Dimension-free variance bounds for polynomials

Dan Mikulincer

MIT

Joint work with Itay Glazer (Northwestern)

Wishart Tensors

Let $\left\{X_{i}\right\}_{i=1}^{k}$ be i.i.d. copies of an isotropic random vector $X \sim \mu$ in \mathbb{R}^{n}. And consider

$$
W:=\frac{1}{\sqrt{k}} \sum_{i=1}^{k}\left(X_{i}^{\otimes d}-\mathbb{E}\left[X_{i}^{\otimes d}\right]\right) .
$$

Keeping n and d fixed the W converges to a Gaussian vector. What happens when we allow n (and d) to approach infinity?

Wishart Tensors

Let $\left\{X_{i}\right\}_{i=1}^{k}$ be i.i.d. copies of an isotropic random vector $X \sim \mu$ in \mathbb{R}^{n}. And consider

$$
W:=\frac{1}{\sqrt{k}} \sum_{i=1}^{k}\left(X_{i}^{\otimes d}-\mathbb{E}\left[X_{i}^{\otimes d}\right]\right) .
$$

Keeping n and d fixed the W converges to a Gaussian vector.
What happens when we allow n (and d) to approach infinity?

Wishart Tensors

Some motivation to understand the asymptotic normality of W :

1. Empirical moment tensor estimation.
2. Related to random geometric graphs, when $d=2$. where \mathbb{X} is a matrix with columns given by X_{i}.
3. CLT for neural networks, when $d>2$. For fixed $y \in \mathbb{R}^{n}$

Wishart Tensors

Some motivation to understand the asymptotic normality of W :

1. Empirical moment tensor estimation.
2. Related to random geometric graphs, when $d=2$.

$$
\mathbb{X}^{T}=\sum_{i=1}^{k} X_{i} \otimes X_{i}
$$

where \mathbb{X} is a matrix with columns given by X_{i}.
3. CLT for neural networks, when $d \geq 2$. For fixed $y \in \mathbb{R}^{n}$,

Wishart Tensors

Some motivation to understand the asymptotic normality of W :

1. Empirical moment tensor estimation.
2. Related to random geometric graphs, when $d=2$.

$$
\mathbb{X}^{T}=\sum_{i=1}^{k} X_{i} \otimes X_{i}
$$

where \mathbb{X} is a matrix with columns given by X_{i}.
3. CLT for neural networks, when $d \geq 2$. For fixed $y \in \mathbb{R}^{n}$,

$$
\frac{1}{\sqrt{k}} \sum_{i=1}^{k}\left\langle X_{i}, y\right\rangle^{p}=\frac{1}{\sqrt{k}} \sum_{i=1}^{k}\left\langle X_{i}^{\otimes p}, y^{\otimes p}\right\rangle=\left\langle\frac{1}{\sqrt{k}} \sum_{\ell=1}^{k} X_{i}^{\otimes p}, y^{\otimes p}\right\rangle .
$$

Known results

When $n^{2 d-1} \ll k, W$ is asymptotically normal.

- Bubeck, Ding, Eldan, Rácz 15' and Jiang, Li 15' - d = 2, standard Gaussian.
- Bubeck, Ganguly 15' - $d=2$, log-concave product measures.
- Fang, Koike 20' $-d=2$, product measures.
- Nourdin, Zheng 18 '- $d \geq 2$, standard Gaussian.
- M. 20' $-d \geq 2$, unconditional strongly log-concave measures.
- M., Shenfeld 21' - $d \geq 2$, unconditional log-concave measures.
μ is \log-concave if $-\log \left(\frac{d \mu}{d x}\right)$ convex.
μ is unconditional if $\frac{d \mu}{d x}\left(x_{1}, \ldots, x_{n}\right)=\frac{d \mu}{d x}\left(\pm x_{1}\right.$,

Known results

When $n^{2 d-1} \ll k, W$ is asymptotically normal.

- Bubeck, Ding, Eldan, Rácz 15' and Jiang, Li 15' - d = 2, standard Gaussian.
- Bubeck, Ganguly 15' - $d=2$, log-concave product measures.
- Fang, Koike 20' $-d=2$, product measures.
- Nourdin, Zheng 18 '- $d \geq 2$, standard Gaussian.
- M. 20' $-d \geq 2$, unconditional strongly log-concave measures.
- M., Shenfeld 21' - $d \geq 2$, unconditional log-concave measures.
μ is \log-concave if $-\log \left(\frac{d \mu}{d x}\right)$ convex.
μ is unconditional if $\frac{d \mu}{d x}\left(x_{1}, \ldots, x_{n}\right)=\frac{d \mu}{d x}\left(\pm x_{1}, \ldots, \pm x_{n}\right)$.

