$ will be denoted by $\widetilde{\mathcal{W}}^p_{n,d}(\mu)$.

Wishart Matrices

When p=2 and $X\sim \mu$ is isotropic, $\mathcal{W}^2_{n,d}(\mu)$ can be realized as the law of

$$\frac{\mathbb{XX}^T - d \cdot \mathrm{Id}}{\sqrt{d}}.$$

Here, X is an $n \times d$ matrix, with columns being *i.i.d.* copies of X.

In this case, $\widetilde{\mathcal{W}}_{n,d}^2(\mu)$ is the law of the upper triangular part.

Let us restrict our attention to the case p = 2.

- for fixed n, by the central limit theorem $\mathcal{W}^2_{n,d}(\mu) \to \mathcal{N}(0,\Sigma)$.
- If n=d, then the spectral measure of \mathbb{XX}^T converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}^2_{n,d}(\mu)$ is not Gaussian.

Question

How should n depend on d so that $\mathcal{W}_{n,d}^{p}(\mu)$ is approximately Gaussian.

Let us restrict our attention to the case p = 2.

- for fixed n, by the central limit theorem $\mathcal{W}^2_{n,d}(\mu) \to \mathcal{N}(0,\Sigma)$.
- If n=d, then the spectral measure of \mathbb{XX}^T converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}^2_{n,d}(\mu)$ is not Gaussian.

Question

How should n depend on d so that $\mathcal{W}_{n,d}^p(\mu)$ is approximately Gaussian.

Let us restrict our attention to the case p = 2.

- for fixed n, by the central limit theorem $\mathcal{W}^2_{n,d}(\mu) \to \mathcal{N}(0,\Sigma)$.
- If n=d, then the spectral measure of $\mathbb{X}\mathbb{X}^T$ converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}^2_{n,d}(\mu)$ is not Gaussian.

Question

How should n depend on d so that $\mathcal{W}_{n,d}^{p}(\mu)$ is approximately Gaussian.

Let us restrict our attention to the case p = 2.

- for fixed n, by the central limit theorem $\mathcal{W}^2_{n,d}(\mu) \to \mathcal{N}(0,\Sigma)$.
- If n=d, then the spectral measure of $\mathbb{X}\mathbb{X}^T$ converges to the Marchenko-Pastur distribution. In particular, $\mathcal{W}^2_{n,d}(\mu)$ is not Gaussian.

Question

How should n depend on d so that $\mathcal{W}_{n,d}^p(\mu)$ is approximately Gaussian.

Random Geometric Graphs

From now on, let γ stand for the standard Gaussian, in different dimensions. In (Bubeck, Ding, Eldan, Rácz 15') and independently in (Jiang, Li 15') it was shown,

• If $\frac{n^3}{d} \to 0$, then $\mathrm{TV}\left(\widetilde{\mathcal{W}}_{n,d}^2(\gamma), \gamma\right) \to 0$.

This is tight, in the sense,

• If $\frac{n^3}{d} \to \infty$, then $\mathrm{TV}\left(\widetilde{\mathcal{W}}_{n,d}^2(\gamma), \gamma\right) \to 1$.

(Rácz, Richey 16') shows that the phase transition is smooth.

(Bubeck, Ganguly 15') extended the result to any log-concave product measure. That is, $\mathbb{X}_{i,j}$ are *i.i.d.* as $e^{-\varphi(x)}dx$ for some convex φ .

- Original motivation came from random geometric graphs.
- (Fang, Koike 20') removed the log-concavity assumption.

(Nourdin, Zheng 18') gave the following results, as an answer to questions raised in (Bubeck, Ganguly 15')

• If the rows of $\mathbb X$ are *i.i.d.* $\mathcal N(0,\Sigma)$, for some positive definite Σ . Then

$$W_1\left(\widetilde{\mathcal{W}}_{n,d}^2,\gamma\right)\lesssim\sqrt{\frac{n^3}{d}}.$$

(See also (Eldan, M 16'))

• $W_1\left(\widetilde{\mathcal{W}}_{n,d}^p(\gamma),\gamma\right)\lesssim \sqrt{\frac{n^{2p-1}}{d}}.$

(Nourdin, Zheng 18') gave the following results, as an answer to questions raised in (Bubeck, Ganguly 15')

