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Geometry and Information

Throughout, G ~ ~ will denote the standard Gaussian in RY.

Definition (Wasserstein distance between ;. and ~)
) 1/2
Wa(p, ) i=inf {Ex [|Ix - yI?] }

where 7 ranges over all possible couplings of 1 and .

Definition (Relative entropy between 1 and 7)

Bur(ul}) = B, in (29 |

Remark: if X ~ u we will also write Ent(X||G), Wa(X, G).



Talagrand’s Inequality

In 96’ Talagrand proved the following inequality, which connects
between geometry and information.

Theorem (Talagrand’s Gaussian transport-entropy

inequality)

Let i be a measure on RY. Then

W3 (1,7) < 2Ent(ul}7).

It is enough to consider measures such that p < v.
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Talagrand’s Inequality - Applications

e By considering measures of the form 1 4d~ the inequality
implies a (non-sharp) Gaussian isoperimetric inequality.

e The inequality tensorizes and may be used to show
dimension-free Gaussian concentration bounds.

e If f is convex, then applying the inequality to e * d~ yields a
one sides Gaussian concentration for concave functions.
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Gaussians

If vax = N(a,X), in R
o Ent(y,5/ly) = § (Tr(E) + ||all} - In(det(¥)) - d)
o WCraz, ) = llall3 + ||VE -1
In particular, for any a € RY,
W3 (Ya s> ) = 2Ent(va1,17)-

These are the only equality cases.
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Stability

Define the deficit

Sral(p) = 2Ent(ul|y) — W3 (1, )

The question of stability deals with approximate equality cases.

Suppose that d,1(p) is small, must p be close to a translate of

the standard Gaussian?

Note that the deficit is invariant to translations. So, it will be

enough to consider centered measures.



Instability

Theorem (Fathi, Indrei, Ledoux 14’)

Let 1 be a centered measure on RY. Then

2
Sun() = it (Wm(m) Wm(um))

d ' Jd

The 1-dimensional case was proven earlier by Barthe and
Kolesnikov.



Instability

Theorem (Fathi, Indrei, Ledoux 14’)

Let j1 be a centered measure on RY. Then

2
Oral(pr) 2 min (Wl’l('u”}') Wl,l(ﬂv’)’))

d V2|

The 1-dimensional case was proven earlier by Barthe and
Kolesnikov.
However:

There exists a sequence of centered Gaussian mixtures {j,} on
R, such that 61ai(pn) — 0. but W3 (un,v) > 1.
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Bounding the Deficit

In the 1-dimensional case, Talagrand actually showed

Sra(p) = / (¢ — 1~ In(gl)) dy > O,
R

where ¢ is the transport map ¢, = F; 1o Fy.

For translated Gaussians, ¢, ,(x) = x 4 a, which shows the
equality cases.
We will take a different route.



Bounding the Deficit - the Follmer Drift

Our central construct will be the Follmer drift, which is the
solution to the following variational problem:

1
1
Ve ::argml /IE |lue||?]

0
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Our central construct will be the Follmer drift, which is the
solution to the following variational problem:

1
1
Ve ::argml /IE |lue||?]

0

1
where u; ranges over all adapted drifts for which By + f uzdt has
0

the same law as p.

We denote .

Xt = Bt+/V5dS.
0
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Bounding the Deficit - the Follmer Drift

The process v; goes back at least to the works of Féllmer (86'). In
a later work by Lehec (12') it is shown that if u has finite entropy
relative to ~y, then v; is well defined and that:

1. v¢ is a martingale, with v¢(X;) = Vn (Pl_t (%(Xﬁ)).

2. Ent (ully) = Ent (X]|8) = fEmthQ]dr

3. In the Wiener space, the denS|ty of X; with respect to B; is
given by %(wl).

4. If G ~ 7, independent from Xi,

X ' tX; 4+ /11— 1)G.
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Proof of Talagrand’s Inequality

Proof of Talagrand’s Inequality (Lehec).

1 2
‘ ‘ / tht
2 0 2

1
< /0 E [|1vl 3] dt = 2Bnt(uly).

2

W2(ully) <E|||X1 — B =K

The goal is to make this quantitative.
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Stability for Measures with a Finite Poincaré Constant

We say that 4 satisfies a Poincaré inequality, with constant Cp,(x),
if for every every smooth function f,

Var () < Co(w)Ey [|IVF113].