Known results

Important caveat:
Instead of considering the full tensor W, the results apply to its marginal on the subspace of principal (multi-linear) tensors:

$$
\operatorname{span}\left\{e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \mid i_{1}<i_{2}<\cdots<i_{k}\right\}
$$

Reason: If $X=\left(X_{1}, \ldots, X_{n}\right)$ is unconditional, the covariance
matrix on the principal subspace is diagonal:

whenever $\left(i_{1}, \ldots, i_{k}\right) \neq\left(j_{1}, \ldots, j_{k}\right)$.

Known results

Important caveat:
Instead of considering the full tensor W, the results apply to its marginal on the subspace of principal (multi-linear) tensors:

$$
\operatorname{span}\left\{e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{k}} \mid i_{1}<i_{2}<\cdots<i_{k}\right\} .
$$

Reason: If $X=\left(X_{1}, \ldots, X_{n}\right)$ is unconditional, the covariance matrix on the principal subspace is diagonal:

$$
\mathbb{E}\left[\left(X_{i_{1}} \cdots X_{i_{k}}\right)\left(X_{j_{1}} \cdots X_{j_{k}}\right)\right]=0
$$

whenever $\left(i_{1}, \ldots, i_{k}\right) \neq\left(j_{1}, \ldots, j_{k}\right)$.

From tensors to polynomials

Remark

To control convergence rate of the CLT, one needs to understand $\lambda_{\text {min }}\left(\operatorname{Cov}\left(X^{\otimes d}\right)\right)$ and $\lambda_{\text {max }}\left(\operatorname{Cov}\left(X^{\otimes d}\right)\right)$

To rephrase, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be a degree d homogeneous polynomial $f(x)=\sum_{I} v_{I} x^{\prime}$, where

From tensors to polynomials

Remark

To control convergence rate of the CLT, one needs to understand $\lambda_{\text {min }}\left(\operatorname{Cov}\left(X^{\otimes d}\right)\right)$ and $\lambda_{\text {max }}\left(\operatorname{Cov}\left(X^{\otimes d}\right)\right)$

To rephrase, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be a degree d homogeneous polynomial $f(x)=\sum_{l} v_{I} x^{l}$, where

$$
I \in[n]^{d} \text { and } x^{\prime}=\prod_{i=1}^{d} x_{l_{i}} .
$$

So, $\left\langle X^{\otimes d}, f\right\rangle=\sum_{| |=d} v_{l} X^{\prime}=f(X)$, and

From tensors to polynomials

Remark

To control convergence rate of the CLT, one needs to understand $\lambda_{\text {min }}\left(\operatorname{Cov}\left(X^{\otimes d}\right)\right)$ and $\lambda_{\text {max }}\left(\operatorname{Cov}\left(X^{\otimes d}\right)\right)$

To rephrase, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, be a degree d homogeneous polynomial $f(x)=\sum_{l} v_{I} x^{l}$, where

$$
I \in[n]^{d} \text { and } x^{\prime}=\prod_{i=1}^{d} x_{l_{i}} .
$$

So, $\left\langle X^{\otimes d}, f\right\rangle=\sum_{|I|=d} v_{l} X^{\prime}=f(X)$, and

$$
\lambda_{\text {min }}\left(\operatorname{Cov}\left(X^{\otimes d}\right)\right)=\inf _{f: \sum v_{i}^{2}=1} \operatorname{Var}(f(X))
$$

A first result - Gaussians

Lemma

Let G be a standard Gaussian in \mathbb{R}^{n}, and let $f(x)=\sum_{l} v_{l} x^{\prime}$ with $\sum v_{I}^{2}=1$. Then, $\operatorname{Var}(f(G)) \geq \frac{1}{d!}$.

