## Stability of Talagrand's Gaussian Transport-Entropy Inequality

Dan Mikulincer

Geometric and Functional Inequalities in Convexity and Probability
Weizmann Institute of Science
Based on joint work with Ronen Eldan and Alex Zhai

## Geometry and Information

Throughout, $G \sim \gamma$ will denote the standard Gaussian in $\mathbb{R}^{d}$.
Definition (Wasserstein distance between $\mu$ and $\gamma$ )

where $\pi$ ranges over all possible couplings of $\mu$ and
$\square$ $\operatorname{Ent}(\mu \| \gamma):=\mathbb{E}_{\mu}\left[\ln \left(\frac{d \mu}{d \gamma}(x)\right)\right]$

Remark: if $X \sim \mu$ we will also write $\operatorname{Ent}(X \| G), \mathcal{W}_{2}(X, G)$.

## Geometry and Information

Throughout, $G \sim \gamma$ will denote the standard Gaussian in $\mathbb{R}^{d}$.

## Definition (Wasserstein distance between $\mu$ and $\gamma$ )

$$
\mathcal{W}_{2}(\mu, \gamma):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|x-y\|^{2}\right]\right\}^{1 / 2}
$$

where $\pi$ ranges over all possible couplings of $\mu$ and $\gamma$.
Definition (Relative entropy between $\mu$ and


Remark: if $X \sim \mu$ we will also write $\operatorname{Ent}(X \| G), \mathcal{W}_{2}(X, G)$.

## Geometry and Information

Throughout, $G \sim \gamma$ will denote the standard Gaussian in $\mathbb{R}^{d}$.
Definition (Wasserstein distance between $\mu$ and $\gamma$ )

$$
\mathcal{W}_{2}(\mu, \gamma):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|x-y\|^{2}\right]\right\}^{1 / 2}
$$

where $\pi$ ranges over all possible couplings of $\mu$ and $\gamma$.
Definition (Relative entropy between $\mu$ and $\gamma$ )

$$
\operatorname{Ent}(\mu \| \gamma):=\mathbb{E}_{\mu}\left[\ln \left(\frac{d \mu}{d \gamma}(x)\right)\right]
$$

Remark: if $X \sim \mu$ we will also write $\operatorname{Ent}(X \| G), \mathcal{W}_{2}(X, G)$.

## Geometry and Information

Throughout, $G \sim \gamma$ will denote the standard Gaussian in $\mathbb{R}^{d}$.

## Definition (Wasserstein distance between $\mu$ and $\gamma$ )

$$
\mathcal{W}_{2}(\mu, \gamma):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|x-y\|^{2}\right]\right\}^{1 / 2}
$$

where $\pi$ ranges over all possible couplings of $\mu$ and $\gamma$.

## Definition (Relative entropy between $\mu$ and $\gamma$ )

$$
\operatorname{Ent}(\mu \| \gamma):=\mathbb{E}_{\mu}\left[\ln \left(\frac{d \mu}{d \gamma}(x)\right)\right]
$$

Remark: if $X \sim \mu$ we will also write $\operatorname{Ent}(X \| G), \mathcal{W}_{2}(X, G)$.

## Talagrand's Inequality

In $96^{\prime}$ Talagrand proved the following inequality, which connects between geometry and information.

## Theorem (Talagrand's Gaussian transport-entropy inequality)

Let $\mu$ be a measure on $\mathbb{R}^{d}$. Then

$$
\mathcal{W}_{2}^{2}(\mu, \gamma) \leq 2 \operatorname{Ent}(\mu \| \gamma)
$$

It is enough to consider measures such that $\mu \ll \nu$.

## Talagrand's Inequality - Applications

- By considering measures of the form $\mathbb{1}_{A} d \gamma$ the inequality implies a (non-sharp) Gaussian isoperimetric inequality.
- The inequality tensorizes and may be used to show dimension-free Gaussian concentration bounds.
- If $f$ is convex, then applying the inequality to $e^{-\lambda} d \gamma$ yields a one sides Gaussian concentration for concave functions.


## Talagrand's Inequality - Applications

- By considering measures of the form $\mathbb{1}_{A} d \gamma$ the inequality implies a (non-sharp) Gaussian isoperimetric inequality.
- The inequality tensorizes and may be used to show dimension-free Gaussian concentration bounds
- If $f$ is convex then annlying the inecuality to $e^{-\lambda} d \gamma$ yields a one sides Gaussian concentration for concave functions.


## Talagrand's Inequality - Applications

- By considering measures of the form $\mathbb{1}_{A} d \gamma$ the inequality implies a (non-sharp) Gaussian isoperimetric inequality.
- The inequality tensorizes and may be used to show dimension-free Gaussian concentration bounds.
- If $f$ is convex, then applying the inequality to $e^{-\lambda f} d \gamma$ yields a one sides Gaussian concentration for concave functions.


## Talagrand's Inequality - Applications

- By considering measures of the form $\mathbb{1}_{A} d \gamma$ the inequality implies a (non-sharp) Gaussian isoperimetric inequality.
- The inequality tensorizes and may be used to show dimension-free Gaussian concentration bounds.
- If $f$ is convex, then applying the inequality to $e^{-\lambda f} d \gamma$ yields a one sides Gaussian concentration for concave functions.