We will prove:

Let 11 be a centered measure on RY with Cp(p) < 0o. Then

In(Cp(p) +1)

4C, (1) Ent(pl[7)-

5Tal(:u’) 2



Measures with a Finite Poincaré Constant

The Poincaré constant is inequality for the following comparison

lemma:

Lemma

Assume that yu is centered and that C,(p) < co. Then

e For0<t<i,

(Cp(u) + 1)t
E {||Vt||§] <E [H"l/ZHE} (Co(p) —1)t+1

e Fori<t<l,

(Cp(p)+1)t
E {HVtHg] > E [‘|V1/2Hﬂ (Cp(p) —1)t+1




Recall X; 2 X, + Vt(1 —t)G. Hence,

Cp(Xt) < tch(,u) + t(l - t)7



Recall X; 2 X, + Vt(1 —t)G. Hence,

Cp(Xe) < tZCp(,U) +t(l-1),
and
E[lIve(XoI3] < (£Cp() + t(1 = )E [IIVw(X0) 1]

= (2Cy() + 11—~ 1) 2B [l ()]



Recall X; 2 X, + Vt(1 —t)G. Hence,

Co(Xe) < ECpl) + t(1 - 1),
and
E [ lIve(Xe) 18] < (£2Co(i) + t(1 — )E [|[9ve(X:)113]
= (POp(u) + t(1— ) TE [Im(X)IE].

(Co(w) + 1)t

[
Colw) D1

g(t):=E |zl

F(£) = 2Cp(p) + t(1 — t)F(t), with f (%) —E [Hvl/zug] .



Recall X; law tX1 + v/t(1 — t)G. Hence,

Cp(Xe) <t Cp(ﬂ) +t(l-1),

and

E|[[v(X)I] < (2Co(n) + t(1 - )E [I\Vvt(Xt)Hi]
= (POp(u) + t(1— ) TE [Im(X)IE].

(Co(w) + 1)t

[
Colw) D1

g(t):=E |zl

F(£) = 2Cp(p) + t(1 — t)F(t), with f (%) —E [Hvl/zug] .

Now apply Gromwall's inequality. O
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A Martingale Formulation

We will use the following martingale formulation:
Yt = ]E [Xl‘.Ft] 0
By the martingale representation theorem, for some process I'¢,

which is uniquely defined, Y; satisfies

t

Yt:/rsst.

0

This implies
t

ro—1
vt:/ i_s"st.
0




A Martingale Formulation

It turns out that I'; is a positive definite matrix, hence

1 1 s
1 1 E[(T: — I4)2
Ent(u||y) = 2/E \|VSH 2Tr//Wdtds
0 0 0
11@ (Fe —Ig)
Tr/ L d dt,
1—1t

0



A Martingale Formulation

It turns out that I'; is a positive definite matrix, hence

1 1 s
1 [(r —Id
But(uli) = 5 [ E [Ilullg] ds = 57+ | / 9 s
0 0
1 [E [(Te — 14)?]
s VO Rl ALV
> r/ - dt,
0
and
1 1 2 1
W2(u,7) < E /FtdBt . /dBt — Tr/E [(rt —Id)ﬂ dt.
0 0 5 0



Bounding the Deficit - Martingales

E[(Te —14)?]

dt
1-—1t

1
5rat() = 2Ent(ully) — Wa(u,7) > Tr / ‘.
0



Bounding the Deficit - Martingales

1

COE[(Me—1g)?
orat(p) = 2Ent(p||y) — W2 (s, ) > Tr/ - Wdt
0

Integration by parts gives:

1
Sralp) > Tr/ t(1— 1) e
0



Bounding the Deficit - Martingales

1

COE[(Me—1g)?
orat(p) = 2Ent(p||y) — W2 (s, ) > Tr/ - Wdt
0

Integration by parts gives:

E[(Te —1q)%]

G

5Ta1(ﬂ) > Tr t(]. = i‘) .

o—_ .

1 1
— [t - 05 [ilellg] ot = [ (2t~ 1 [l1ul] ot
0 0



Applying the Lemma

1
Sran(pt /2t—1 |vt|y}
0



Applying the Lemma

1
dal(p / (2t—-1)E Hth
0

1

+1)t
> E || vy/el 2 / t+1 dt
0




Applying the Lemma

1
drar (1 / (2t —1)E HVtH
0

1
2t — 1) (Cp :
EE[HVWHE}/( ECp(l)t)(—il;)Jr o
0

t+1

n(C
Z]E[Hvquﬂ W



Applying the Lemma

1
Sra(u) > [ (26~ DE [[Ivel] o
0

1
2t — 1) (Cp 1
ZE[Hw/zHﬂ/( ECP(;)(_Y;)JF )tdt
0

t+1

n(Cp
>E [HV1/2H } 4C(M()MJ)FI)

If E [Hvl/ZHi] > Ent(u||y), this shows

Jrar (1)

v

n(Colt) + Vgt ).
v

The other case is easier.
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Further Results

Other bounds on %E [||vt]|§} will yields different results.
For example, if tr (Cov(u)) < d, then

CE [lvlB] > W

2

This gives:

Let 11 be a measure on R? such that tr (Cov(u)) < d. Then

dra(s) > min (21 ) ),




Further Results

Two other results:



Further Results

Two other results:

Let j1 be a measure on RY and let {\;}¢_; be the eigenvalues of
Cov(u). Then

d
2(1 + (A + 1) In(N\;

Sraa(p) > )\ —1 )in( )1{A<1}

i=1



Further Results

Two other results:

