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Relative Entropy

The central quantity we will deal is relative entropy:

Definition (Relative Entropy)

Let X ~ u, Y ~ v be random vectors in RY, define the entropy

of X, relative to Y as

f|n< ) po ifp<y
Ent(X||Y) = Ent(ul|lv) =

00 otherwise



The Shannon-Stam Inequality

In 48’ Shannon noted the following inequality, which was later
proved by Stam, in 56'.

Theorem (Shannon-Stam Inequality)

Let X, Y be random vectors in RY and let G ~ N(0,1) be a
random vector with the law of the standard Gaussian. Then, for
any X € [0,1]

Ent(VAX + VI — AY]|G) < AEnt(X||G) + (1 — \)Ent(Y]|G).

Moreover, equality holds if and only if X and Y are Gaussians
with identical covariances.
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Theorem (Shannon-Stam Inequality)

Let X, Y be random vectors in RY and let G ~ N(0,1) be a
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Moreover, equality holds if and only if X and Y are Gaussians
with identical covariances.

Remark: Shannon and Stam actually proved an equivalent form of
the inequality, called the entropy power inequality. The equivalence
was observed by Lieb in 78'. 3
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Define the deficit
5x(X, Y) = AEnt(X||G)+(1—A)Ent(Y||G)—Ent(VAX+v1 — \Y]|G).

The question of stability deals with approximate equality cases.

Suppose that 0, (X, Y) is small, must X and Y be 'close’ to
Gaussian vectors, which are themselves 'close’ to each other?

We will now show that the deficit can be bounded in terms of a
stochastic process and that in certain cases this gives a positive
answer to the above question.
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Follmer Martingales

We focus on the one dimensional case and A = %
Let X be centered random variable, and let B; denote a standard

Brownian motion. Folmmer (1984) and then Lehec (2011) have
shown that there exists a process 'Y, such that

1
o [TXdB; has the law of X.

0
(e

1E
e Ent(X|[G)=1[ dt.
0

1
e If HX is another process such that f HXdB; has the law of X,

l}E (1 — HX)? 11[-3 1—rX

/ dt>/ dt.
1—t

0 0
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Bounding the Deficit

Now, for X, Y random variables, take two independent Brownian
motions B, BY and ¥, 'Y as above. Note that if G; and G, are
standard Gaussians, then for any a, b € R

aGy + bGy 2 /22 + b2G,

where G is another standard Gaussian.
This implies

1 1 1
X+Yy 1 X X / Y oY law/ (FX)2+(r))?
_— = — 7 dB I} dB = ~— 7 dB;.
V2 V2 o/ e dbe / Lot J 2 t

for some Brownian motion Bs.



Bounding the Deficit

1 o 2
i+, = EEREEE, s (25 6) < § [ B0 0]

Lt



Bounding the Deficit
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Bounding the Deficit

1 TR
1 He =/ CETE g (X42)16) < 1B H)T]
0

1-t

Consequently,

20—t) 1—t

N\b—l

/lE — +E[(1—rf)2} E[1-H)]
0

[ 2E[H:] — E[r¥] —E[r}]
N / 1—t '

o



Bounding the Deficit

1 2
ri<2+|'g(2 E (1—Ht)
f He = /TR B (X5)16) < ;{[H}dt.
Consequently,
1
(X,Y) >/E +E[(1_ri{)2} E[0 - M),
gl = 2(1—t) 2(1—1t) 1—t
0
_ / 2E[H,] - E[r¥] ~ E[I]
1—t '
0

Using concavity of the square root then shows

1
B) (X,Y)>/E[( (K& —rE)” dt.
0

1
2

~ L—-t)(I¥+TY))
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that —In(f)” > 1.

Fact: if X is strongly log-concave then ¥ < 1 almost surely.
So, if both X and Y are strongly log-concave

o [C=T1P)

X,Y) 2
(X, V)R 1—t¢

o .

We use this to derive a quantitative stability bound.



Log-Concave Measures

/lE {(rtxl_ rtrq p

1 1
> [ Var(TX)dt + [ Var(F)dt+ [ (E|T¥| —E [T} ? dt
o [t [ (212 [t

O\»—n o



Log-Concave Measures

>W2(X, Gi) + W3(Y, G) + W3(G1, G).

Here, YW, denotes the Wasserstein distance and
1
1
G = [E[rf]dBf, Gy = /E[rz/]dBtY are Gaussians.
0

0



Thank You

10