## Gaussians

If $\gamma_{a, \Sigma}=\mathcal{N}(a, \Sigma)$, in $\mathbb{R}^{d}$ :

- $\operatorname{Ent}\left(\gamma_{a, \Sigma} \| \gamma\right)=\frac{1}{2}\left(\operatorname{Tr}(\Sigma)+\|a\|_{2}^{2}-\ln (\operatorname{det}(\Sigma))-d\right)$
- $\mathcal{W}_{2}^{2}\left(\gamma_{a, \Sigma}, \gamma\right)=\|a\|_{2}^{2}+\left\|\sqrt{\Sigma}-I_{d}\right\|_{H S}^{2}$

In particular, for any $a \in \mathbb{D} d$

$$
\mathcal{W}_{2}^{2}\left(\gamma_{a, I_{d}}, \gamma\right)=2 \operatorname{Ent}\left(\gamma_{a, I_{d}} \| \gamma\right) .
$$

These are the only equality cases.

## Gaussians

If $\gamma_{a, \Sigma}=\mathcal{N}(a, \Sigma)$, in $\mathbb{R}^{d}$ :

- $\operatorname{Ent}\left(\gamma_{a, \Sigma} \| \gamma\right)=\frac{1}{2}\left(\operatorname{Tr}(\Sigma)+\|a\|_{2}^{2}-\ln (\operatorname{det}(\Sigma))-d\right)$
- $\mathcal{W}_{2}^{2}\left(\gamma_{a, \Sigma}, \gamma\right)=\|a\|_{2}^{2}+\left\|\sqrt{\Sigma}-I_{d}\right\|_{H S}^{2}$

In particular, for any $a \in \mathbb{R}^{d}$,

$$
W_{2}^{2}\left(\gamma_{a, I_{d}} \gamma\right)=2 \operatorname{Ent}\left(\gamma_{a, I_{d}} \| \gamma\right)
$$

## These are the only equality cases.

## Gaussians

If $\gamma_{a, \Sigma}=\mathcal{N}(a, \Sigma)$, in $\mathbb{R}^{d}$ :

- $\operatorname{Ent}\left(\gamma_{a, \Sigma} \| \gamma\right)=\frac{1}{2}\left(\operatorname{Tr}(\Sigma)+\|a\|_{2}^{2}-\ln (\operatorname{det}(\Sigma))-d\right)$
- $\mathcal{W}_{2}^{2}\left(\gamma_{a, \Sigma}, \gamma\right)=\|a\|_{2}^{2}+\left\|\sqrt{\Sigma}-I_{d}\right\|_{H S}^{2}$

In particular, for any $a \in \mathbb{R}^{d}$,

$$
\mathcal{W}_{2}^{2}\left(\gamma_{a, I_{d}}, \gamma\right)=2 \operatorname{Ent}\left(\gamma_{a, I_{d}} \| \gamma\right) .
$$

## Gaussians

If $\gamma_{a, \Sigma}=\mathcal{N}(a, \Sigma)$, in $\mathbb{R}^{d}$ :

- $\operatorname{Ent}\left(\gamma_{a, \Sigma} \| \gamma\right)=\frac{1}{2}\left(\operatorname{Tr}(\Sigma)+\|a\|_{2}^{2}-\ln (\operatorname{det}(\Sigma))-d\right)$
- $\mathcal{W}_{2}^{2}\left(\gamma_{a, \Sigma}, \gamma\right)=\|a\|_{2}^{2}+\left\|\sqrt{\Sigma}-I_{d}\right\|_{H S}^{2}$

In particular, for any $a \in \mathbb{R}^{d}$,

$$
\mathcal{W}_{2}^{2}\left(\gamma_{a, I_{d}}, \gamma\right)=2 \operatorname{Ent}\left(\gamma_{a, I_{d}} \| \gamma\right) .
$$

These are the only equality cases.

## Stability

Define the deficit

$$
\delta_{\mathrm{Tal}}(\mu)=2 \operatorname{Ent}(\mu \| \gamma)-\mathcal{W}_{2}^{2}(\mu, \gamma)
$$

The question of stability deals with approximate equality cases.
Question
Suppose that $\delta_{\text {Tai }}(\mu)$ is small, must $\mu$ be close to a translate of the standard Gaussian?

Note that the deficit is invariant to translations. So, it will be enough to consider centered measures.

## Stability

Define the deficit

$$
\delta_{\text {Tal }}(\mu)=2 \operatorname{Ent}(\mu \| \gamma)-\mathcal{W}_{2}^{2}(\mu, \gamma)
$$

The question of stability deals with approximate equality cases.

## Question

Suppose that $\delta_{\text {Tal }}(\mu)$ is small, must $\mu$ be close to a translate of the standard Gaussian?

Note that the deficit is invariant to translations. So, it will be enough to consider centered measures.

## Stability

Define the deficit

$$
\delta_{\text {Tal }}(\mu)=2 \operatorname{Ent}(\mu \| \gamma)-\mathcal{W}_{2}^{2}(\mu, \gamma)
$$

The question of stability deals with approximate equality cases.

## Question

Suppose that $\delta_{\text {Tal }}(\mu)$ is small, must $\mu$ be close to a translate of the standard Gaussian?

Note that the deficit is invariant to translations. So, it will be enough to consider centered measures.

## Instability

## Theorem (Fathi, Indrei, Ledoux 14')

Let $\mu$ be a centered measure on $\mathbb{R}^{d}$. Then

$$
\delta_{\mathrm{Tal}}(\mu) \gtrsim \min \left(\frac{\mathcal{W}_{1,1}(\mu, \gamma)^{2}}{d}, \frac{\mathcal{W}_{1,1}(\mu, \gamma)}{\sqrt{d}}\right)
$$

The 1-dimensional case was proven earlier by Barthe and Kolesnikov.
However:
Theorem
There exists : sequence of centered Gaussian mixtures $\left\{\mu_{n}\right\}$ on $\mathbb{R}$, such that $\delta_{\text {Tal }}\left(\mu_{n}\right) \rightarrow 0$. but $\mathcal{W}_{2}^{2}\left(\mu_{n}, \gamma\right)>1$

## Instability

## Theorem (Fathi, Indrei, Ledoux 14')

Let $\mu$ be a centered measure on $\mathbb{R}^{d}$. Then

$$
\delta_{\mathrm{Tal}}(\mu) \gtrsim \min \left(\frac{\mathcal{W}_{1,1}(\mu, \gamma)^{2}}{d}, \frac{\mathcal{W}_{1,1}(\mu, \gamma)}{\sqrt{d}}\right)
$$

The 1-dimensional case was proven earlier by Barthe and Kolesnikov.
However:

## Theorem

There exists a sequence of centered Gaussian mixtures $\left\{\mu_{n}\right\}$ on $\mathbb{R}$, such that $\delta_{\text {Tal }}\left(\mu_{n}\right) \rightarrow 0$. but $\mathcal{W}_{2}^{2}\left(\mu_{n}, \gamma\right)>1$.

