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Wishart Tensors

Let {Xi}ki=1 be i.i.d. copies of an isotropic random vector X ∼ µ in

Rn. And consider

W :=
1√
k

k∑
i=1

(
X⊗d
i − E

[
X⊗d
i

])
.

Keeping n and d fixed the W converges to a Gaussian vector.

What happens when we allow n (and d) to approach infinity?
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Wishart Tensors

Some motivation to understand the asymptotic normality of W :

1. Empirical moment tensor estimation.

2. Related to random geometric graphs, when d = 2.

XXT =
k∑

i=1

Xi ⊗ Xi

where X is a matrix with columns given by Xi .

3. CLT for neural networks, when d ≥ 2. For fixed y ∈ Rn,

1√
k

k∑
i=1

⟨Xi , y⟩p =
1√
k

k∑
i=1

⟨X⊗p
i , y⊗p⟩ = ⟨ 1√

k

k∑
ℓ=1

X⊗p
i , y⊗p⟩.
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Known results

When n2d−1 ≪ k , W is asymptotically normal.

� Bubeck, Ding, Eldan, Rácz 15’ and Jiang, Li 15’ - d = 2, standard

Gaussian.

� Bubeck, Ganguly 15’ - d = 2, log-concave product measures.

� Fang, Koike 20’ - d = 2, product measures.

� Nourdin, Zheng 18’- d ≥ 2, standard Gaussian.

� M. 20’ - d ≥ 2, unconditional strongly log-concave measures.

� M., Shenfeld 21’ - d ≥ 2, unconditional log-concave measures.

µ is log-concave if − log( dµdx ) convex.

µ is unconditional if dµ
dx (x1, . . . , xn) =

dµ
dx (±x1, . . . ,±xn).
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Known results

Important caveat:

Instead of considering the full tensor W , the results apply to its

marginal on the subspace of principal (multi-linear) tensors:

span {ei1 ⊗ ei2 ⊗ · · · ⊗ eik |i1 < i2 < · · · < ik} .

Reason: If X = (X1, . . . ,Xn) is unconditional, the covariance

matrix on the principal subspace is diagonal:

E [(Xi1 · · · · · Xik ) (Xj1 · · · · · Xjk )] = 0,

whenever (i1, . . . , ik) ̸= (j1, . . . , jk).
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From tensors to polynomials

Remark

To control convergence rate of the CLT, one needs to understand

λmin

(
Cov(X⊗d)

)
and λmax

(
Cov(X⊗d)

)
To rephrase, let f : Rn → R, be a degree d homogeneous

polynomial f (x) =
∑
I

vI x
I , where

I ∈ [n]d and x I =
d∏

i=1

xIi .

So, ⟨X⊗d , f ⟩ =
∑

|I |=d

vIX
I = f (X ), and

λmin

(
Cov(X⊗d)

)
= inf

f :
∑

v2
I =1

Var(f (X )).
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A first result - Gaussians

Lemma

Let G be a standard Gaussian in Rn, and let f (x) =
∑
I

vI x
I with∑

v2I = 1. Then, Var(f (G )) ≥ 1
d! .

Proof.

Gaussian integration by parts:

Var(f (G )) =
∞∑

m=1

∥E [∇mf (G )] ∥2

m!
≥

∥E
[
∇d f (G )

]
∥2

d!
.

But,
d

dx I
xJ = I !δIJ =⇒ d

dx I
f = I !vI .

So,

∥E
[
∇d f (G )

]
∥2 =

∑
(I !)2v2I ≥ 1.
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Main question

The previous proof is very Gaussian.

Question

Which isotropic random vectors satisfy,

Var(f (X )) ≥ Cd ,

for any d-homogeneous polynomial with
∑

v2I = 1?

Specific cases of interest:

1. Product measures.

2. Log-concave measures.
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Related results - Carbery-Wright

The celebrated Carbery-Wright inequality connects between

log-concave measures and level sets of polynomials

Lemma (Carbery-Wright’s inequality)

Let X be a log-concave vector in Rm, then for any polynomial f

of degree d , t ∈ R and ε.

P(|f (X )− t| < ε) ≲

 ε√
E
[
f (X )2

]
 1

d

Problems:

� Need to show that E[f 2(X )] is comparable to
∑

v2I .