Proof.
Gaussian integration by parts:

But,

$\left\|\mathbb{E}\left[\nabla^{d} f(G)\right]\right\|^{2}=\sum(I!)^{2} v_{I}^{2} \geq 1$

A first result - Gaussians

Lemma

Let G be a standard Gaussian in \mathbb{R}^{n}, and let $f(x)=\sum_{l} v_{l} x^{\prime}$ with
$\sum v_{I}^{2}=1$. Then, $\operatorname{Var}(f(G)) \geq \frac{1}{d!}$.

Proof.

Gaussian integration by parts:

$$
\operatorname{Var}(f(G))=\sum_{m=1}^{\infty} \frac{\left\|\mathbb{E}\left[\nabla^{m} f(G)\right]\right\|^{2}}{m!} \geq \frac{\left\|\mathbb{E}\left[\nabla^{d} f(G)\right]\right\|^{2}}{d!}
$$

But,

$$
\frac{d}{d x^{\prime}} x^{J}=I!\delta_{I J} \Longrightarrow \frac{d}{d x^{\prime}} f=I!v_{l}
$$

So,

$$
\left\|\mathbb{E}\left[\nabla^{d} f(G)\right]\right\|^{2}=\sum(I!)^{2} v_{l}^{2} \geq 1
$$

Main question

The previous proof is very Gaussian.

Question

Which isotropic random vectors satisfy,

$$
\operatorname{Var}(f(X)) \geq C_{d}
$$

for any d-homogeneous polynomial with $\sum v_{l}^{2}=1$?

Specific cases of interest:

1. Product measures.
2. Log-concave measures.

Main question

The previous proof is very Gaussian.

Question

Which isotropic random vectors satisfy,

$$
\operatorname{Var}(f(X)) \geq C_{d}
$$

for any d-homogeneous polynomial with $\sum v_{l}^{2}=1$?
Specific cases of interest:

1. Product measures.
2. Log-concave measures.

Related results - Carbery-Wright

The celebrated Carbery-Wright inequality connects between log-concave measures and level sets of polynomials

Lemma (Carbery-Wright's inequality)

Let X be a log-concave vector in \mathbb{R}^{m}, then for any polynomial f of degree $d, t \in \mathbb{R}$ and ε.

$$
\mathbb{P}(|f(X)-t|<\varepsilon) \lesssim\left(\frac{\varepsilon}{\sqrt{\mathbb{E}\left[f(X)^{2}\right]}}\right)^{\frac{1}{d}}
$$

Problems:

- Need to show that $\mathbb{E}\left[f^{2}(X)\right]$ is comparable to $\sum v_{i}^{2}$.
- The proof of Carbery-Wright proceeds by localization, which

Related results - Carbery-Wright

The celebrated Carbery-Wright inequality connects between log-concave measures and level sets of polynomials

Lemma (Carbery-Wright's inequality)

Let X be a log-concave vector in \mathbb{R}^{m}, then for any polynomial f of degree $d, t \in \mathbb{R}$ and ε.

$$
\mathbb{P}(|f(X)-t|<\varepsilon) \lesssim\left(\frac{\varepsilon}{\sqrt{\mathbb{E}\left[f(X)^{2}\right]}}\right)^{\frac{1}{d}}
$$

Problems:

- Need to show that $\mathbb{E}\left[f^{2}(X)\right]$ is comparable to $\sum v_{l}^{2}$.
- The proof of Carbery-Wright proceeds by localization, which does not preserve coefficients.

Related results - Carbery-Wright

A more fundamental problem is that Carbery-Wright is too general. If X is uniform on $\sqrt{n} B_{2}^{n}$, and $f(x)=\frac{1}{\sqrt{n}}\|x\|^{2}$, an easy calculation shows,

More generally, if X is uniform on an isotropic L_{p} ball, and $f(x)=\frac{1}{\sqrt{n}}\|x\|_{p,}^{p}$,

Related results - Carbery-Wright

A more fundamental problem is that Carbery-Wright is too general. If X is uniform on $\sqrt{n} B_{2}^{n}$, and $f(x)=\frac{1}{\sqrt{n}}\|x\|^{2}$, an easy calculation shows,

$$
\operatorname{Var}(f(X)) \simeq \frac{1}{n}
$$

More generally, if X is uniform on an isotropic L_{p} ball, and
$\lim ^{\operatorname{Var}}(f(X))=0$.