## Bounding the Deficit

In the 1-dimensional case, Talagrand actually showed

$$
\delta_{\mathrm{Tal}}(\mu)=\int_{\mathbb{R}}\left(\varphi_{\mu}^{\prime}-1-\ln \left(\varphi_{\mu}^{\prime}\right)\right) d \gamma>0
$$

where $\varphi$ is the transport map $\varphi_{\mu}=F_{\gamma}^{-1} \circ F_{\mu}$.
For translated Gaussians, $\varphi_{\gamma_{a, 1}}(x)=x+a$, which shows the
equality cases.
We will take a different route.

## Bounding the Deficit

In the 1-dimensional case, Talagrand actually showed

$$
\delta_{\mathrm{Tal}}(\mu)=\int_{\mathbb{R}}\left(\varphi_{\mu}^{\prime}-1-\ln \left(\varphi_{\mu}^{\prime}\right)\right) d \gamma>0
$$

where $\varphi$ is the transport map $\varphi_{\mu}=F_{\gamma}^{-1} \circ F_{\mu}$.
For translated Gaussians, $\varphi_{\gamma_{a, 1}}(x)=x+a$, which shows the equality cases.

## We will take a different route.

## Bounding the Deficit

In the 1-dimensional case, Talagrand actually showed

$$
\delta_{\mathrm{Tal}}(\mu)=\int_{\mathbb{R}}\left(\varphi_{\mu}^{\prime}-1-\ln \left(\varphi_{\mu}^{\prime}\right)\right) d \gamma>0
$$

where $\varphi$ is the transport map $\varphi_{\mu}=F_{\gamma}^{-1} \circ F_{\mu}$.
For translated Gaussians, $\varphi_{\gamma_{a, 1}}(x)=x+a$, which shows the equality cases.
We will take a different route.

## Bounding the Deficit - the Föllmer Drift

Our central construct will be the Föllmer drift, which is the solution to the following variational problem:

$$
v_{t}:=\arg \min _{u_{t}} \frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|u_{t}\right\|^{2}\right] d t
$$

where $u_{t}$ ranges over all adapted drifts for which $B_{1}+\int_{0}^{1} u_{t} d t$ has the same law as $\mu$.

## Bounding the Deficit - the Föllmer Drift

Our central construct will be the Föllmer drift, which is the solution to the following variational problem:

$$
v_{t}:=\arg \min _{u_{t}} \frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|u_{t}\right\|^{2}\right] d t
$$

where $u_{t}$ ranges over all adapted drifts for which $B_{1}+\int_{0}^{1} u_{t} d t$ has the same law as $\mu$.
We denote

$$
X_{t}:=B_{t}+\int_{0}^{t} v_{s} d s
$$

## Bounding the Deficit - the Föllmer Drift

The process $v_{t}$ goes back at least to the works of Föllmer (86'). In a later work by Lehec (12') it is shown that if $\mu$ has finite entropy relative to $\gamma$, then $v_{t}$ is well defined and that:

1. $v_{t}$ is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)$
2. $\operatorname{Ent}(\mu \| \gamma)=\operatorname{Ent}(X . \| B)=.\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t$.
3. In the Wiener space, the density of $X_{t}$ with respect to $B_{t}$ is given by $\frac{d \mu}{d \gamma}\left(\omega_{1}\right)$
4. If $G \sim \gamma$, independent from $X_{1}$,


## Bounding the Deficit - the Föllmer Drift

The process $v_{t}$ goes back at least to the works of Föllmer (86'). In a later work by Lehec (12') it is shown that if $\mu$ has finite entropy relative to $\gamma$, then $v_{t}$ is well defined and that:

1. $v_{t}$ is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)$.
2. $\operatorname{Ent}(\mu \| \gamma)=\operatorname{Ent}(X .| | B)=.\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t$.
3. In the Wiener space, the density of $X_{t}$ with respect to $B_{t}$ is given by $\frac{d \mu}{d \sim}\left(\omega_{1}\right)$
4. If $G \sim \gamma$, independent from $X_{1}$,


## Bounding the Deficit - the Föllmer Drift

The process $v_{t}$ goes back at least to the works of Föllmer (86'). In a later work by Lehec (12') it is shown that if $\mu$ has finite entropy relative to $\gamma$, then $v_{t}$ is well defined and that:

1. $v_{t}$ is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)$.
2. $\operatorname{Ent}(\mu \| \gamma)=\operatorname{Ent}(X . \| B)=.\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t$.
3. In the Wiener space, the density of $X_{t}$ with respect to $B_{t}$ is given by $\frac{d \mu}{d \gamma}\left(\omega_{1}\right)$.
[^0]
## Bounding the Deficit - the Föllmer Drift

The process $v_{t}$ goes back at least to the works of Föllmer (86'). In a later work by Lehec (12') it is shown that if $\mu$ has finite entropy relative to $\gamma$, then $v_{t}$ is well defined and that:

1. $v_{t}$ is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)$.
2. $\operatorname{Ent}(\mu \| \gamma)=\operatorname{Ent}(X . \| B)=.\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t$.
3. In the Wiener space, the density of $X_{t}$ with respect to $B_{t}$ is given by $\frac{d \mu}{d \gamma}\left(\omega_{1}\right)$.
4. If $G \sim \gamma$, independent from $X_{1}$

## Bounding the Deficit - the Föllmer Drift

The process $v_{t}$ goes back at least to the works of Föllmer (86'). In a later work by Lehec (12') it is shown that if $\mu$ has finite entropy relative to $\gamma$, then $v_{t}$ is well defined and that:

1. $v_{t}$ is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)$.
2. $\operatorname{Ent}(\mu \| \gamma)=\operatorname{Ent}(X . \| B)=.\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t$.
3. In the Wiener space, the density of $X_{t}$ with respect to $B_{t}$ is given by $\frac{d \mu}{d \gamma}\left(\omega_{1}\right)$.
4. If $G \sim \gamma$, independent from $X_{1}$,

$$
X_{t} \stackrel{\text { law }}{=} t X_{1}+\sqrt{t(1-t)} G
$$

## Proof of Talagrand's Inequality

## Proof of Talagrand's Inequality (Lehec).

$$
\begin{aligned}
\mathcal{W}_{2}^{2}(\mu \| \gamma) & \leq \mathbb{E}\left[\left\|X_{1}-B_{1}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|\int_{0}^{1} v_{t} d t\right\|_{2}^{2}\right] \\
& \leq \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t=2 \operatorname{Ent}(\mu \| \gamma)
\end{aligned}
$$

## Proof of Talagrand's Inequality

## Proof of Talagrand's Inequality (Lehec).

$$
\begin{aligned}
\mathcal{W}_{2}^{2}(\mu \| \gamma) & \leq \mathbb{E}\left[\left\|X_{1}-B_{1}\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|\int_{0}^{1} v_{t} d t\right\|_{2}^{2}\right] \\
& \leq \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t=2 \operatorname{Ent}(\mu \| \gamma)
\end{aligned}
$$

The goal is to make this quantitative.

## Stability for Measures with a Finite Poincaré Constant

We say that $\mu$ satisfies a Poincaré inequality, with constant $\mathrm{C}_{\mathrm{p}}(\mu)$, if for every every smooth function $f$,

$$
\operatorname{Var}_{\mu}(f) \leq \mathrm{C}_{\mathrm{p}}(\mu) \mathbb{E}_{\mu}\left[\|\nabla f\|_{2}^{2}\right] .
$$

We will prove:
Let $\mu$ be a centered measure on $\mathbb{R}^{d}$ with $\mathrm{C}_{\mathrm{p}}(\mu)<\infty$. Then


## Stability for Measures with a Finite Poincaré Constant

We say that $\mu$ satisfies a Poincaré inequality, with constant $\mathrm{C}_{\mathrm{p}}(\mu)$, if for every every smooth function $f$,

$$
\operatorname{Var}_{\mu}(f) \leq \mathrm{C}_{\mathrm{p}}(\mu) \mathbb{E}_{\mu}\left[\|\nabla f\|_{2}^{2}\right] .
$$

We will prove:

## Theorem

Let $\mu$ be a centered measure on $\mathbb{R}^{d}$ with $\mathrm{C}_{\mathrm{p}}(\mu)<\infty$. Then

$$
\delta_{\mathrm{Tal}}(\mu) \geq \frac{\ln \left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right)}{4 \mathrm{C}_{\mathrm{p}}(\mu)} \operatorname{Ent}(\mu \| \gamma)
$$

## Measures with a Finite Poincaré Constant

The Poincaré constant is inequality for the following comparison lemma:

## Lemma

Assume that $\mu$ is centered and that $\mathrm{C}_{\mathrm{p}}(\mu)<\infty$. Then

- For $0 \leq t \leq \frac{1}{2}$,

$$
\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] \leq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1}
$$

- For $\frac{1}{2} \leq t \leq 1$,

$$
\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] \geq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1}
$$

## Proof.

Recall $X_{t} \stackrel{\text { law }}{=} t X_{1}+\sqrt{t(1-t)} G$. Hence,

$$
\mathrm{C}_{\mathrm{p}}\left(X_{t}\right) \leq t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)
$$

and

$$
\begin{aligned}
& \mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \leq\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \mathbb{E}\left[\left\|\nabla v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \\
&=\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \\
& g(t):=\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1} \text { solves } \\
& f(t)=t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t) f^{\prime}(t) \text {, with } f\left(\frac{1}{2}\right)=\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right]
\end{aligned}
$$

## Proof.

Recall $X_{t} \stackrel{\text { law }}{=} t X_{1}+\sqrt{t(1-t)} G$. Hence,

$$
\mathrm{C}_{\mathrm{p}}\left(X_{t}\right) \leq t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)
$$

and

$$
\begin{aligned}
\mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] & \leq\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \mathbb{E}\left[\left\|\nabla v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \\
& =\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] .
\end{aligned}
$$

$g(t):=\mathbb{E}\left[| | v_{1 / 2} \|_{2}^{2}\right] \frac{\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1}$ solves

$f(t)=t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t) f^{\prime}(t)$, with $f\left(\frac{1}{2}\right)=\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right]$

## Proof.

Recall $X_{t} \stackrel{\text { law }}{=} t X_{1}+\sqrt{t(1-t)} G$. Hence,

$$
\mathrm{C}_{\mathrm{p}}\left(X_{t}\right) \leq t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)
$$

and

$$
\begin{aligned}
& \mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \leq\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \mathbb{E}\left[\left\|\nabla v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \\
&=\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] . \\
& g(t):=\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1} \text { solves } \\
& f(t)=t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t) f^{\prime}(t), \text { with } f\left(\frac{1}{2}\right)=\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] .
\end{aligned}
$$

