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Wishart Tensors

Let {X,-}f-‘:1 be i.i.d. copies of an isotropic random vector X ~ p in
R". And consider

W= \}; Ek; (xe? - [x)).

Keeping n and d fixed the W converges to a Gaussian vector.
What happens when we allow n (and d) to approach infinity?
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Some motivation to understand the asymptotic normality of W:

1. Empirical moment tensor estimation.

2. Related to random geometric graphs, when d = 2.

K
T:ZX,-@X,-
i=1

where X is a matrix with columns given by X;.

3. CLT for neural networks, when d > 2. For fixed y € R",

1 k k 1 k )
ﬁ Z<X y> Z X®P <7 in®P7y®P>.
i=1

i=1
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Known results

When n??~! < k, W is asymptotically normal.

e Bubeck, Ding, Eldan, Ricz 15" and Jiang, Li 15" - d = 2, standard
Gaussian.

Bubeck, Ganguly 15" - d = 2, log-concave product measures.
e Fang, Koike 20’ - d = 2, product measures.

e Nourdin, Zheng 18'- d > 2, standard Gaussian.

e M. 20" - d > 2, unconditional strongly log-concave measures.

e M., Shenfeld 21" - d > 2, unconditional log-concave measures.
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e Bubeck, Ding, Eldan, Ricz 15" and Jiang, Li 15" - d = 2, standard
Gaussian.
e Bubeck, Ganguly 15" - d = 2, log-concave product measures.
e Fang, Koike 20’ - d = 2, product measures.
e Nourdin, Zheng 18'- d > 2, standard Gaussian.
e M. 20" - d > 2, unconditional strongly log-concave measures.
e M., Shenfeld 21" - d > 2, unconditional log-concave measures.

w is log-concave if — Iog(d—g’) convex.

1 is unconditional if %(xl, cey Xp) = %(:I:xl, 20 0 592G



Known results

Important caveat:
Instead of considering the full tensor W, the results apply to its
marginal on the subspace of principal (multi-linear) tensors:

span{e,-l ®e,~2®~-®e,-k\i1 << < ik}.



Known results

Important caveat:
Instead of considering the full tensor W, the results apply to its
marginal on the subspace of principal (multi-linear) tensors:

span{e,-l ®e,-2®~-®e,-k\i1 << < ik}.

Reason: If X = (Xi,...,X,) is unconditional, the covariance
matrix on the principal subspace is diagonal:

E[(Xy X)) (X oo X;)] =0,

whenever (i1, ..., k) # (1, - Jk)-
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From tensors to polynomials

To control convergence rate of the CLT, one needs to understand
Amin (Cov(X®d)) and Amax (Cov(X®d))

To rephrase, let f : R” — R, be a degree d homogeneous
polynomial f(x) = > vix/, where
I

d
I €[n]? and x' = HXI;'
i=1

So, (X®4 f) = 3 vy X! = f(X), and
I=d

P (COV(X®d)) = fzzi:n‘);:l\/ar(f(X)).



A first result - Gaussians

Lemma

Let G be a standard Gaussian in R", and let f(x) = >_ vix' with
i

S v} = 1. Then, Var(f(G)) > 4.



A first result - Gaussians

Lemma

Let G be a standard Gaussian in R", and let f(x) = >_ vix' with

I
= =

> v? =1. Then, Var(f(G)) > di.

Proof

Gaussian integration by parts:

e B[R] 1P
- d! '

Var(f(G)) = Z HE[me(G

AP

J
x' =11 = o

dx!

IE [vdf(c)} P =S (2 =1
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The previous proof is very Gaussian.

Which isotropic random vectors satisfy,

Var(f(X)) > Cy,

for any d-homogeneous polynomial with > v = 17



Main question

The previous proof is very Gaussian.

Which isotropic random vectors satisfy,

Var(f(X)) > Cy,
for any d-homogeneous polynomial with > v = 17

Specific cases of interest:

1. Product measures.

2. Log-concave measures.



Related results - Carbery-Wright

The celebrated Carbery-Wright inequality connects between
log-concave measures and level sets of polynomials

Lemma (Carbery-Wright's inequality)

Let X be a log-concave vector in R™, then for any polynomial f
of degree d, t € R and €.

Q=

P(f(X) -t <) S | ——=
E [f(X)?]



Related results - Carbery-Wright

The celebrated Carbery-Wright inequality connects between
log-concave measures and level sets of polynomials

Lemma (Carbery-Wright's inequality)

Let X be a log-concave vector in R™, then for any polynomial f
of degree d, t € R and €.