� The proof of Carbery-Wright proceeds by localization, which

does not preserve coefficients. 9
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Related results - Carbery-Wright

A more fundamental problem is that Carbery-Wright is too general.

If X is uniform on
√
nBn

2 , and f (x) = 1√
n
∥x∥2, an easy calculation

shows,

Var(f (X )) ≃ 1

n
.

More generally, if X is uniform on an isotropic Lp ball, and

f (x) = 1√
n
∥x∥pp,

lim
n→∞

Var(f (X )) = 0.
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Related results - Fourier analysis

There is also connection between anti-concentration and Fourier

transforms that goes back to Esseen:

Lemma (Esseen’s inequality)

Let X be a random variable with characteristic function φ, then

for any ε > 0 and t ∈ R,

P(|X − t| < ε) ≤ ε

2π/ε∫
−2π/ε

|φ(λ)|dλ.

In particular, if |φ(λ)| ≲ 1
|λ|α , P(|X − t| < ε) ≤ εα.
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Related results - Van der Corput lemma

Recall the classical Van der Corput lemma from the 30’s. If

h : R → R, is such that |h(k)| ≥ 1. Then,∫ 1

−1
e iλh(x)dx ≲

1

|λ|
1
k

.

In particular, if X is uniform on [−1, 1] and f (x) = xd ,

P(|f (X )− t| < ε) ≲ ε
1
d .

What happens in higher dimensions?
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Related results - Van der Corput lemma

Much work has been done on high-dimensional analogues of the

Van der Corput lemma. Carbery, Christ and Wright showed,∫
[−1,1]n

e iλf (x)dx ≲
poly(n)

|λ|
1
d

,

if f is a homogeneous degree d polynomial and for some I ,

|vI | ≥ 1.

They also asked the question: can the dependence on n be

removed form the right hand side?
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Our results

Theorem

Let X ∼ µ⊗n be a product measure and let f (x) =
∑
I

vI x
I with∑

v2I = 1. Then,

Var(f (X )) ≥ Cµ,d .

Moreover, the constant can be taken to be uniform over all

isotropic log-concave product measures.

Corrolary

Let f (x) =
∑
I

vI x
I with |vI | ≥ 1 for some I . Then,

∫
[−1,1]n

e iλf (x)dx ≲
1

|λ|
1
d

,

14
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Variance bound 1d

Let X ∼ µ be random variable with infinite support. Apply the

Gram-Schmidt algorithm to {1, x , x2, . . . } in L2(µ) and consider

the resulting orthogonal polynomials {pk}∞k=0.

Lemma

Let f (x) = xd . Then,

1. ⟨f , pk⟩L2(µ) = 0 for k > d .

2. ⟨f , pd⟩L2(µ) = c̃µ,d ̸= 0.

Proof.

1. pk is orthogonal to degree d polynomials.

2. f /∈ span
(
1, x , x2, . . . , xd−1

)
.
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Dimension-free variance bounds

Observe L2(µ⊗n) = L2(µ)⊗n. So, an orthonormal basis for L2(µ⊗n)

is given by {pI}, where for I = (I1, I2, . . . , In),

pI (x) =
n∏

i=1

pIi (xi ).

Lemma

Let f (x) =
∑
I

vI x
I , be of degree d . Then, for |J| = d ,

1. ⟨f , pJ⟩L2(µ⊗n) ≥ vJ · cµ,d

16
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Dimension-free variance bounds

Proof.

⟨f , pJ⟩L2(µ⊗n) =
∑

vI ⟨x I , pJ⟩L2(µ⊗n) = vJ⟨xJ , pJ⟩L2(µ⊗n)

= vJ

d∏
i=1

⟨xJi , pJi ⟩L2(µ) = vJ

d∏
i=1

c̃µ,Ji .

An L2 decomposition gives

Var(f (X )) =
∑
I ̸=0

⟨f , pI ⟩2L2(µ⊗n).

and we are ready to prove the theorem.
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Dimension-free variance bounds

Proof of Theorem.

Var(X ) = ⟨f , f ⟩L2(µ⊗n) − ⟨1, f ⟩2L2(µ⊗n) =
∑
I ̸=0

⟨f , pI ⟩2L2(µ⊗n)

≥
∑
|I |=d

⟨f , pI ⟩2L2(µ⊗n) ≥ c2µ,d
∑
|I |=d

v2I

= c2µ,d .