## Proof.

Recall $X_{t} \stackrel{\text { law }}{=} t X_{1}+\sqrt{t(1-t)} G$. Hence,

$$
\mathrm{C}_{\mathrm{p}}\left(X_{t}\right) \leq t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)
$$

and

$$
\begin{aligned}
& \mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \leq\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \mathbb{E}\left[\left\|\nabla v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] \\
&=\left(t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t)\right) \frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\left(X_{t}\right)\right\|_{2}^{2}\right] . \\
& g(t):=\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1} \text { solves } \\
& f(t)=t^{2} \mathrm{C}_{\mathrm{p}}(\mu)+t(1-t) f^{\prime}(t), \text { with } f\left(\frac{1}{2}\right)=\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] .
\end{aligned}
$$

Now apply Gromwall's inequality.

## A Martingale Formulation

We will use the following martingale formulation:

$$
Y_{t}:=\mathbb{E}\left[X_{1} \mid \mathcal{F}_{t}\right]
$$

By the martingale representation theorem, for some process $\Gamma_{t}$ which is uniquely defined, $Y_{t}$ satisfies


## A Martingale Formulation

We will use the following martingale formulation:

$$
Y_{t}:=\mathbb{E}\left[X_{1} \mid \mathcal{F}_{t}\right]
$$

By the martingale representation theorem, for some process $\Gamma_{t}$, which is uniquely defined, $Y_{t}$ satisfies

$$
Y_{t}=\int_{0}^{t} \Gamma_{s} d B_{s} .
$$

This implies


## A Martingale Formulation

We will use the following martingale formulation:

$$
Y_{t}:=\mathbb{E}\left[X_{1} \mid \mathcal{F}_{t}\right]
$$

By the martingale representation theorem, for some process $\Gamma_{t}$, which is uniquely defined, $Y_{t}$ satisfies

$$
Y_{t}=\int_{0}^{t} \Gamma_{s} d B_{s}
$$

This implies

$$
v_{t}=\int_{0}^{t} \frac{\Gamma_{s}-\mathrm{I}_{d}}{1-s} d B_{s}
$$

## A Martingale Formulation

It turns out that $\Gamma_{t}$ is a positive definite matrix, hence

$$
\begin{aligned}
\operatorname{Ent}(\mu \| \gamma) & =\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{s}\right\|_{2}^{2}\right] d s=\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \int_{0}^{s} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t d s \\
& =\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t
\end{aligned}
$$

[^1]

## A Martingale Formulation

It turns out that $\Gamma_{t}$ is a positive definite matrix, hence

$$
\begin{aligned}
\operatorname{Ent}(\mu \| \gamma) & =\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{s}\right\|_{2}^{2}\right] d s=\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \int_{0}^{s} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t d s \\
& =\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t
\end{aligned}
$$

and
$\mathcal{W}_{2}^{2}(\mu, \gamma) \leq \mathbb{E}\left[\left\|\int_{0}^{1} \Gamma_{t} d B_{t}-\int_{0}^{1} d B_{t}\right\|_{2}^{2}\right]=\operatorname{Tr} \int_{0}^{1} \mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right] d t$.

## Bounding the Deficit - Martingales

$$
\delta_{\mathrm{Tal}}(\mu)=2 \operatorname{Ent}(\mu \| \gamma)-\mathcal{W}_{2}^{2}(\mu, \gamma) \geq \operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t
$$

Integration by parts gives:


## Bounding the Deficit - Martingales

$$
\delta_{\mathrm{Tal}}(\mu)=2 \operatorname{Ent}(\mu \| \gamma)-\mathcal{W}_{2}^{2}(\mu, \gamma) \geq \operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t
$$

Integration by parts gives:

$$
\delta_{\mathrm{Tal}}(\mu) \geq \operatorname{Tr} \int_{0}^{1} t(1-t) \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t
$$

## Bounding the Deficit - Martingales

$$
\delta_{\mathrm{Tal}}(\mu)=2 \operatorname{Ent}(\mu \| \gamma)-\mathcal{W}_{2}^{2}(\mu, \gamma) \geq \operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t
$$

Integration by parts gives:

$$
\begin{aligned}
\delta_{\mathrm{Tal}}(\mu) & \geq \operatorname{Tr} \int_{0}^{1} t(1-t) \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t \\
& =\int_{0}^{1} t(1-t) \frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t=\int_{0}^{1}(2 t-1) \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t
\end{aligned}
$$

Applying the Lemma

$$
\delta_{\mathrm{Tal}}(\mu) \geq \int_{0}^{1}(2 t-1) \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t
$$



If $\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \geq \operatorname{Ent}(\mu \| \gamma)$, this shows


Applying the Lemma

$$
\begin{aligned}
\delta_{\mathrm{Tal}}(\mu) & \geq \int_{0}^{1}(2 t-1) \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t \\
& \geq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \int_{0}^{1} \frac{(2 t-1)\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1} d t \\
& \geq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\ln \left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right)}{4 \mathrm{C}_{\mathrm{p}}(\mu)}
\end{aligned}
$$

If $\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \geq \operatorname{Ent}(\mu \| \gamma)$, this shows

Applying the Lemma

$$
\begin{aligned}
\delta_{\mathrm{Tal}}(\mu) & \geq \int_{0}^{1}(2 t-1) \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t \\
& \geq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \int_{0}^{1} \frac{(2 t-1)\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1} d t \\
& \geq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\ln \left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right)}{4 \mathrm{C}_{\mathrm{p}}(\mu)}
\end{aligned}
$$