Let ju be a measure on RY and let {\i}9_, be the eigenvalues of
Cov(u). Then

d
2(1 + (A + 1) In(N;
drar (1) ZZ )\ — L )1{A<1}
i=1

Let yu be a measure on RY. There exists another measure v such
that

0 3/2
s> L)
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Log-Sobolev Inequality

Definition (Fisher information of i with respect to )

L(ully) =E,

2
‘Vln <Q> .
dvy /||,
In 75" Gross proved:

Theorem (Log-Sobolev inequality)

Let ;v be a measure on RY. Then

2Ent(pl|v) < I(ully)-



Define
oLs(m) = I(plly) — 2Ent(pl]v),
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Define
oLs(m) = I(plly) — 2Ent(pl]v),

=) = in (Proc (S0 ) ).

It follows that

and recall

L B
o [ Wdrzlﬁz [1v113] = Kull).



Define
oLs(m) = I(plly) — 2Ent(pl]v),

=) = in (Proc (S0 ) ).

It follows that

L B
e [ BN g m [1a1B) = 1
0

and recall

(1-1)

1| 2
Since Ent(u|ly) = 3T fw
0

- jt. E[r-127]
0

dt, we get

(1—-1)?



The Shannon-Stam Inequality

In 48’ Shannon noted the following inequality, which was later
proved by Stam, in 56’.

Theorem (Shannon-Stam Inequality)

Let X, Y be independent random vectors in R? and let G ~ ~.
Then, for any A € [0, 1],

Ent(VAX +vI— AY]||G) < AEnt(X||G) + (1 — A\)Ent(Y||G).

Moreover, equality holds if and only if X and Y are Gaussians
with identical covariances.



The Shannon-Stam Inequality

In 48’ Shannon noted the following inequality, which was later
proved by Stam, in 56’.

Theorem (Shannon-Stam Inequality)

Let X, Y be independent random vectors in R? and let G ~ ~.
Then, for any A € [0, 1],

Ent(VAX +vI— AY]||G) < AEnt(X||G) + (1 — A\)Ent(Y||G).

Moreover, equality holds if and only if X and Y are Gaussians
with identical covariances.

Define

Sx(X,Y) = AEnt(X||G)+(1—\)Ent(Y||G)—Ent(VAX+v1 — AY||G).
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Now, for X, Y independent random variables, take two
independent Brownian motions BX, B and 'Y, 'Y as above.



Deficit of the Shannon-Stam Inequality

For simplicity we'll focus on the case A\ = %
Now, for X, Y independent random variables, take two
independent Brownian motions BX, B and 'Y, 'Y as above.

We get
X+Y 1 / / / (I’X)2 (I'Y)2
+ X jpX / Y ;pY | law / 2+ Uy
= dB rdB = ~ -’ dB,.
\ﬁ \@ O/ t ¢ T J t t / 2 t

for some Brownian motion Bs.
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Bounding the Deficit
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Bounding the Deficit

1 _ 2
If Hy = “?V;UYV,Ent(%ﬁfHG)5g;1¥jJEKLﬁ_fﬁ)}dt
0

Consequently,

di

2(1 —t) + 20—1t) 1t

M\»—l

/1 (Iy — rY E [(Id - rf)ﬂ E [(1g — H:)?]
0

o / 2B[H] — B[] — E[TY]

1-—t
0



Bounding the Deficit

1 _ 2
If Hy = “?V;UYV,Ent(%ﬁfHG)5g;1¥jJEKLﬁ_fﬁ)}dt
0

Consequently,

+ di

2(1 —t) 20—1t) 1t

M\»—l

/1 (Iy — rY E [(Id - rf)ﬂ E [(1g — H:)?]
0

_ 2E[H,] — E[}] - E[r}]
_ﬁ/ 1—t '

0
Manipulating the matrix square root then shows

1
X Y X Yy\—1
1xvzﬂ/[r Fe)(Ie +1¢) dt.
2 (1—1)
0
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Deficit of Log-Concave Measures

Fact: if X is log-concave, then ¥ < %Id almost surely.
So, if both X and Y are log-concave,

OE[rX -1y

51(X,Y)2Tr/t- dt.
2 11—t
0
In particular,
1
B[ - 1)

0
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The Entropic Central Limit Theorem

Let {X;} be i.i.d. copies of X and S, = \% > Xi.
i=1

Set H; = Z(rg){ Then

T n
1
G, & / H,dB,.
0

Using this, we show

1' _ 2
Bui(5,)16) < Gty [ ELHE D]

0

dt,

where Cx > 0, depends on X. This can be used to prove the
entropic central limit theorem.



Quantitative Entropic Central Limit Theorem

For a more quantitative result we have the formula

1 2 2
IE F H])
Ly (
Ent(S,[|G) < P2(C / }dt,
1-—1t
0
poly /Vdr r2
1—¢
0

valid for X which satisfies a Poincaré inequality. For X
log-concave, Iy < %Id, and

Var(l'y) ; (rtfld)



Thank You