Q=

P(f(X) -t <e) 5
E [f(X)?]

Problems:

o Need to show that E[f?(X)] is comparable to " v7.
e The proof of Carbery-Wright proceeds by localization, which
does not preserve coefficients. 9
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Related results - Carbery-Wright

A more fundamental problem is that Carbery-Wright is too general.

If X is uniform on \/nBJ, and f(x) = ﬁ”x] 2 an easy calculation
shows, .
Var(f(X)) ~ o

More generally, if X is uniform on an isotropic L, ball, and
F(x) = x5
lim Var(f(X)) = 0.

n—o0

10



Related results - Fourier analysis

There is also connection between anti-concentration and Fourier

transforms that goes back to Esseen:

Lemma (Esseen’s inequality)

Let X be a random variable with characteristic function o, then
for anye >0 and t € R,

2w /e

P(X —t] <) <e / p(A)]dA.
—27/e



Related results - Fourier analysis

There is also connection between anti-concentration and Fourier

transforms that goes back to Esseen:

Lemma (Esseen’s inequality)

Let X be a random variable with characteristic function o, then
for anye >0 and t € R,

2w /e

P(X —t| <) <e / (VA

—27/e

In particular, if [p(\)] < /\i P(X -t <e) <



Related results - Van der Corput lemma

Recall the classical Van der Corput lemma from the 30's. If
h:R — R, is such that [h(X)| > 1. Then,

1 1
/ el/\h(x)dX ,S -
=il |A| %
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Related results - Van der Corput lemma

Recall the classical Van der Corput lemma from the 30's. If
h:R — R, is such that |h(k)] > 1. Then,

In particular, if X is uniform on [—1,1] and f(x) = x9,

P(|f(X) - t| < &) < ed.

What happens in higher dimensions?

12



Related results - Van der Corput lemma

Much work has been done on high-dimensional analogues of the
Van der Corput lemma. Carbery, Christ and Wright showed,

/ M) gy < POIYS”)7
|Al4
[_1]_1]n

if f is a homogeneous degree d polynomial and for some /,
‘V/‘ > 1.
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Related results - Van der Corput lemma

Much work has been done on high-dimensional analogues of the
Van der Corput lemma. Carbery, Christ and Wright showed,

: oly(n
/ M0 gy < POY().
R\E
[_1,‘1]’1

if f is a homogeneous degree d polynomial and for some /,
‘V/‘ > 1.

They also asked the question: can the dependence on n be
removed form the right hand side?

13



Our results

Let X ~ u®" be a product measure and let f(x) = > vix! with
/

> v,2 = 1. Then,

Var(f(X)) > Cud-

Moreover, the constant can be taken to be uniform over all
isotropic log-concave product measures.



Our results

Let X ~ u®" be a product measure and let f(x) = > vix! with
/

> v,2 = 1. Then,

Var(f(X)) > Cud-

Moreover, the constant can be taken to be uniform over all
isotropic log-concave product measures.

Corrolary
Let f(x) = vix! with |vj| > 1 for some /. Then,
I

ei)\f(x)dx S.; -
Al
[—1,1]"



Variance bound 1d

Let X ~ u be random variable with infinite support. Apply the
Gram-Schmidt algorithm to {1,x,x2,...} in L?(u) and consider
the resulting orthogonal polynomials {Pk}kzo-

15
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the resulting orthogonal polynomials {pk}k:O'
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Variance bound 1d

Let X ~ u be random variable with infinite support. Apply the
Gram-Schmidt algorithm to {1,x,x?,...} in L?(x) and consider
the resulting orthogonal polynomials {pk}k:O'

Lemma

Let f(x) = x?. Then,

L. (f, pk)2(uy = 0 for k > d.
2. <f, pd>L2(u) = E,u,d 75 0.

1. pk is orthogonal to degree d polynomials.

2. f ¢ span (1,x,x2, ,xd_l).



Dimension-free variance bounds

Observe L2(p®") = L%(1)®". So, an orthonormal basis for L?(;®")

is given by {p;}, where for | = (I, b, ..., 1),

pi(x) = HPI;(X:')~

16



Dimension-free variance bounds

Observe L?(u®") = L?(1)®". So, an orthonormal basis for L?(p®")
is given by {p;}, where for | = (h, b,... 1),

pi(x) =[] pi(x).
i=1

Lemma

Let f(x) = . vix!, be of degree d. Then, for |J| = d,
I

1. <f, pJ>L2(M®n) > vy - Cu,d



Dimension-free variance bounds

<f>PJ>L2(u®"):Z 1{x! ) 2 gueny = va(x?, ps) 12 (ueny
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Dimension-free variance bounds

<f>pJ>L2(u®"):Z 1{x! ) 2 gueny = va(x?, ps) 12 (ueny

Q

_VJH P 2(n) = H

An L? decomposition gives

Var(f(X)) = Z<f; PI>%2(M®,,)-
140

and we are ready to prove the theorem.