Applying the Lemma

$$
\begin{aligned}
\delta_{\mathrm{Tal}}(\mu) & \geq \int_{0}^{1}(2 t-1) \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] d t \\
& \geq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \int_{0}^{1} \frac{(2 t-1)\left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right) t}{\left(\mathrm{C}_{\mathrm{p}}(\mu)-1\right) t+1} d t \\
& \geq \mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \frac{\ln \left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right)}{4 \mathrm{C}_{\mathrm{p}}(\mu)}
\end{aligned}
$$

If $\mathbb{E}\left[\left\|v_{1 / 2}\right\|_{2}^{2}\right] \geq \operatorname{Ent}(\mu \| \gamma)$, this shows

$$
\delta_{\mathrm{Tal}}(\mu) \geq \frac{\ln \left(\mathrm{C}_{\mathrm{p}}(\mu)+1\right)}{4 \mathrm{C}_{\mathrm{p}}(\mu)} \operatorname{Ent}(\mu \| \gamma)
$$

The other case is easier.

## Further Results

Other bounds on $\frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]$, will yields different results.


This gives:
Theorem $\quad$ Let $\mu$ be a measure on $\mathbb{R}^{d}$ such that $\operatorname{tr}(\operatorname{Cov}(\mu)) \leq d$. Then


## Further Results

Other bounds on $\frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]$, will yields different results.
For example, if $\operatorname{tr}(\operatorname{Cov}(\mu)) \leq d$, then

$$
\frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] \geq \frac{\left(\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]\right)^{2}}{d}
$$

This gives:
Theorem
Let $\mu$ be a measure on $\mathbb{R}^{d}$ such that $\operatorname{tr}(\operatorname{Cov}(\mu)) \leq d$. Then


## Further Results

Other bounds on $\frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]$, will yields different results.
For example, if $\operatorname{tr}(\operatorname{Cov}(\mu)) \leq d$, then

$$
\frac{d}{d t} \mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right] \geq \frac{\left(\mathbb{E}\left[\left\|v_{t}\right\|_{2}^{2}\right]\right)^{2}}{d}
$$

This gives:

## Theorem

Let $\mu$ be a measure on $\mathbb{R}^{d}$ such that $\operatorname{tr}(\operatorname{Cov}(\mu)) \leq d$. Then

$$
\delta_{\mathrm{Tal}}(\mu) \geq \min \left(\frac{\operatorname{Ent}(\mu \| \gamma)^{2}}{6 d}, \frac{\operatorname{Ent}(\mu \| \gamma)}{4}\right)
$$

## Further Results

Two other results:
Theorem
Let $\mu$ be a measure on $\mathbb{R}^{d}$ and let $\left\{\lambda_{i}\right\}_{i=1}^{d}$ be the eigenvalues of $\operatorname{Cov}(\mu)$. Then


## Theorem

Let $\cdot$. bo a measure on $\mathbb{R}^{d}$. There exists another measure $v$ such that


## Further Results

Two other results:

## Theorem

Let $\mu$ be a measure on $\mathbb{R}^{d}$ and let $\left\{\lambda_{i}\right\}_{i=1}^{d}$ be the eigenvalues of $\operatorname{Cov}(\mu)$. Then

$$
\delta_{\mathrm{Tal}}(\mu) \geq \sum_{i=1}^{d} \frac{2\left(1-\lambda_{i}\right)+\left(\lambda_{i}+1\right) \ln \left(\lambda_{i}\right)}{\lambda_{i}-1} \mathbb{1}_{\left\{\lambda_{i}<1\right\}}
$$

Let $\mu$ be a measure on $\mathbb{R}^{d}$. There exists another measure $\nu$ such that

## Further Results

Two other results:

## Theorem

Let $\mu$ be a measure on $\mathbb{R}^{d}$ and let $\left\{\lambda_{i}\right\}_{i=1}^{d}$ be the eigenvalues of $\operatorname{Cov}(\mu)$. Then

$$
\delta_{\mathrm{Tal}}(\mu) \geq \sum_{i=1}^{d} \frac{2\left(1-\lambda_{i}\right)+\left(\lambda_{i}+1\right) \ln \left(\lambda_{i}\right)}{\lambda_{i}-1} \mathbb{1}_{\left\{\lambda_{i}<1\right\}}
$$

## Theorem

Let $\mu$ be a measure on $\mathbb{R}^{d}$. There exists another measure $\nu$ such that

$$
\delta_{\mathrm{Tal}}(\mu) \geq \frac{1}{3 \sqrt{3}} \frac{\operatorname{Ent}(\mu \| \gamma)^{3 / 2}}{\sqrt{d}}
$$

## Log-Sobolev Inequality

## Definition (Fisher information of $\mu$ with respect to $\gamma$ )

$$
\mathrm{I}(\mu \| \gamma)=\mathbb{E}_{\mu}\left[\left\|\nabla \ln \left(\frac{d \mu}{d \gamma}\right)\right\|_{2}^{2}\right]
$$

## In 75' Gross proved:

Theorem (1 oo-Sobo ev inequality)
Let $\mu$ be a measure on $\mathbb{R}^{d}$. Then
$2 \operatorname{Ent}(\mu \| \gamma) \leq \mathrm{I}(\mu \| \gamma)$.