Related results - Carbery-Wright

A more fundamental problem is that Carbery-Wright is too general. If X is uniform on $\sqrt{n} B_{2}^{n}$, and $f(x)=\frac{1}{\sqrt{n}}\|x\|^{2}$, an easy calculation shows,

$$
\operatorname{Var}(f(X)) \simeq \frac{1}{n}
$$

More generally, if X is uniform on an isotropic L_{p} ball, and $f(x)=\frac{1}{\sqrt{n}}\|x\|_{p}^{p}$,

$$
\lim _{n \rightarrow \infty} \operatorname{Var}(f(X))=0
$$

Related results - Fourier analysis

There is also connection between anti-concentration and Fourier transforms that goes back to Esseen:

Lemma (Esseen's inequality)

Let X be a random variable with characteristic function φ, then for any $\varepsilon>0$ and $t \in \mathbb{R}$,

$$
\mathbb{P}(|X-t|<\varepsilon) \leq \varepsilon \int_{-2 \pi / \varepsilon}^{2 \pi / \varepsilon}|\varphi(\lambda)| d \lambda
$$

In particular, if $|\varphi(\lambda)| \lesssim \frac{1}{\lambda^{\alpha}}, \mathbb{P}(|X-t|<\varepsilon) \leq \varepsilon^{\alpha}$.

Related results - Fourier analysis

There is also connection between anti-concentration and Fourier transforms that goes back to Esseen:

Lemma (Esseen's inequality)

Let X be a random variable with characteristic function φ, then for any $\varepsilon>0$ and $t \in \mathbb{R}$,

$$
\mathbb{P}(|X-t|<\varepsilon) \leq \varepsilon \int_{-2 \pi / \varepsilon}^{2 \pi / \varepsilon}|\varphi(\lambda)| d \lambda
$$

In particular, if $|\varphi(\lambda)| \lesssim \frac{1}{|\lambda|^{\alpha}}, \mathbb{P}(|X-t|<\varepsilon) \leq \varepsilon^{\alpha}$.

Related results - Van der Corput lemma

Recall the classical Van der Corput lemma from the 30 's. If $h: \mathbb{R} \rightarrow \mathbb{R}$, is such that $\left|h^{(k)}\right| \geq 1$. Then,

$$
\int_{-1}^{1} e^{i \lambda h(x)} d x \lesssim \frac{1}{|\lambda|^{\frac{1}{k}}}
$$

What happens in higher dimensions?

Related results - Van der Corput lemma

Recall the classical Van der Corput lemma from the 30 's. If $h: \mathbb{R} \rightarrow \mathbb{R}$, is such that $\left|h^{(k)}\right| \geq 1$. Then,

$$
\int_{-1}^{1} e^{i \lambda h(x)} d x \lesssim \frac{1}{|\lambda|^{\frac{1}{k}}}
$$

In particular, if X is uniform on $[-1,1]$ and $f(x)=x^{d}$,

$$
\mathbb{P}(|f(X)-t|<\varepsilon) \lesssim \varepsilon^{\frac{1}{d}}
$$

What happens in higher dimensions?

Related results - Van der Corput lemma

Recall the classical Van der Corput lemma from the 30 's. If $h: \mathbb{R} \rightarrow \mathbb{R}$, is such that $\left|h^{(k)}\right| \geq 1$. Then,

$$
\int_{-1}^{1} e^{i \lambda h(x)} d x \lesssim \frac{1}{|\lambda|^{\frac{1}{k}}}
$$

In particular, if X is uniform on $[-1,1]$ and $f(x)=x^{d}$,

$$
\mathbb{P}(|f(X)-t|<\varepsilon) \lesssim \varepsilon^{\frac{1}{d}} .
$$

What happens in higher dimensions?

Related results - Van der Corput lemma

Much work has been done on high-dimensional analogues of the Van der Corput lemma. Carbery, Christ and Wright showed,

$$
\int_{[-1,1]^{n}} e^{i \lambda f(x)} d x \lesssim \frac{\operatorname{poly}(n)}{|\lambda|^{\frac{1}{d}}}
$$

if f is a homogeneous degree d polynomial and for some I, $\left|v_{l}\right| \geq 1$.
They also asked the question: can the dependence on n be removed form the right hand side?

