Stability of the Shannon-Stam Inequality

Dan Mikulincer
Students Probability Day, 2019

Weizmann Institute of Science
Joint work with Ronen Eldan

Relative Entropy

The central quantity we will deal is relative entropy:

Definition (Relative Entropy)

Let $X \sim \mu, Y \sim \nu$ be random vectors in \mathbb{R}^{d}, define the entropy of X, relative to Y as

$$
\operatorname{Ent}(X \| Y)=\operatorname{Ent}(\mu \| \nu):=\left\{\begin{array}{ll}
\int_{\mathbb{R}^{d}} \ln \left(\frac{d \mu}{d \nu}\right) d \mu & \text { if } \mu \ll \nu \\
\infty & \text { otherwise }
\end{array} .\right.
$$

The Shannon-Stam Inequality

In 48' Shannon noted the following inequality, which was later proved by Stam, in 56^{\prime}.

Theorem (Shannon-Stam Inequality)

Let X, Y be random vectors in \mathbb{R}^{d} and let $G \sim \mathcal{N}(0, I)$ be a random vector with the law of the standard Gaussian. Then, for any $\lambda \in[0,1]$
$\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G) \leq \lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)$.
Moreover, equality holds if and only if X and Y are Gaussians with identical covariances.

Remark: Shannon and Stam actually proved an equivalent form of the inequality, called the entropy power inequality. The equivalence was observed by Lieb in 78

The Shannon-Stam Inequality

In 48^{\prime} Shannon noted the following inequality, which was later proved by Stam, in 56^{\prime}.

Theorem (Shannon-Stam Inequality)

Let X, Y be random vectors in \mathbb{R}^{d} and let $G \sim \mathcal{N}(0, I)$ be a random vector with the law of the standard Gaussian. Then, for any $\lambda \in[0,1]$
$\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G) \leq \lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)$.
Moreover, equality holds if and only if X and Y are Gaussians with identical covariances.

Remark: Shannon and Stam actually proved an equivalent form of the inequality, called the entropy power inequality. The equivalence was observed by Lieb in 78'.

Stability

Define the deficit

$$
\delta_{\lambda}(X, Y)=\lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)-\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G) .
$$

The question of stability deals with approximate equality cases.
Question
Suppose that $\delta_{\lambda}(X, Y)$ is small, must X and Y be 'close' to
Gaussian vectors, which are themselves 'close' to each other?
We will now show that the deficit can be bounded in terms of a stochastic process and that in certain cases this gives a positive
answer to the above question.

Stability

Define the deficit
$\delta_{\lambda}(X, Y)=\lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)-\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G)$.
The question of stability deals with approximate equality cases.

Question

Suppose that $\delta_{\lambda}(X, Y)$ is small, must X and Y be 'close' to Gaussian vectors, which are themselves 'close' to each other?

We will now show that the deficit can be bounded in terms of a stochastic process and that in certain cases this gives a positive answer to the above question.

Stability

Define the deficit
$\delta_{\lambda}(X, Y)=\lambda \operatorname{Ent}(X \| G)+(1-\lambda) \operatorname{Ent}(Y \| G)-\operatorname{Ent}(\sqrt{\lambda} X+\sqrt{1-\lambda} Y \| G)$.
The question of stability deals with approximate equality cases.

Question

Suppose that $\delta_{\lambda}(X, Y)$ is small, must X and Y be 'close' to Gaussian vectors, which are themselves 'close' to each other?

We will now show that the deficit can be bounded in terms of a stochastic process and that in certain cases this gives a positive answer to the above question.

Föllmer Martingales

We focus on the one dimensional case and $\lambda=\frac{1}{2}$.
Let X be centered random variable, and let B_{t} denote a standard Brownian motion. Fölmmer (1984) and then Lehec (2011) have shown that there exists a process Γ_{t}^{X}, such that

- $\int_{0}^{1} \Gamma_{t}^{X} d B_{t}$ has the law of X

- If H_{t}^{X} is another process such that $\int_{0}^{1} H_{t}^{X} d B_{t}$ has the law of X,

Föllmer Martingales

We focus on the one dimensional case and $\lambda=\frac{1}{2}$.
Let X be centered random variable, and let B_{t} denote a standard Brownian motion. Fölmmer (1984) and then Lehec (2011) have shown that there exists a process Γ_{t}^{X}, such that

- $\int_{0}^{1} \Gamma_{t}^{X} d B_{t}$ has the law of X.
- $\operatorname{Ent}(X \| G)=\frac{1}{2} \int_{0}^{1} \frac{\left.\mathbb{E}\left[1-\Gamma_{t}^{X}\right)^{2}\right]}{1-t} d t$.
- If H_{t}^{X} is another process such that $\int H_{t}^{X} d B_{t}$ has the law of X,

