A stochastic approach for noise stability on the hypercube

Dan Mikulincer

MIT

Joint work with Ronen Eldan and Prasad Raghavendra

1. Noise stability

- 2. "Majority is Stablest"
- 3. A stochastic approach for noise stability via a re-normalized Brownian motion
- 4. Interlude from a toy example to the Courtade-Kumar conjecture
- 5. Back to Majority is Stablest

Consider the discrete hypercube $C_n = \{-1, 1\}^n$ with its uniform probability measure μ .

For $ho\in(0,1)$ define the noise operator $T_
ho$, by

 $T_{\rho}f(x) = \mathbb{E}_{y \sim \rho \text{ correlated with } x} [f(y)].$

We say that y is ρ correlated with x if $\mathbb{E}[y_i x_i] = \rho$. In other words, the law of y is the unique product measure with $\mathbb{E}[y] = \rho x$.

Consider the discrete hypercube $C_n = \{-1, 1\}^n$ with its uniform probability measure μ .

For $ho \in (0,1)$ define the noise operator $T_{
ho}$, by

$$\mathcal{T}_
ho f(x) = \mathbb{E}_{y \sim
ho}$$
 correlated with $_x \left[f(y)
ight].$

We say that y is ρ correlated with x if $\mathbb{E}[y_i x_i] = \rho$. In other words, the law of y is the unique product measure with $\mathbb{E}[y] = \rho x$.

For a Boolean function $f: \mathcal{C}_n \to \{-1, 1\}$, define its noise stability by,

 $\operatorname{Stab}_{\rho}(f) := \mathbb{E}_{\mu} \left[f T_{\rho} f \right].$

Important concept in social choice theory and Boolean analysis. Example:

Theorem (Kalai 02')

If $f : C_n \rightarrow \{-1, 1\}$ is used to rank three candidates,

 $\mathbb{P}_{\mu}(fgives \ a \ rational \ outcome) = \frac{3}{4}(1 + \operatorname{Stab}_{\frac{1}{2}}(f)).$

For a Boolean function $f:\mathcal{C}_n \to \{-1,1\}$, define its noise stability by,

$$\operatorname{Stab}_{\rho}(f) := \mathbb{E}_{\mu} \left[f T_{\rho} f \right].$$

Important concept in social choice theory and Boolean analysis. Example:

Theorem (Kalai 02')

If $f : C_n \rightarrow \{-1, 1\}$ is used to rank three candidates,

$$\mathbb{P}_{\mu}(fgives \ a \ rational \ outcome) = \frac{3}{4}(1 + \operatorname{Stab}_{\frac{1}{3}}(f)).$$

Among all Boolean functions, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x) := x_1$ has the largest noise stability. Not a very useful fact in social choice theory. Define the maximal influence of a Boolean function by:

 $\inf = \max_{i \in [n]} \mathbb{E}_{\mu} \left[(\partial_i f)^2 \right].$

Among all Boolean functions, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x) := x_1$ has the largest noise stability.

Not a very useful fact in social choice theory.

Define the maximal influence of a Boolean function by:

 $\inf = \max_{i \in [n]} \mathbb{E}_{\mu} \left[(\partial_i f)^2 \right].$

Among all Boolean functions, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x) := x_1$ has the largest noise stability.

Not a very useful fact in social choice theory.

Define the maximal influence of a Boolean function by:

$$\inf = \max_{i \in [n]} \mathbb{E}_{\mu} \left[(\partial_i f)^2 \right].$$

Among all Boolean functions **with small maximal influence**, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x) := x_1$ has the largest noise stability.

Not a very useful fact in social choice theory.

Define the maximal influence of a Boolean function by:

 $\inf = \max_{i \in [n]} \mathbb{E}_{\mu} \left[(\partial_i f)^2 \right].$

- 1. Noise stability
- 2. "Majority is Stablest"
- 3. A stochastic approach to noise stability via a re-normalized Brownian motion
- 4. Interlude from a toy example to the Courtade-Kumar conjecture
- 5. Back to Majority is Stablest

Theorem (Mossel-O'Donnel-Oleszkiewicz 05')

Let f be a balanced Boolean function and suppose $\inf(f) \leq \kappa$, then,

$$\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \operatorname{arcsin}(\rho) + O\left(\frac{\log\log(\frac{1}{\kappa})}{\log(\frac{1}{\kappa})}\right)$$

Define the majority function $\operatorname{Maj}_n(x) = \operatorname{sgn}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n x_i\right)$.