## Log-Sobolev Inequality

## Definition (Fisher information of $\mu$ with respect to $\gamma$ )

$$
\mathrm{I}(\mu \| \gamma)=\mathbb{E}_{\mu}\left[\left\|\nabla \ln \left(\frac{d \mu}{d \gamma}\right)\right\|_{2}^{2}\right]
$$

In 75' Gross proved:

## Theorem (Log-Sobolev inequality)

Let $\mu$ be a measure on $\mathbb{R}^{d}$. Then

$$
2 \operatorname{Ent}(\mu \| \gamma) \leq \mathrm{I}(\mu \| \gamma)
$$

Define

$$
\delta_{\mathrm{LS}}(\mu)=\mathrm{I}(\mu \| \gamma)-2 \operatorname{Ent}(\mu \| \gamma)
$$

## and recall

$$
v_{t}:=v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)
$$

## It follows that

$$
\operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-I_{d}\right)^{2}\right]}{(1-t)^{2}} d t=\mathbb{E}\left[\left\|v_{1}\right\|_{2}^{2}\right]=I(\mu \| \gamma)
$$

Since $\operatorname{Ent}(\mu \| \gamma)=\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-I_{d}\right)^{2}\right]}{1-t} d t$, we get

$$
\delta_{\mathrm{LS}}(\mu)=\operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t
$$

Define

$$
\delta_{\mathrm{LS}}(\mu)=\mathrm{I}(\mu \| \gamma)-2 \operatorname{Ent}(\mu \| \gamma),
$$

and recall

$$
v_{t}:=v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)
$$

## It follows that



Since $\operatorname{Ent}(\mu \| \gamma)=\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t$, we get

Define

$$
\delta_{\mathrm{LS}}(\mu)=\mathrm{I}(\mu \| \gamma)-2 \operatorname{Ent}(\mu \| \gamma)
$$

and recall

$$
v_{t}:=v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)
$$

It follows that

$$
\operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t=\mathbb{E}\left[\left\|v_{1}\right\|_{2}^{2}\right]=\mathrm{I}(\mu \| \gamma)
$$

Since $\operatorname{Ent}(\mu \| \gamma)=\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-I_{d}\right)^{2}\right]}{1-t} d t$, we get

Define

$$
\delta_{\mathrm{LS}}(\mu)=\mathrm{I}(\mu \| \gamma)-2 \operatorname{Ent}(\mu \| \gamma)
$$

and recall

$$
v_{t}:=v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma}\left(X_{t}\right)\right)\right)
$$

It follows that

$$
\operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t=\mathbb{E}\left[\left\|v_{1}\right\|_{2}^{2}\right]=\mathrm{I}(\mu \| \gamma)
$$

Since $\operatorname{Ent}(\mu \| \gamma)=\frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t$, we get

$$
\delta_{\mathrm{LS}}(\mu)=\operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{(1-t)^{2}} d t
$$

## The Shannon-Stam Inequality

In 48' Shannon noted the following inequality, which was later proved by Stam, in 56'.

## Theorem (Shannon-Stam Inequality)

Let $X, Y$ be independent random vectors in $\mathbb{R}^{d}$ and let $G \sim \gamma$.
Then, for any $\lambda \in[0,1]$,

$$
\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G) \leq \lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)
$$

Moreover, equality holds if and only if $X$ and $Y$ are Gaussians with identical covariances.

Define


## The Shannon-Stam Inequality

In 48' Shannon noted the following inequality, which was later proved by Stam, in $56^{\prime}$.

## Theorem (Shannon-Stam Inequality)

Let $X, Y$ be independent random vectors in $\mathbb{R}^{d}$ and let $G \sim \gamma$.
Then, for any $\lambda \in[0,1]$,

$$
\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G) \leq \lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)
$$

Moreover, equality holds if and only if $X$ and $Y$ are Gaussians with identical covariances.

Define

$$
\delta_{\lambda}(X, Y)=\lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)-\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G)
$$

## Deficit of the Shannon-Stam Inequality

For simplicity we'll focus on the case $\lambda=\frac{1}{2}$.
Now, for $X, Y$ independent random variables, take two independent Brownian motions $B_{t}^{X}, B_{t}^{Y}$ and $\Gamma_{t}^{X}, \Gamma_{t}^{Y}$ as above.
We get

for some Brownian motion $B_{t}$.

## Deficit of the Shannon-Stam Inequality

For simplicity we'll focus on the case $\lambda=\frac{1}{2}$.
Now, for $X, Y$ independent random variables, take two independent Brownian motions $B_{t}^{X}, B_{t}^{Y}$ and $\Gamma_{t}^{X}, \Gamma_{t}^{Y}$ as above.
We get
$\frac{X+Y}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\int_{0}^{1} \Gamma_{t}^{X} d B_{t}^{X}+\int_{0}^{1} \Gamma_{t}^{Y} d B_{t}^{Y}\right) \stackrel{\operatorname{law}}{=} \int_{0}^{1} \sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}} d B_{t}$.
for some Brownian motion $B_{t}$.

## Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,
$2 \delta_{\frac{1}{2}}(X, Y) \geq \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(I_{d}-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(I_{d}-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(I_{d}-H_{t}\right)^{2}\right]}{1-t}$

Manipulating the matrix square root then shows

## Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(I_{d}-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,
$2 \delta_{\frac{1}{2}}(X, Y) \geq \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-H_{t}\right)^{2}\right]}{1-t} d t$

Manipulating the matrix square root then shows

## Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(I_{d}-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,

$$
\begin{aligned}
2 \delta_{\frac{1}{2}}(X, Y) & \geq \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-H_{t}\right)^{2}\right]}{1-t} d t \\
& =\operatorname{Tr} \int_{0}^{1} \frac{2 \mathbb{E}\left[H_{t}\right]-\mathbb{E}\left[\Gamma_{t}^{X}\right]-\mathbb{E}\left[\Gamma_{t}^{Y}\right]}{1-t}
\end{aligned}
$$