Dimension-free variance bounds

Proof of Theorem.

Var(X) = <f, f)Lz(,u‘X’”) - <1, f>%2(lt®”) = Z<f, p,>i2(”®n)

170
2 2 2
= Z (f, Pl>1_2(“®n) 2Cud Z Vi
|l|=d |l|=d
2
= Cu,d'

0J

When p is log-concave isotropic, by a comparison to an interval,

we get ¢, g = @



From variance bounds to sub-level estimates

We can now combine our result with the Carbery-Wright inequality.

Corrolary

Let X be a log-concave with a product law and let
f(x) = Y v;x!, be of degree d. Then, for any ¢ >0 and t € R,
I

P(If(X) —t| < &) Sed.



From variance bounds to sub-level estimates

We can now combine our result with the Carbery-Wright inequality.

Corrolary

Let X be a log-concave with a product law and let
f(x) = 3. vix!, be of degree d. Then, for any ¢ >0 and t € R,
I

P(|f(X)—t| <e) Sev.



Multivariate Van der Corput

Let f(x) = > vix! with |v;| > 1 for some | = (I1,...,1I,). We wish
1

to bound,
J(N) = / e M) g

[~1,1)"
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Multivariate Van der Corput

Let f(x) = > vix! with |v;| > 1 for some | = (I1,...,1I,). We wish
to bound, :
J(N) = / e M) g
[-11]r

Define,
d

dx,l,”

A= {X € [-1,1]" f(x)

> <.
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Multivariate Van der Corput

Let f(x) = > vix! with |v;| > 1 for some | = (I1,...,1I,). We wish
1

to bound,
J(N) = / e M) g
[-1)
Define,
A= {X € [-1,1]" dl f(x)| > 5}.
dx,’
So,

J) < /e"”<x)dx -+ /e"”<x)dx .
A A

20



Multivariate Van der Corput

We first bound A.

The main observation is that ﬁf is a polynomial of degree d — I,
Xn

with sum of coefficients at least 1,

/ef”<X>dx < /1dx_1p>< dd, f(X)‘ < a) S el

Xn
A A

21



Multivariate Van der Corput

We also bound

" 1
/ el)\f(x)dx S -
J (N
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Multivariate Van der Corput

We also bound

~ 1 -
J (N

" 1
/el)\f(x)dx <

High-level idea:

e Decompose x = (X, xp) and fz(xp) = f(x).
e On A, for every X, \fx~(l”)\ > €.

e Use one-dimensional results for f;.

22



Multivariate Van der Corput

J(A) S /eif)\(x)dx + /eifA(X)dX
A

A
1
< = AFET
([Ale)™
Optimize over ¢ to get,
1
JN) S

23



Multivariate Van der Corput

J()\) S /eif/\(x)dx + /eif)\(x)dx
A

A
1
< — F€ed-hn.
(|Ale)
Optimize over ¢ to get,
1
JN S —
Al

Is the condition |v;| > 1 necessary?

23



Beyond products

Recall that if X ~ Uniform(B7) and f(x) = -1 ||x||5,

n

Var(f(X)) = o(1).
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Beyond products

Recall that if X ~ Uniform(Bg) and f(x) = == x|},
Var(f(X)) = o(1).

However, in these cases we have,
E [F(X)?] = w(1).

Can we get dimension-free estimates on E [(X@’d) (X®d) T} ,

instead of Cov (X®9)?
Is E [f(X)z] large, when Y v} = 17

24



Isotropic L, balls

Let Y ~ %e*“x“gdx and U ~ Uniform([0, 1]). Then

1
X=nplU—>—.
12115

Since Z is a product measure, for any homogeneous function,

2 [ f(2)?
E [f(X)?] ~n»E [ééd] >1.

25



Euclidean balls

1. If X is uniform on the isotropic Euclidean ball, we identify all
eigenvalues of Cov (X®9).

2. Eigenvectors are given by ||x||3KHy_ok, where Hy_oy are
degree d — 2k spherical harmonics.
3. If f(x) = ||x||3, Var(f(X)) ~ %

4. If f is orthogonal to ||x||3, Var(f(X)) = Q(1).

26



Thank You