When µ is log-concave isotropic, by a comparison to an interval,

we get cµ,d = cd .
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From variance bounds to sub-level estimates

We can now combine our result with the Carbery-Wright inequality.

Corrolary

Let X be a log-concave with a product law and let

f (x) =
∑
I

vI x
I , be of degree d . Then, for any ε > 0 and t ∈ R,

P (|f (X )− t| ≤ ε) ≲ ε
1
d .

Proof.

P (|f (X )− t| ≤ ε) ≲

 ε√
E
[
f (X )2

]
 1

d

≤
( ε

cd

) 1
d
.

19
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Multivariate Van der Corput

Let f (x) =
∑
I

vI x
I with |vI | ≥ 1 for some I = (I1, . . . , In). We wish

to bound,

J(λ) :=

∫
[−1,1]n

e iλf (x)dx .

Define,

A :=

{
x ∈ [−1, 1]n|

∣∣∣∣ d

dx Inn
f (x)

∣∣∣∣ ≥ ε

}
.

So,

J(λ) ≤

∣∣∣∣∣∣
∫
A

e iλf (x)dx

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫
Ā

e iλf (x)dx

∣∣∣∣∣∣∣ .
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Multivariate Van der Corput

We first bound Ā.

The main observation is that d

dx Inn
f is a polynomial of degree d − In

with sum of coefficients at least 1,∣∣∣∣∣∣∣
∫
Ā

e iλf (x)dx

∣∣∣∣∣∣∣ ≤
∫
Ā

1dx = P
(∣∣∣∣ d

dx Inn
f (X )

∣∣∣∣ ≤ ε

)
≲ ε

1
d−In .

21



Multivariate Van der Corput

We also bound ∣∣∣∣∣∣∣
∫
Ā

e iλf (x)dx

∣∣∣∣∣∣∣ ≲
1

(|λ|ε)
1
In

.

High-level idea:

� Decompose x = (x̃ , xn) and fx̃(xn) = f (x).

� On A, for every x̃ , |f (In)x̃ | ≥ ε.

� Use one-dimensional results for fx̃ .

22
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High-level idea:

� Decompose x = (x̃ , xn) and fx̃(xn) = f (x).

� On A, for every x̃ , |f (In)x̃ | ≥ ε.

� Use one-dimensional results for fx̃ .
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Multivariate Van der Corput

J(λ) ≤

∣∣∣∣∣∣
∫
A

e if λ(x)dx

∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫
Ā

e if λ(x)dx

∣∣∣∣∣∣∣
≤ 1

(|λ|ε)
1
In

+ ε
1

d−In .

Optimize over ε to get,

J(λ) ≲
1

|λ|
1
d

.

Question

Is the condition |vI | ≥ 1 necessary?
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Beyond products

Recall that if X ∼ Uniform(Bn
p ) and f (x) = 1√

n
∥x∥pp,

Var(f (X )) = o(1).

However, in these cases we have,

E
[
f (X )2

]
= ω(1).

Can we get dimension-free estimates on E
[(

X⊗d
)(

X⊗d
)T

]
,

instead of Cov
(
X⊗d

)
?

Is E
[
f (X )2

]
large, when

∑
v2I = 1?
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Isotropic Lp balls

Let Y ∼ 1
z e

−∥x∥ppdx and U ∼ Uniform([0, 1]). Then

X = n
1
pU

Z

∥Z∥p
.

Since Z is a product measure, for any homogeneous function,

E
[
f (X )2

]
≃ n

2d
p E

[
f (Z )2

∥Z∥2dp

]
≳ 1.
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Euclidean balls

1. If X is uniform on the isotropic Euclidean ball, we identify all

eigenvalues of Cov
(
X⊗d

)
.

2. Eigenvectors are given by ∥x∥2k2 Hd−2k , where Hd−2k are

degree d − 2k spherical harmonics.

3. If f (x) = ∥x∥22, Var(f (X )) ≃ 1
n .

4. If f is orthogonal to ∥x∥22, Var(f (X )) = Ω(1).
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Thank You
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