
Testing for high-dimensional geometry in random graphs
Ronen Eldan Dan Mikulincer

Weizmann Institute of Science Weizmann Institute of Science
ronen.eldan@weizmann.ac.il dan.mikulincer@weizmann.ac.il

How to distinguish between distrbutions on ran-
dom graphs?
We study the total variation between

Erdős-Rényi random graphs
and

Random geometric graphs
Where the underlying metric space
Is taken to be a d-dimensional Ellipsoid.

Overview

Let α ∈ Rd, denote by Eα a d-dimensional elliposid whose
axes correspond to the entries of α.
For a given p ∈ (0, 1) set tp,α to be such that when X, Y are
chosen randomly and uniformly from Eα it holds that

P(〈X, Y 〉 ≥ tp,α) = p

Definitions

Fix p ∈ (0, 1), we denote by
G(n, p) the standard Erdős-Rényi
distribution on n vertices.

For a given α ∈ Rd we define
G(n, p, α) to be a random geomet-
ric graph with vertices sampled
uniformly from Eα. Two vertices
v, u are connected by an edge if
and only if 〈v, u〉 ≥ tp,α.

We are interested in studying the total variation between
these two models, denoted by TV(G(n, p), G(n, p, α)).

As we let n and α vary, we are intersted in the question:
What conditions must we require from α compared to n, so
that TV(G(n, p), G(n, p, α)) remains bounded away from 0?.

Random graphs

For a α ∈ Rd and q > 1, let

||α||q =

(
d∑
i=1

α
q
i

)1
q

,

denote the Lq norm of α.

Theorem. (a) Let p ∈ (0, 1) be fixed and assume
(
||α||2
||α||3

)6
/n3→ 0. Then

TV(G(n, p), G(n, p, α))→ 1.

(b) Furthermore, if
(
||α||2
||α||4

)4
/n3→∞ then,

TV(G(n, p), G(n, p, α))→ 0.

Comments:
• There is a gap between the bounds (a) and (b).
• In the isotropic case (when αi = 1 for all i) the gap disappears and both

quantities reduce to d.

Main result

The bound (a) is proven using a variant of counting triangles. Indeed, the
triangle inequality suggests that G(n, p, α) should have more triangles than
G(n, p).
However, the number of triangles in a random graph has unnecessarily
high variance. Thus, instead of counting triangles, we count signed trian-
gles which offer a decrease in variance. If A is the adjacency matrix of G we
define the number of signed triangles in G to be:

τ (G) = Tr((A− p)3).
Bound (b) is a result of a multi-dimensional version of the Entropic Central
Limit Theorem. Using Pinsker’s inequality we may bound the total varia-
tion with the relative entropy

TV(G(n, p), G(n, p, α)) ≤
√

1

2
Ent[G(n, p)||G(n, p, α]

It is then enough to consider the graphs as measurements of continous ma-
trices. Where G(n, p) corresponds to a Gaussian matrix, and G(n, p, α) to a
sum of Wishart matrices.

Proof ideas

G(n, p, α) G(n, p)

Intuition

•Closing the gap. It stands to reason that the use of the
entropic CLT does not give a tight characterization.
• Signed Triangles. Show that signed triangles are an opti-

mal statistic in this setting.
•Added Randomness. Study what happens when there is

an added probability for edges not to exist in G(n, p, α).

Future directions
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