• If the rows of $\mathbb X$ are *i.i.d.* $\mathcal N(0,\Sigma)$, for some positive definite Σ . Then

$$W_1\left(\widetilde{\mathcal{W}}_{n,d}^2,\gamma\right)\lesssim\sqrt{\frac{n^3}{d}}.$$

(See also (Eldan, M 16'))

•
$$W_1\left(\widetilde{\mathcal{W}}_{n,d}^p(\gamma),\gamma\right)\lesssim \sqrt{\frac{n^{2p-1}}{d}}.$$

(Nourdin, Zheng 18') gave the following results, as an answer to questions raised in (Bubeck, Ganguly 15')

• If the rows of $\mathbb X$ are *i.i.d.* $\mathcal N(0,\Sigma)$, for some positive definite Σ . Then

$$W_1\left(\widetilde{\mathcal{W}}_{n,d}^2,\gamma\right)\lesssim\sqrt{\frac{n^3}{d}}.$$

(See also (Eldan, M 16'))

• $W_1\left(\widetilde{\mathcal{W}}_{n,d}^p(\gamma),\gamma\right)\lesssim \sqrt{\frac{n^{2p-1}}{d}}$.

Today:

Theorem

If μ is a measure on \mathbb{R}^n which is uniformly log-concave and unconditional, then

$$\operatorname{dist}\left(\widetilde{W}_{n,d}^{p}(\mu),\gamma\right)\lesssim\sqrt{\frac{n^{2p-1}}{d}}.$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W_2 .
- The assumptions of uniform log-concavity and unconditionality may be relaxed.
- The result also holds for a large class of product measures.

Today:

Theorem

If μ is a measure on \mathbb{R}^n which is uniformly log-concave and unconditional, then

$$\operatorname{dist}\left(\widetilde{W}_{n,d}^{p}(\mu),\gamma\right)\lesssim\sqrt{\frac{n^{2p-1}}{d}}.$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W₂.
- The assumptions of uniform log-concavity and unconditionality may be relaxed.
- The result also holds for a large class of product measures.

Today:

Theorem

If μ is a measure on \mathbb{R}^n which is uniformly log-concave and unconditional, then

$$\operatorname{dist}\left(\widetilde{W}_{n,d}^{p}(\mu),\gamma\right)\lesssim\sqrt{\frac{n^{2p-1}}{d}}.$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W₂.
- The assumptions of uniform log-concavity and unconditionality may be relaxed.
- The result also holds for a large class of product measures.

Today:

Theorem

If μ is a measure on \mathbb{R}^n which is uniformly log-concave and unconditional, then

$$\operatorname{dist}\left(\widetilde{W}_{n,d}^{p}(\mu),\gamma\right)\lesssim\sqrt{\frac{n^{2p-1}}{d}}.$$

- dist stands from some notion of distance to be introduced soon. But could be replaced with W₂.
- The assumptions of uniform log-concavity and unconditionality may be relaxed.
- The result also holds for a large class of product measures.

The Challenge

By considering, $\frac{1}{\sqrt{d}}\sum_{i=1}^d \left(X_i^{\otimes p} - \mathbb{E}\left[X_i^{\otimes p}\right]\right)$, one may hope to be able to apply an estimate of the high-dimensional central limit theorem.

Optimistically, such estimates give:

$$\operatorname{dist}\left(\widetilde{W}_{n,d}^{p}(\mu),\gamma\right) \leq \frac{\mathbb{E}\left[\|X^{\otimes p}\|^{3}\right]}{\sqrt{d}}$$

Thus, to obtain optimal convergence rates, we need to exploit the low dimensional structure of $\widetilde{W}_{n,d}^p(\mu)$.

The Challenge

By considering, $\frac{1}{\sqrt{d}}\sum_{i=1}^d \left(X_i^{\otimes p} - \mathbb{E}\left[X_i^{\otimes p}\right]\right)$, one may hope to be able to apply an estimate of the high-dimensional central limit theorem.

Optimistically, such estimates give:

$$\operatorname{dist}\left(\widetilde{W}_{n,d}^{p}(\mu),\gamma\right) \leq \frac{\mathbb{E}\left[\|X^{\otimes p}\|^{3}\right]}{\sqrt{d}}.$$

Thus, to obtain optimal convergence rates, we need to exploit the low dimensional structure of $\widetilde{W}_{n,d}^p(\mu)$.