Related results - Van der Corput lemma

Much work has been done on high-dimensional analogues of the Van der Corput lemma. Carbery, Christ and Wright showed,

$$
\int_{[-1,1]^{n}} e^{i \lambda f(x)} d x \lesssim \frac{\operatorname{poly}(n)}{|\lambda|^{\frac{1}{d}}}
$$

if f is a homogeneous degree d polynomial and for some I, $\left|v_{l}\right| \geq 1$.
They also asked the question: can the dependence on n be removed form the right hand side?

Our results

Theorem

Let $X \sim \mu^{\otimes n}$ be a product measure and let $f(x)=\sum_{l} v_{l} X^{\prime}$ with $\sum v_{I}^{2}=1$. Then,

$$
\operatorname{Var}(f(X)) \geq C_{\mu, d}
$$

Moreover, the constant can be taken to be uniform over all isotropic log-concave product measures.

Corrolary
Let $f(x)=\sum_{l} v_{l} x^{\prime}$ with $\left|v_{l}\right| \geq 1$ for some l. Then,

Our results

Theorem

Let $X \sim \mu^{\otimes n}$ be a product measure and let $f(x)=\sum_{l} v_{l} x^{\prime}$ with
$\sum v_{I}^{2}=1$. Then,

$$
\operatorname{Var}(f(X)) \geq C_{\mu, d}
$$

Moreover, the constant can be taken to be uniform over all isotropic log-concave product measures.

Corrolary

Let $f(x)=\sum_{l} v_{l} x^{l}$ with $\left|v_{l}\right| \geq 1$ for some l. Then,

$$
\int_{[-1,1]^{n}} e^{i \lambda f(x)} d x \lesssim \frac{1}{|\lambda|^{\frac{1}{d}}}
$$

Variance bound 1d

Let $X \sim \mu$ be random variable with infinite support. Apply the Gram-Schmidt algorithm to $\left\{1, x, x^{2}, \ldots\right\}$ in $L^{2}(\mu)$ and consider the resulting orthogonal polynomials $\left\{p_{k}\right\}_{k=0}^{\infty}$.

Variance bound 1d

Let $X \sim \mu$ be random variable with infinite support. Apply the Gram-Schmidt algorithm to $\left\{1, x, x^{2}, \ldots\right\}$ in $L^{2}(\mu)$ and consider the resulting orthogonal polynomials $\left\{p_{k}\right\}_{k=0}^{\infty}$.

Lemma

Let $f(x)=x^{d}$. Then,

1. $\left\langle f, p_{k}\right\rangle_{L^{2}(\mu)}=0$ for $k>d$.
2. $\left\langle f, p_{d}\right\rangle_{L^{2}(\mu)}=\tilde{c}_{\mu, d} \neq 0$.
3. p_{k} is orthogonal to degree d polynomials.
4. $f \notin \operatorname{snan}\left(1, x, x^{2}\right.$

Variance bound 1d

Let $X \sim \mu$ be random variable with infinite support. Apply the Gram-Schmidt algorithm to $\left\{1, x, x^{2}, \ldots\right\}$ in $L^{2}(\mu)$ and consider the resulting orthogonal polynomials $\left\{p_{k}\right\}_{k=0}^{\infty}$.

Lemma

Let $f(x)=x^{d}$. Then,

1. $\left\langle f, p_{k}\right\rangle_{L^{2}(\mu)}=0$ for $k>d$.
2. $\left\langle f, p_{d}\right\rangle_{L^{2}(\mu)}=\tilde{c}_{\mu, d} \neq 0$.

Proof.

1. p_{k} is orthogonal to degree d polynomials.
2. $f \notin \operatorname{span}\left(1, x, x^{2}, \ldots, x^{d-1}\right)$.

Dimension-free variance bounds

Observe $L^{2}\left(\mu^{\otimes n}\right)=L^{2}(\mu)^{\otimes n}$. So, an orthonormal basis for $L^{2}\left(\mu^{\otimes n}\right)$ is given by $\left\{p_{I}\right\}$, where for $I=\left(I_{1}, I_{2}, \ldots, I_{n}\right)$,

$$
p_{l}(x)=\prod_{i=1}^{n} p_{l i}\left(x_{i}\right) .
$$

Lemma
Let $f(x)=\sum v_{1} x^{\prime}$, be of degree d. Then, for $|J|=d$

Dimension-free variance bounds

Observe $L^{2}\left(\mu^{\otimes n}\right)=L^{2}(\mu)^{\otimes n}$. So, an orthonormal basis for $L^{2}\left(\mu^{\otimes n}\right)$ is given by $\left\{p_{I}\right\}$, where for $I=\left(I_{1}, I_{2}, \ldots, I_{n}\right)$,

$$
p_{l}(x)=\prod_{i=1}^{n} p_{l_{i}}\left(x_{i}\right)
$$

Lemma

Let $f(x)=\sum_{l} v_{l} x^{\prime}$, be of degree d. Then, for $|J|=d$,

1. $\left\langle f, p_{J}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)} \geq v_{J} \cdot c_{\mu, d}$