Föllmer Martingales

We focus on the one dimensional case and $\lambda=\frac{1}{2}$.
Let X be centered random variable, and let B_{t} denote a standard Brownian motion. Fölmmer (1984) and then Lehec (2011) have shown that there exists a process Γ_{t}^{X}, such that

- $\int_{0}^{1} \Gamma_{t}^{X} d B_{t}$ has the law of X.
- $\operatorname{Ent}(X \| G)=\frac{1}{2} \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{X}\right)^{2}\right]}{1-t} d t$.
- If H_{t}^{X} is another process such that $\int H_{t}^{X} d B_{t}$ has the law of X,

Föllmer Martingales

We focus on the one dimensional case and $\lambda=\frac{1}{2}$.
Let X be centered random variable, and let B_{t} denote a standard Brownian motion. Fölmmer (1984) and then Lehec (2011) have shown that there exists a process Γ_{t}^{X}, such that

- $\int_{0}^{1} \Gamma_{t}^{X} d B_{t}$ has the law of X.
- $\operatorname{Ent}(X \| G)=\frac{1}{2} \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{X}\right)^{2}\right]}{1-t} d t$.
- If H_{t}^{X} is another process such that $\int_{0}^{1} H_{t}^{X} d B_{t}$ has the law of X,

$$
\int_{0}^{1} \frac{\mathbb{E}\left[\left(1-H_{t}^{X}\right)^{2}\right]}{1-t} d t \geq \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{X}\right)^{2}\right]}{1-t} d t
$$

Bounding the Deficit

Now, for X, Y random variables, take two independent Brownian motions B_{t}^{X}, B_{t}^{Y} and $\Gamma_{t}^{X}, \Gamma_{t}^{Y}$ as above.
standard Gaussians, then for any $a, b \in \mathbb{R}$

where G is another standard Gaussian.
This implies

for some Brownian motion B_{t}.

Bounding the Deficit

Now, for X, Y random variables, take two independent Brownian motions B_{t}^{X}, B_{t}^{Y} and $\Gamma_{t}^{X}, \Gamma_{t}^{Y}$ as above. Note that if G_{1} and G_{2} are standard Gaussians, then for any $a, b \in \mathbb{R}$

$$
a G_{1}+b G_{2} \stackrel{\text { law }}{=} \sqrt{a^{2}+b^{2}} G
$$

where G is another standard Gaussian.
This implies

for some Brownian motion B_{t}.

Bounding the Deficit

Now, for X, Y random variables, take two independent Brownian motions B_{t}^{X}, B_{t}^{Y} and $\Gamma_{t}^{X}, \Gamma_{t}^{Y}$ as above. Note that if G_{1} and G_{2} are standard Gaussians, then for any $a, b \in \mathbb{R}$

$$
a G_{1}+b G_{2} \stackrel{\text { law }}{=} \sqrt{a^{2}+b^{2}} G
$$

where G is another standard Gaussian.
This implies
$\frac{X+Y}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left(\int_{0}^{1} \Gamma_{t}^{X} d B_{t}^{X}+\int_{0}^{1} \Gamma_{t}^{Y} d B_{t}^{Y}\right) \stackrel{\operatorname{law}}{=} \int_{0}^{1} \sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}} d B_{t}$.
for some Brownian motion B_{t}.

Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,
$2 \delta_{\frac{1}{2}}(X, Y) \geq \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t$

Using concavity of the square root then shows

Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,

$$
2 \delta_{\frac{1}{2}}(X, Y) \geq \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t
$$

Using concavity of the square root then shows

Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,

$$
\begin{aligned}
2 \delta_{\frac{1}{2}}(X, Y) & \geq \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t \\
& =\int_{0}^{1} \frac{2 \mathbb{E}\left[H_{t}\right]-\mathbb{E}\left[\Gamma_{t}^{X}\right]-\mathbb{E}\left[\Gamma_{t}^{Y}\right]}{1-t}
\end{aligned}
$$

Using concavity of the square root then shows

Bounding the Deficit

If $H_{t}=\sqrt{\frac{\left(\Gamma_{t}^{X}\right)^{2}+\left(\Gamma_{t}^{Y}\right)^{2}}{2}}, \operatorname{Ent}\left(\frac{X+Y}{\sqrt{2}} \| G\right) \leq \frac{1}{2} \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t$.
Consequently,

$$
\begin{aligned}
2 \delta_{\frac{1}{2}}(X, Y) & \geq \int_{0}^{1} \frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{Y}\right)^{2}\right]}{2(1-t)}+\frac{\mathbb{E}\left[\left(1-\Gamma_{t}^{X}\right)^{2}\right]}{2(1-t)}-\frac{\mathbb{E}\left[\left(1-H_{t}\right)^{2}\right]}{1-t} d t \\
& =\int_{0}^{1} \frac{2 \mathbb{E}\left[H_{t}\right]-\mathbb{E}\left[\Gamma_{t}^{X}\right]-\mathbb{E}\left[\Gamma_{t}^{Y}\right]}{1-t} .
\end{aligned}
$$