The Challenge

By considering, $\frac{1}{\sqrt{d}}\sum_{i=1}^d \left(X_i^{\otimes p} - \mathbb{E}\left[X_i^{\otimes p}\right]\right)$, one may hope to be able to apply an estimate of the high-dimensional central limit theorem.

Optimistically, such estimates give:

$$\operatorname{dist}\left(\widetilde{W}_{n,d}^{p}(\mu),\gamma\right) \leq \frac{\mathbb{E}\left[\|X^{\otimes p}\|^{3}\right]}{\sqrt{d}}.$$

Thus, to obtain optimal convergence rates, we need to exploit the low dimensional structure of $\widetilde{W}_{n,d}^{p}(\mu)$.

Stein's Method

Basic observation: If $G \sim \gamma$ on \mathbb{R}^n . Then, for any smooth test function $f: \mathbb{R}^n \to \mathbb{R}^n$,

$$\mathbb{E}\left[\langle G, f(G)\rangle\right] = \mathbb{E}\left[\operatorname{div} f(G)\right].$$

Moreover, the Gaussian is the only measure which satisfies this relation.

Stein's idea:

$$\mathbb{E}\left[\langle X, f(X) \rangle\right] \simeq \mathbb{E}\left[\operatorname{div} f(X)\right] \implies X \simeq G$$

Stein's Method

Basic observation: If $G \sim \gamma$ on \mathbb{R}^n . Then, for any smooth test function $f : \mathbb{R}^n \to \mathbb{R}^n$,

$$\mathbb{E}\left[\langle G, f(G)\rangle\right] = \mathbb{E}\left[\operatorname{div} f(G)\right].$$

Moreover, the Gaussian is the only measure which satisfies this relation.

Stein's idea:

$$\mathbb{E}\left[\langle X, f(X)\rangle\right] \simeq \mathbb{E}\left[\operatorname{div} f(X)\right] \implies X \simeq G.$$

Stein Kernels

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau : \mathbb{R}^n \to M_n(\mathbb{R})$, such that

$$\mathbb{E}\left[\langle X, f(X)\rangle\right] = \mathbb{E}\left[\langle \tau(X), Df(X)\rangle_{HS}\right].$$

We have that $au \equiv \operatorname{Id}$ iff $\mu = \gamma$. The discrepancy is then defined as

$$S^{2}(\mu) = \mathbb{E}_{\mu} \left[\|\tau - \operatorname{Id}\|_{HS}^{2} \right]$$

Stein Kernels

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau : \mathbb{R}^n \to M_n(\mathbb{R})$, such that

$$\mathbb{E}\left[\langle X, f(X)\rangle\right] = \mathbb{E}\left[\langle \tau(X), Df(X)\rangle_{HS}\right].$$

We have that $\tau \equiv \operatorname{Id}$ iff $\mu = \gamma$. The discrepancy is then defined as

$$S^2(\mu) = \mathbb{E}_{\mu} \left[\| \tau - \operatorname{Id} \|_{HS}^2 \right].$$

Stein Kernels - Properties

Stein kernels are well behaved under linear transformations. If τ_X is a stein kernel for X, and A is a linear transformation. Then

$$\tau_{AX}(x) := A\mathbb{E}\left[\tau_X(X)|AX = x\right]A^T,$$

is a Stein kernel for AX.

In particular, if $S_d := \frac{1}{\sqrt{d}} \sum_{i=1}^d X_i$,

$$\tau_{S_d}(x) = \frac{1}{d} \sum_{i=1}^d \mathbb{E} \left[\tau_X(X_i) | S_d = x \right]$$

is a Stein kernel for S_d

Stein Kernels - Properties

Stein kernels are well behaved under linear transformations. If τ_X is a stein kernel for X, and A is a linear transformation. Then

$$\tau_{AX}(x) := A\mathbb{E}\left[\tau_X(X)|AX = x\right]A^T,$$

is a Stein kernel for AX. In particular, if $S_d := \frac{1}{\sqrt{d}} \sum_{i=1}^d X_i$,

$$\tau_{S_d}(x) = \frac{1}{d} \sum_{i=1}^d \mathbb{E} \left[\tau_X(X_i) | S_d = x \right],$$

is a Stein kernel for S_d .