Dimension-free variance bounds

Proof.

$$
\begin{aligned}
\left\langle f, p_{J}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)} & =\sum v_{I}\left\langle x^{\prime}, p_{J}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)}=v_{J}\left\langle x^{J}, p_{J}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)} \\
& =v_{J} \prod_{i=1}^{d}\left\langle x^{J_{i}}, p_{J_{i}}\right\rangle_{L^{2}(\mu)}=v_{J} \prod_{i=1}^{d} \tilde{c}_{\mu, J_{i}}
\end{aligned}
$$

An L^{2} decomposition gives

and we are ready to prove the theorem.

Dimension-free variance bounds

Proof.

$$
\begin{aligned}
\langle f, p J\rangle_{L^{2}\left(\mu^{\otimes n}\right)} & =\sum v_{I}\left\langle x^{\prime}, p_{J}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)}=v_{J}\left\langle x^{J}, p_{J}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)} \\
& =v_{J} \prod_{i=1}^{d}\left\langle x^{J_{i}}, p_{J_{i}}\right\rangle_{L^{2}(\mu)}=v_{J} \prod_{i=1}^{d} \tilde{c}_{\mu, J_{i}}
\end{aligned}
$$

An L^{2} decomposition gives

$$
\operatorname{Var}(f(X))=\sum_{l \neq 0}\left\langle f, p_{l}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)}^{2}
$$

and we are ready to prove the theorem.

Dimension-free variance bounds

Proof of Theorem.

$$
\begin{aligned}
\operatorname{Var}(X) & =\langle f, f\rangle_{L^{2}\left(\mu^{\otimes n}\right)}-\langle 1, f\rangle_{L^{2}\left(\mu^{\otimes n}\right)}^{2}=\sum_{l \neq 0}\left\langle f, p_{l}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)}^{2} \\
& \geq \sum_{|| |=d}\left\langle f, p_{l}\right\rangle_{L^{2}\left(\mu^{\otimes n}\right)}^{2} \geq c_{\mu, d}^{2} \sum_{|| |=d} v_{l}^{2} \\
& =c_{\mu, d}^{2} .
\end{aligned}
$$

\square

When μ is log-concave isotropic, by a comparison to an interval, we get $c_{\mu, d}=c^{d}$.

From variance bounds to sub-level estimates

We can now combine our result with the Carbery-Wright inequality.

Corrolary

Let X be a log-concave with a product law and let $f(x)=\sum_{l} v_{l} x^{l}$, be of degree d. Then, for any $\varepsilon>0$ and $t \in \mathbb{R}$,

$$
\mathbb{P}(|f(X)-t| \leq \varepsilon) \lesssim \varepsilon^{\frac{1}{d}} .
$$

From variance bounds to sub-level estimates

We can now combine our result with the Carbery-Wright inequality.

Corrolary

Let X be a log-concave with a product law and let $f(x)=\sum_{l} v_{l} x^{l}$, be of degree d. Then, for any $\varepsilon>0$ and $t \in \mathbb{R}$,

$$
\mathbb{P}(|f(X)-t| \leq \varepsilon) \lesssim \varepsilon^{\frac{1}{d}} .
$$

Proof.

$$
\mathbb{P}(|f(X)-t| \leq \varepsilon) \lesssim\left(\frac{\varepsilon}{\sqrt{\mathbb{E}\left[f(X)^{2}\right]}}\right)^{\frac{1}{d}} \leq\left(\frac{\varepsilon}{c^{d}}\right)^{\frac{1}{d}}
$$