## Manipulating the matrix square root then shows

## Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,

$$
\begin{aligned}
2 \delta_{\frac{1}{2}}(X, Y) & \geq \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(\mathrm{I}_{d}-H_{t}\right)^{2}\right]}{1-t} d t \\
& =\operatorname{Tr} \int_{0}^{1} \frac{2 \mathbb{E}\left[H_{t}\right]-\mathbb{E}\left[\Gamma_{t}^{X}\right]-\mathbb{E}\left[\Gamma_{t}^{Y}\right]}{1-t}
\end{aligned}
$$

Manipulating the matrix square root then shows

$$
\delta_{\frac{1}{2}}(X, Y) \gtrsim \operatorname{Tr} \int_{0}^{1} \mathbb{E}\left[\frac{\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}\left(\Gamma_{t}^{X}+\Gamma_{t}^{Y}\right)^{-1}}{(1-t)}\right] d t
$$

## Deficit of Log-Concave Measures

Fact: if $X$ is log-concave, then $\Gamma_{t}^{X} \preceq \frac{1}{t} \mathrm{I}_{d}$ almost surely. So, if both $X$ and $Y$ are log-concave,

In particular

## Deficit of Log-Concave Measures

Fact: if $X$ is log-concave, then $\Gamma_{t}^{X} \preceq \frac{1}{t} \mathrm{I}_{d}$ almost surely. So, if both $X$ and $Y$ are log-concave,

$$
\delta_{\frac{1}{2}}(X, Y) \gtrsim \operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}\right]}{1-t} d t
$$

## Deficit of Log-Concave Measures

Fact: if $X$ is log-concave, then $\Gamma_{t}^{X} \preceq \frac{1}{t} \mathrm{I}_{d}$ almost surely.
So, if both $X$ and $Y$ are log-concave,

$$
\delta_{\frac{1}{2}}(X, Y) \gtrsim \operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}\right]}{1-t} d t
$$

In particular,

$$
\delta_{\frac{1}{2}}(X, G) \gtrsim \operatorname{Tr} \int_{0}^{1} t \cdot \frac{\mathbb{E}\left[\left(\Gamma_{t}^{X}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t
$$

## The Entropic Central Limit Theorem

Let $\left\{X_{i}\right\}$ be i.i.d. copies of $X$ and $S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$.

## Using this, we show

where $C_{X}>0$, depends on $X$. This can be used to prove the entropic central limit theorem.

## The Entropic Central Limit Theorem

Let $\left\{X_{i}\right\}$ be i.i.d. copies of $X$ and $S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$.
Set $H_{t}=\sqrt{\frac{\sum\left(\Gamma_{t}^{i}\right)^{2}}{n}}$. Then

$$
S_{n} \stackrel{\text { law }}{=} \int_{0}^{1} H_{t} d B_{t}
$$

## Using this, we show

where $C_{X}>0$, depends on $X$. This can be used to prove the
entropic central limit theorem.

## The Entropic Central Limit Theorem

Let $\left\{X_{i}\right\}$ be i.i.d. copies of $X$ and $S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$.
Set $H_{t}=\sqrt{\frac{\sum\left(\Gamma_{t}^{i}\right)^{2}}{n}}$. Then

$$
S_{n} \stackrel{\text { law }}{=} \int_{0}^{1} H_{t} d B_{t}
$$

Using this, we show

$$
\operatorname{Ent}\left(S_{n} \| G\right) \leq C_{X} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(H_{t}-\mathbb{E}\left[H_{t}\right]\right)^{2}\right]}{1-t} d t
$$

where $C_{X}>0$, depends on $X$. This can be used to prove the
entropic central limit theorem.

## The Entropic Central Limit Theorem

Let $\left\{X_{i}\right\}$ be i.i.d. copies of $X$ and $S_{n}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$.
Set $H_{t}=\sqrt{\frac{\sum\left(\Gamma_{t}^{i}\right)^{2}}{n}}$. Then

$$
S_{n} \stackrel{\text { law }}{=} \int_{0}^{1} H_{t} d B_{t}
$$

Using this, we show

$$
\operatorname{Ent}\left(S_{n} \| G\right) \leq C_{X} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(H_{t}-\mathbb{E}\left[H_{t}\right]\right)^{2}\right]}{1-t} d t
$$

where $C_{X}>0$, depends on $X$. This can be used to prove the entropic central limit theorem.

## Quantitative Entropic Central Limit Theorem

For a more quantitative result we have the formula

$$
\begin{aligned}
\operatorname{Ent}\left(S_{n} \| G\right) & \leq \frac{\operatorname{poly}\left(\mathrm{C}_{\mathrm{p}}(X)\right)}{n} \operatorname{Tr} \int_{0}^{1} \frac{\mathbb{E}\left[\left(\Gamma_{t}^{2}-\mathbb{E}\left[H_{t}^{2}\right]\right)^{2}\right]}{1-t} d t \\
& =\frac{\operatorname{poly}\left(\mathrm{C}_{\mathrm{p}}(X)\right)}{n} \operatorname{Tr} \int_{0}^{1} \frac{\operatorname{Var}\left(\Gamma_{t}^{2}\right)}{1-t} d t
\end{aligned}
$$

valid for $X$ which satisfies a Poincaré inequality. For $X$ log-concave, $\Gamma_{t} \preceq \frac{1}{t} \mathrm{I}_{d}$, and

$$
\operatorname{Tr} \int_{0}^{1} \frac{\operatorname{Var}\left(\Gamma_{t}^{2}\right)}{1-t} d t \leq \operatorname{Tr} \int_{0}^{1} \frac{1}{t^{2}} \frac{\mathbb{E}\left[\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right]}{1-t} d t
$$

## Thank You


[^0]:    4. If $G \sim \gamma$, independent from $X_{1}$
[^1]:    and