Stein's Discrepancy Along the CLT

If X is isotropic and $f(x) := x_i e_j$, we get

$$\delta_{i,j} = \mathbb{E}\left[\langle X, f(X) \rangle\right] = \mathbb{E}\left[\langle \tau_X(X), Df(X) \rangle\right] = \mathbb{E}\left[\tau_X(X)_{i,j}\right].$$

So,
$$\mathbb{E}\left[\tau_X(X)\right] = \mathrm{Id}$$
.

Thus

$$S^{2}(S_{d}) = \mathbb{E}\left[\left|\left|\tau_{S_{d}}(S_{d}) - \operatorname{Id}\right|\right|_{HS}^{2}\right] = \mathbb{E}\left[\left|\left|\frac{1}{d}\sum_{i=1}^{d}\mathbb{E}\left[\tau_{X}(X_{i}) - \operatorname{Id}|S_{d}\right]\right|\right|_{HS}^{2}$$

$$\leq \frac{1}{d^{2}}\left|\left|\mathbb{E}\left[\sum_{i=1}^{d}\tau_{X}(X_{i}) - \operatorname{Id}\right]\right|\right|_{HS}^{2} = \frac{1}{d}\mathbb{E}\left[\left|\left|\tau_{X}(X) - \operatorname{Id}\right|\right|_{HS}^{2}\right]$$

$$= \frac{S^{2}(X)}{d}.$$

Stein's Discrepancy Along the CLT

If X is isotropic and $f(x) := x_i e_j$, we get

$$\delta_{i,j} = \mathbb{E}\left[\langle X, f(X) \rangle\right] = \mathbb{E}\left[\langle \tau_X(X), Df(X) \rangle\right] = \mathbb{E}\left[\tau_X(X)_{i,j}\right].$$

So,
$$\mathbb{E}\left[\tau_X(X)\right] = \mathrm{Id}$$
.

Thus,

$$S^{2}(S_{d}) = \mathbb{E}\left[\left|\left|\tau_{S_{d}}(S_{d}) - \operatorname{Id}\right|\right|_{HS}^{2}\right] = \mathbb{E}\left[\left|\left|\frac{1}{d}\sum_{i=1}^{d}\mathbb{E}\left[\tau_{X}(X_{i}) - \operatorname{Id}|S_{d}\right]\right|\right|_{HS}^{2}\right]$$

$$\leq \frac{1}{d^{2}}\left|\left|\mathbb{E}\left[\sum_{i=1}^{d}\tau_{X}(X_{i}) - \operatorname{Id}\right]\right|\right|_{HS}^{2} = \frac{1}{d}\mathbb{E}\left[\left|\left|\tau_{X}(X) - \operatorname{Id}\right|\right|_{HS}^{2}\right]$$

$$= \frac{S^{2}(X)}{d}.$$

Stein's Discrepancy Compared to Other Distances

It's a nice exercise to show,

$$W_1(\mu, \gamma) \leq S(\mu)$$
.

What is more impressive is that

$$W_2(\mu, \gamma) \leq S(\mu),$$

as well, as shown in (Ledoux, Nourdin, Pecatti 14'). n fact.

$$\operatorname{Ent}(\mu||\gamma) \le \frac{1}{2}S^2(\mu)\ln\left(1 + \frac{\operatorname{I}(\mu||\gamma)}{S^2(\mu)}\right)$$

Stein's Discrepancy Compared to Other Distances

It's a nice exercise to show,

$$W_1(\mu, \gamma) \leq S(\mu)$$
.

What is more impressive is that

$$W_2(\mu, \gamma) \leq S(\mu),$$

as well, as shown in (Ledoux, Nourdin, Pecatti 14').

$$\operatorname{Ent}(\mu||\gamma) \le \frac{1}{2}S^2(\mu)\ln\left(1 + \frac{\operatorname{I}(\mu||\gamma)}{S^2(\mu)}\right)$$

Stein's Discrepancy Compared to Other Distances

It's a nice exercise to show,

$$W_1(\mu, \gamma) \leq S(\mu)$$
.