Multivariate Van der Corput

Let $f(x)=\sum_{l} v_{I} X^{\prime}$ with $\left|v_{I}\right| \geq 1$ for some $I=\left(I_{1}, \ldots, I_{n}\right)$. We wish to bound,

$$
J(\lambda):=\int_{[-1,1]^{n}} e^{i \lambda f(x)} d x .
$$

Define,

Multivariate Van der Corput

Let $f(x)=\sum_{l} v_{I} X^{\prime}$ with $\left|v_{I}\right| \geq 1$ for some $I=\left(I_{1}, \ldots, I_{n}\right)$. We wish to bound,

$$
J(\lambda):=\int_{[-1,1]^{n}} e^{i \lambda f(x)} d x .
$$

Define,

$$
A:=\left\{\left.x \in[-1,1]^{n}| | \frac{d}{d x_{n}^{l_{n}}} f(x) \right\rvert\, \geq \varepsilon\right\} .
$$

Multivariate Van der Corput

Let $f(x)=\sum_{l} v_{l} x^{\prime}$ with $\left|v_{l}\right| \geq 1$ for some $I=\left(I_{1}, \ldots, I_{n}\right)$. We wish to bound,

$$
J(\lambda):=\int_{[-1,1]^{n}} e^{i \lambda f(x)} d x .
$$

Define,

$$
A:=\left\{\left.x \in[-1,1]^{n}| | \frac{d}{d x_{n}^{l_{n}}} f(x) \right\rvert\, \geq \varepsilon\right\} .
$$

So,

$$
J(\lambda) \leq\left|\int_{A} e^{i \lambda f(x)} d x\right|+\left|\int_{\bar{A}} e^{i \lambda f(x)} d x\right|
$$

Multivariate Van der Corput

We first bound \bar{A}.
The main observation is that $\frac{d}{d x_{n}^{\prime n}} f$ is a polynomial of degree $d-I_{n}$ with sum of coefficients at least 1 ,

$$
\left|\int_{\bar{A}} e^{i \lambda f(x)} d x\right| \leq \int_{\bar{A}} 1 d x=\mathbb{P}\left(\left|\frac{d}{d x_{n}^{l_{n}^{\prime}}} f(X)\right| \leq \varepsilon\right) \lesssim \varepsilon^{\frac{1}{d-l_{n}}} .
$$

Multivariate Van der Corput

We also bound

$$
\left|\int_{\bar{A}} e^{i \lambda f(x)} d x\right| \lesssim \frac{1}{(|\lambda| \varepsilon)^{\frac{1}{1_{n}}}}
$$

High-level idea:

- Decompose $x=\left(\tilde{x}, x_{n}\right)$ and $f_{\tilde{x}}\left(x_{n}\right)=f(x)$
- On A, for every $\tilde{x}, \mid f_{\tilde{x}}^{\left(I_{n}\right)}$
- Use one-dimensional results for $f_{\tilde{x}}$.

Multivariate Van der Corput

We also bound

$$
\left|\int_{\bar{A}} e^{i \lambda f(x)} d x\right| \lesssim \frac{1}{(|\lambda| \varepsilon)^{\frac{1}{1_{n}}}}
$$

High-level idea:

- Decompose $x=\left(\tilde{x}, x_{n}\right)$ and $f_{\tilde{x}}\left(x_{n}\right)=f(x)$.
- On A, for every $\tilde{x},\left|f_{\tilde{x}}^{\left(I_{n}\right)}\right| \geq \varepsilon$.
- Use one-dimensional results for $f_{\tilde{x}}$.

Multivariate Van der Corput

$$
\begin{aligned}
J(\lambda) & \leq\left|\int_{A} e^{i f \lambda(x)} d x\right|+\left|\int_{\bar{A}} e^{i f \lambda(x)} d x\right| \\
& \leq \frac{1}{(|\lambda| \varepsilon)^{\frac{1}{l_{n}}}}+\varepsilon^{\frac{1}{d-l_{n}}}
\end{aligned}
$$

Optimize over ε to get,

$$
J(\lambda) \lesssim \frac{1}{|\lambda|^{\frac{1}{d}}} .
$$

Question
Is the condition $\left|v_{i}\right| \geq 1$ necessary?

Multivariate Van der Corput

$$
\begin{aligned}
J(\lambda) & \leq\left|\int_{A} e^{i f \lambda(x)} d x\right|+\left|\int_{\bar{A}} e^{i f \lambda(x)} d x\right| \\
& \leq \frac{1}{(|\lambda| \varepsilon)^{\frac{1}{l_{n}}}}+\varepsilon^{\frac{1}{d-l_{n}}}
\end{aligned}
$$

Optimize over ε to get,

$$
J(\lambda) \lesssim \frac{1}{|\lambda|^{\frac{1}{d}}}
$$

Question

Is the condition $\left|v_{l}\right| \geq 1$ necessary?