Using concavity of the square root then shows

$$
\delta_{\frac{1}{2}}(X, Y) \gtrsim \int_{0}^{1} \mathbb{E}\left[\frac{\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}}{(1-t)\left(\Gamma_{t}^{X}+\Gamma_{t}^{Y}\right)}\right] d t
$$

Log-Concave Measures

We say that X is strongly log-concave if it has a density f such that $-\ln (f)^{\prime \prime} \geq 1$.
Fact: if X is strongly log-concave then $\Gamma_{t}^{X} \leq 1$ almost surely. So, if both X and Y are strongly log-concave

We use this to derive a quantitative stability bound.

Log-Concave Measures

We say that X is strongly log-concave if it has a density f such that $-\ln (f)^{\prime \prime} \geq 1$.
Fact: if X is strongly log-concave then $\Gamma_{t}^{X} \leq 1$ almost surely. So, if both X and Y are strongly log-concave

We use this to derive a quantitative stability bound.

Log-Concave Measures

We say that X is strongly log-concave if it has a density f such that $-\ln (f)^{\prime \prime} \geq 1$.
Fact: if X is strongly log-concave then $\Gamma_{t}^{X} \leq 1$ almost surely. So, if both X and Y are strongly log-concave

$$
\delta_{\frac{1}{2}}(X, Y) \gtrsim \int_{0}^{1} \mathbb{E}\left[\frac{\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}}{1-t}\right] d t
$$

We use this to derive a quantitative stability bound.

Log-Concave Measures

We say that X is strongly log-concave if it has a density f such that $-\ln (f)^{\prime \prime} \geq 1$.
Fact: if X is strongly log-concave then $\Gamma_{t}^{X} \leq 1$ almost surely.
So, if both X and Y are strongly log-concave

$$
\delta_{\frac{1}{2}}(X, Y) \gtrsim \int_{0}^{1} \mathbb{E}\left[\frac{\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}}{1-t}\right] d t
$$

We use this to derive a quantitative stability bound.

Log-Concave Measures

$$
\begin{aligned}
& \int_{0}^{1} \mathbb{E}\left[\frac{\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}}{1-t}\right] d t \\
\geq & \int_{0}^{1} \operatorname{Var}\left(\Gamma_{t}^{X}\right) d t+\int_{0}^{1} \operatorname{Var}\left(\Gamma_{t}^{Y}\right) d t+\int_{0}^{1}\left(\mathbb{E}\left[\Gamma_{t}^{X}\right]-\mathbb{E}\left[\Gamma_{t}^{Y}\right]\right)^{2} d t
\end{aligned}
$$

$$
\geq \mathcal{W}_{2}^{2}\left(X, G_{1}\right)+\mathcal{W}_{2}^{2}\left(Y, G_{2}\right)+\mathcal{W}_{2}^{2}\left(G_{1}, G_{2}\right)
$$

Here, \mathcal{W}_{2} denotes the Wasserstein distance and
$G_{1}=\int_{0}^{1} \mathbb{E}\left[\Gamma_{t}^{x}\right] d B_{t}^{x}, G_{2}=\int_{0}^{1} \mathbb{E}\left[\Gamma_{t}^{Y}\right] d B_{t}^{\gamma}$ are Gaussians.

Log-Concave Measures

$$
\begin{aligned}
& \int_{0}^{1} \mathbb{E}\left[\frac{\left(\Gamma_{t}^{X}-\Gamma_{t}^{Y}\right)^{2}}{1-t}\right] d t \\
\geq & \int_{0}^{1} \operatorname{Var}\left(\Gamma_{t}^{X}\right) d t+\int_{0}^{1} \operatorname{Var}\left(\Gamma_{t}^{Y}\right) d t+\int_{0}^{1}\left(\mathbb{E}\left[\Gamma_{t}^{X}\right]-\mathbb{E}\left[\Gamma_{t}^{Y}\right]\right)^{2} d t \\
\geq & \mathcal{W}_{2}^{2}\left(X, G_{1}\right)+\mathcal{W}_{2}^{2}\left(Y, G_{2}\right)+\mathcal{W}_{2}^{2}\left(G_{1}, G_{2}\right) .
\end{aligned}
$$

Here, \mathcal{W}_{2} denotes the Wasserstein distance and
$G_{1}=\int_{0}^{1} \mathbb{E}\left[\Gamma_{t}^{X}\right] d B_{t}^{X}, G_{2}=\int_{0}^{1} \mathbb{E}\left[\Gamma_{t}^{Y}\right] d B_{t}^{Y}$ are Gaussian.

Thank You