What is more impressive is that

$$W_2(\mu, \gamma) \leq S(\mu),$$

as well, as shown in (Ledoux, Nourdin, Pecatti 14'). In fact,

$$\operatorname{Ent}(\mu||\gamma) \leq rac{1}{2}S^2(\mu)\ln\left(1+rac{\operatorname{I}(\mu||\gamma)}{S^2(\mu)}
ight).$$

Proof of Main Theorem

The main theorem is implied by

Lemma (Rank 1 Lemma)

Let $X \sim \mu$ be an isotropic random vector in \mathbb{R}^n . Then, for any transport map, such that $\varphi_*\gamma = \mu$, there exists a Stein kernel τ , such that

$$\begin{split} \mathbb{E} \big[\| \tau \left(X^{\otimes p} - \mathbb{E} \left[X^{\otimes p} \right] \right) \|_{HS}^2 \big] \\ & \leq p^4 n \sqrt{\mathbb{E} \left[\| X \|^{8(p-1)} \right] \mathbb{E} \left[\| D \varphi(G) \|_{op}^8 \right]}. \end{split}$$

Proof of Main Theorem

Proof of Main Theorem.

Let A be the linear projection, such that $A_*W^p_{n,d}(\mu) = \widetilde{W}^p_{n,d}(\mu)$. Take φ , with $D\varphi < L$, almost surely. Then

$$S^{2}(\widetilde{W}_{n,d}^{p}(\mu)) \leq \frac{S^{2}(A(X^{\otimes p} - \mathbb{E}[X^{\otimes p}]))}{d}$$

$$\leq \frac{C}{d} \left(\mathbb{E}[\|\tau(X^{\otimes p} - \mathbb{E}[X^{\otimes p}])\|_{HS}^{2}] + \mathbb{E}[\|\mathrm{Id}\|_{HS}^{2}] \right)$$

$$\leq \frac{C}{d} \left(\sqrt{\mathbb{E}[\|X\|^{8(p-1)}]} \,\mathbb{E}[\|D\varphi(G)\|_{op}^{8}] + n^{p} \right)$$

$$\leq C \frac{n^{2p-1}}{d}.$$

Plan

The plan for the rest of the talk is to prove the rank 1 lemma. We need the following ingredients:

- Given a transport map ψ such that $\psi_*\gamma = \nu$. Construct a Stein kernel for ν with small norm.
- Show that if φ is such that $\varphi_*\gamma = \mu$ has tame tails, then this is also true for that map $x \to \varphi(x)^{\otimes p}$.
- Use the fact that $x \to \varphi(x)^{\otimes p}$ is a map from a low-dimensional space.

- We work in the space $L^2(\gamma)$. Introduce D as the total (weak) derivative operator and δ as its adjoint.
- The Orenstein-Uhlenbeck operator is defined as $L := -\delta \circ D$.
- Fact: there exists an operator L^{-1} such that for any f with $\mathbb{E}_{\gamma}[f]=0$, $LL^{-1}f=f$.

- We work in the space $L^2(\gamma)$. Introduce D as the total (weak) derivative operator and δ as its adjoint.
- The Orenstein-Uhlenbeck operator is defined as $L := -\delta \circ D$.
- Fact: there exists an operator L^{-1} such that for any f with $\mathbb{E}_{\gamma}[f]=0,\ LL^{-1}f=f.$

- We work in the space $L^2(\gamma)$. Introduce D as the total (weak) derivative operator and δ as its adjoint.
- The Orenstein-Uhlenbeck operator is defined as $L := -\delta \circ D$.
- Fact: there exists an operator L^{-1} such that for any f with $\mathbb{E}_{\gamma}[f]=0,\ LL^{-1}f=f.$

- We work in the space $L^2(\gamma)$. Introduce D as the total (weak) derivative operator and δ as its adjoint.
- The Orenstein-Uhlenbeck operator is defined as $L:=-\delta\circ D.$
- Fact: there exists an operator L^{-1} such that for any f with $\mathbb{E}_{\gamma}[f]=0,\ LL^{-1}f=f.$

Constructing a Kernel

Lemma

Let γ_m be the standard Gaussian measure on \mathbb{R}^m and let $\varphi: \mathbb{R}^m \to \mathbb{R}^N$. Set $\nu = \varphi_* \gamma_m$ and suppose that $\int_{\mathbb{R}^N} \mathsf{x} d\nu = 0$. Then

$$\tau_{\varphi}(x) := \mathbb{E}_{G \sim \gamma_m} \left[(-DL^{-1})\varphi(G)(D\varphi(G))^T | \varphi(G) = x \right],$$

is a Stein kernel of ν .