Beyond products

Recall that if $X \sim \operatorname{Uniform}\left(B_{p}^{n}\right)$ and $f(x)=\frac{1}{\sqrt{n}}\|x\|_{p}^{p}$,

$$
\operatorname{Var}(f(X))=o(1)
$$

However, in these cases we have,
$\mathbb{E}\left[f(X)^{2}\right]=\omega(1)$.

Can we get dimension-free estimates on \mathbb{E}

instead of $\operatorname{Cov}\left(X^{\otimes d}\right)$?
Is $\mathbb{E}\left[f(X)^{2}\right]$ large, when $\sum v_{i}^{2}=1$?

Beyond products

Recall that if $X \sim \operatorname{Uniform}\left(B_{p}^{n}\right)$ and $f(x)=\frac{1}{\sqrt{n}}\|x\|_{p}^{p}$,

$$
\operatorname{Var}(f(X))=o(1)
$$

However, in these cases we have,

$$
\mathbb{E}\left[f(X)^{2}\right]=\omega(1)
$$

Can we get dimension-free estimates on \mathbb{E}

instead of $\operatorname{Cov}(X \otimes d)$?
Is $\mathbb{E}\left[f(X)^{2}\right]$ large, when $\sum v_{i}^{2}=1$?

Beyond products

Recall that if $X \sim \operatorname{Uniform}\left(B_{p}^{n}\right)$ and $f(x)=\frac{1}{\sqrt{n}}\|x\|_{p}^{p}$,

$$
\operatorname{Var}(f(X))=o(1)
$$

However, in these cases we have,

$$
\mathbb{E}\left[f(X)^{2}\right]=\omega(1)
$$

Can we get dimension-free estimates on $\mathbb{E}\left[\left(X^{\otimes d}\right)\left(X^{\otimes d}\right)^{T}\right]$, instead of $\operatorname{Cov}\left(X^{\otimes d}\right)$?
Is $\mathbb{E}\left[f(X)^{2}\right]$ large, when $\sum v_{I}^{2}=1$?

Beyond products

Recall that if $X \sim \operatorname{Uniform}\left(B_{p}^{n}\right)$ and $f(x)=\frac{1}{\sqrt{n}}\|x\|_{p}^{p}$,

$$
\operatorname{Var}(f(X))=o(1)
$$

However, in these cases we have,

$$
\mathbb{E}\left[f(X)^{2}\right]=\omega(1)
$$

Can we get dimension-free estimates on $\mathbb{E}\left[\left(X^{\otimes d}\right)\left(X^{\otimes d}\right)^{T}\right]$, instead of $\operatorname{Cov}\left(X^{\otimes d}\right)$?
Is $\mathbb{E}\left[f(X)^{2}\right]$ large, when $\sum v_{I}^{2}=1$?

Isotropic L_{p} balls

Let $Y \sim \frac{1}{z} e^{-\|x\|_{p}^{p}} d x$ and $U \sim \operatorname{Uniform}([0,1])$. Then

$$
X=n^{\frac{1}{p}} U \frac{Z}{\|Z\|_{p}}
$$

Since Z is a product measure, for any homogeneous function,

$$
\mathbb{E}\left[f(X)^{2}\right] \simeq n^{\frac{2 d}{p}} \mathbb{E}\left[\frac{f(Z)^{2}}{\|Z\|_{p}^{2 d}}\right] \gtrsim 1
$$

Euclidean balls

1. If X is uniform on the isotropic Euclidean ball, we identify all eigenvalues of $\operatorname{Cov}\left(X^{\otimes d}\right)$.
2. Eigenvectors are given by $\|x\|_{2}^{2 k} H_{d-2 k}$, where $H_{d-2 k}$ are degree $d-2 k$ spherical harmonics.
3. If $f(x)=\|x\|_{2}^{2}, \operatorname{Var}(f(X)) \simeq \frac{1}{n}$.
4. If f is orthogonal to $\|x\|_{2}^{2}, \operatorname{Var}(f(X))=\Omega(1)$.

Thank You