Proof of Construction

Proof.

$$\mathbb{E}\left[\langle Df(Y), \tau_{\varphi}(Y)\rangle_{HS}\right]$$

$$= \mathbb{E}\left[\langle Df(Y), \mathbb{E}\left[(-DL^{-1})\varphi(G)(D\varphi(G))^{T}|\varphi(G) = Y\right]\rangle_{HS}\right]$$

$$= \mathbb{E}\left[\langle Df(\varphi(G))D\varphi(G), (-DL^{-1})\varphi(G)\rangle_{HS}\right]$$

$$= \mathbb{E}\left[\langle Df(\varphi(G)), (-DL^{-1})\varphi(G)\rangle_{HS}\right] \quad \text{(Chain rule)}$$

$$= \mathbb{E}\left[\langle f\circ\varphi(G), (-\delta DL^{-1})\varphi(G)\rangle\right] \quad \text{(Adjoint operator)}$$

$$= \mathbb{E}\left[\langle f\circ\varphi(G), LL^{-1}\varphi(G)\rangle\right] \qquad L = -\delta D$$

$$= \mathbb{E}\left[\langle f\circ\varphi(G), \varphi(G)\rangle\right] \qquad \mathbb{E}[\varphi(G)] = 0$$

$$= \mathbb{E}\left[\langle f(Y), Y\rangle\right]. \qquad \varphi_*\gamma_m = \nu$$

21

We have for any matrix norm, the following contraction property

$$\|\tau_{\varphi}(x)\|^{2} \leq \mathbb{E}_{G \sim \gamma_{m}} \left[\left\| (-DL^{-1})\varphi(G)(D\varphi(G))^{T} \right\|^{2} |\varphi(G) = x \right]$$
$$\leq \mathbb{E}_{G \sim \gamma_{m}} \left[\left\| D\varphi(G) \right\|^{4} |\varphi(G) = x \right].$$

Thus, for example, if φ is 1-Lipschitz, $\|\tau_{\varphi}\|_{op} \leq 1$.

We have for any matrix norm, the following contraction property

$$\|\tau_{\varphi}(x)\|^{2} \leq \mathbb{E}_{G \sim \gamma_{m}} \left[\left\| (-DL^{-1})\varphi(G)(D\varphi(G))^{T} \right\|^{2} |\varphi(G) = x \right]$$
$$\leq \mathbb{E}_{G \sim \gamma_{m}} \left[\|D\varphi(G)\|^{4} |\varphi(G) = x \right].$$

Thus, for example, if φ is 1-Lipschitz, $\|\tau_{\varphi}\|_{op} \leq 1$.

The contraction property can be obtained from the commutation relation

$$-DL^{-1}\varphi = \int_{0}^{\infty} e^{-t} P_{t} D\varphi dt,$$

where P_t is the Ornstein-Uhlenbeck semi-group.

For then

$$\tau_{\varphi}(x) = \int_{0}^{\infty} e^{-t} \mathbb{E}_{G \sim \gamma_{m}} \left[D\varphi(G) P_{t} \left(D\varphi(G) \right) | \varphi(G) = x \right].$$

The contraction property can be obtained from the commutation relation

$$-DL^{-1}\varphi = \int_{0}^{\infty} e^{-t} P_{t} D\varphi dt,$$

where P_t is the Ornstein-Uhlenbeck semi-group. For then

$$\tau_{\varphi}(x) = \int_{0}^{\infty} e^{-t} \mathbb{E}_{G \sim \gamma_{m}} \left[D\varphi(G) P_{t} \left(D\varphi(G) \right) | \varphi(G) = x \right].$$

Back to Rank 1 Tensors

Suppose we have a transport map, such that $\varphi_*\gamma=\mu$ and $X\sim\mu$. We now consider the map $u\to\varphi(u)^{\otimes p}-\mathbb{E}\left[X^{\otimes p}\right]$. Define

$$\tau(\tilde{v}^{\otimes p}) := \mathbb{E}\left[(-DL^{-1})\varphi(G)^{\otimes p} (D\varphi(G)^{\otimes p})^T | \varphi(G)^{\otimes p} = v^{\otimes p} \right]$$
$$= \mathbb{E}\left[(-DL^{-1})\varphi(G)^{\otimes p} (D\varphi(G)^{\otimes p})^T | \varphi(G) = (\pm 1)^p v \right],$$

which is a Stein kernel for $X^{\otimes p} - \mathbb{E}[X^{\otimes p}]$.

Back to Rank 1 Tensors

Recall, we wish to bound $\mathbb{E}\left[\|\tau(X^{\otimes p} - \mathbb{E}\left[X^{\otimes p}\right])\|_{HS}^2\right]$. For any two matrices A, B, we have

$$||AB||_{HS} \leq \operatorname{rank}(A)||AB||_{op}.$$

So, since
$$\operatorname{rank}(D\varphi(v)^{\otimes p}) \leq n$$
, contraction gives

$$\mathbb{E}\left[\left\|\tau(X^{\otimes p} - \mathbb{E}\left[X^{\otimes p}\right])\right\|_{HS}^{2}\right] \leq n\mathbb{E}\left[\left\|D\varphi(G)^{\otimes p}\right\|_{op}^{4}\right]$$

Back to Rank 1 Tensors

Recall, we wish to bound $\mathbb{E}\left[\|\tau(X^{\otimes p} - \mathbb{E}\left[X^{\otimes p}\right])\|_{HS}^2\right]$. For any two matrices A, B, we have

$$||AB||_{HS} \leq \operatorname{rank}(A)||AB||_{op}.$$

So, since $\operatorname{rank}(D\varphi(v)^{\otimes p}) \leq n$, contraction gives

$$\mathbb{E}\left[\|\tau(X^{\otimes p} - \mathbb{E}\left[X^{\otimes p}\right])\|_{HS}^{2}\right] \leq n\mathbb{E}\left[\|D\varphi(G)^{\otimes p}\|_{op}^{4}\right].$$

A Little Algebra

Write, for the Kronecker product,

$$D\varphi(v)^{\otimes p} = \sum_{i=1}^p \varphi(x)^{\otimes i-1} \otimes D\varphi(v) \otimes \varphi(v)^{\otimes p-i}.$$

This gives

$$\mathbb{E}\left[\|\tau(X^{\otimes p} - \mathbb{E}\left[X^{\otimes p}\right])\|_{HS}^{2}\right] \leq np^{4}\mathbb{E}\left[\|D\varphi(G)\|_{op}^{4}\|\varphi(G)\|^{4(p-1)}\right]$$
$$\leq np^{4}\sqrt{\mathbb{E}\left[\|D\varphi(G)\|_{op}^{8}\right]\mathbb{E}\left[\|X\|^{8(p-1)}\right]}.$$

A Little Algebra

Write, for the Kronecker product,

$$D\varphi(v)^{\otimes p} = \sum_{i=1}^{p} \varphi(x)^{\otimes i-1} \otimes D\varphi(v) \otimes \varphi(v)^{\otimes p-i}.$$

This gives

$$\mathbb{E}\left[\|\tau(X^{\otimes p} - \mathbb{E}\left[X^{\otimes p}\right])\|_{HS}^{2}\right] \leq np^{4}\mathbb{E}\left[\|D\varphi(G)\|_{op}^{4}\|\varphi(G)\|^{4(p-1)}\right]$$
$$\leq np^{4}\sqrt{\mathbb{E}\left[\|D\varphi(G)\|_{op}^{8}\right]\mathbb{E}\left[\|X\|^{8(p-1)}\right]}.$$

- What about the full tensor $W_{n,d}^p(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when p > 2?

- What about the full tensor $\mathcal{W}_{n,d}^p(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when p > 2?

- What about the full tensor $\mathcal{W}^p_{n,d}(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when p > 2?

- What about the full tensor $\mathcal{W}_{n,d}^p(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when p > 2?

- What about the full tensor $W_{n,d}^p(\mu)$? (Related to anti-concentration of polynomials)
- What about general log-concave measures (Related to the KLS and thin shell conjectures).
- What about other dependence structures?
- What about lower bounds when p > 2?

Thank you!