- Computation: $\inf(\operatorname{Maj}_n) \leq \frac{1}{\sqrt{n}}$.
- CLT: $\operatorname{Stab}_{\rho}(\operatorname{Maj}_n) \xrightarrow{n \to \infty} \frac{2}{\pi} \operatorname{arcsin}(\rho).$

Theorem (Mossel-O'Donnel-Oleszkiewicz 05')

Let f be a balanced Boolean function and suppose $\inf(f) \leq \kappa$, then,

$$\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \operatorname{arcsin}(\rho) + O\left(\frac{\log\log(\frac{1}{\kappa})}{\log(\frac{1}{\kappa})}\right)$$

Define the majority function $\operatorname{Maj}_n(x) = \operatorname{sgn}\left(\frac{1}{\sqrt{n}}\sum_{i=1}^n x_i\right)$.

- Computation: $\inf(\operatorname{Maj}_n) \leq \frac{1}{\sqrt{n}}$.
- CLT: $\operatorname{Stab}_{\rho}(\operatorname{Maj}_n) \xrightarrow{n \to \infty} \frac{2}{\pi} \operatorname{arcsin}(\rho).$

Majority is Stablest - Proof Sketch

- 1. Prove analogous result in Gaussian space:
 - Noise semi-group is replaced by Ornstein-Uhlenbeck semi-group.
 - Majority is replaced by indicator of halfspace.

Result follows from the isoperimetric inequality.

2. Prove invariance principle for low-influence polynomials:

 $|\mathbb{E}_{\mu}[\pmb{p}] - \mathbb{E}_{\gamma}[\pmb{p}]| \leq O(2^{ ext{degree}(\mathbf{p})} \cdot \inf(\pmb{p})).$

3. Replace f by $T_{\varepsilon}f$, essentially a log-degree polynomial. Turns out that $\varepsilon = \Theta\left(\frac{\log\log(\frac{1}{\kappa})}{\log(\frac{1}{\kappa})}\right)$ works.

- 1. Prove analogous result in Gaussian space:
 - Noise semi-group is replaced by Ornstein-Uhlenbeck semi-group.
 - Majority is replaced by indicator of halfspace.

Result follows from the isoperimetric inequality.

2. Prove invariance principle for low-influence polynomials:

 $|\mathbb{E}_{\mu}[\pmb{\rho}] - \mathbb{E}_{\gamma}[\pmb{\rho}]| \leq O(2^{ ext{degree}(p)} \cdot \inf(\pmb{
ho})).$

3. Replace f by $T_{\varepsilon}f$, essentially a log-degree polynomial. Turns out that $\varepsilon = \Theta\left(\frac{\log \log(\frac{1}{\kappa})}{\log(\frac{1}{\kappa})}\right)$ works.

- 1. Prove analogous result in Gaussian space:
 - Noise semi-group is replaced by Ornstein-Uhlenbeck semi-group.
 - Majority is replaced by indicator of halfspace.

Result follows from the isoperimetric inequality.

2. Prove invariance principle for low-influence polynomials:

 $|\mathbb{E}_{\mu}[\pmb{
ho}] - \mathbb{E}_{\gamma}[\pmb{
ho}]| \leq O(2^{ ext{degree}(p)} \cdot \inf(\pmb{
ho})).$

3. Replace f by $T_{\varepsilon}f$, essentially a log-degree polynomial. Turns out that $\varepsilon = \Theta\left(\frac{\log \log(\frac{1}{\kappa})}{\log(\frac{1}{\kappa})}\right)$ works.

Quantitative Majority is Stablest

We prove a quantitative version of the Majority theorem.

Theorem

Let f be a balanced Boolean function and suppose $\inf(f) \le \kappa$, then,

$$\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \operatorname{arcsin}(\rho) + \operatorname{poly}(\kappa).$$

- The main idea is to realize (Stab_ρ(f))_{ρ≥0} as a measurement of some stochastic process.
- Allows using stochastic analysis to bypass the invariance principle.
- For the proof we introduce a new martingale embedding of μ as a re-normalized Brownian motion.

Quantitative Majority is Stablest

We prove a quantitative version of the Majority theorem.

Theorem

Let f be a balanced Boolean function and suppose $\inf(f) \le \kappa$, then,

$$\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \operatorname{arcsin}(\rho) + \operatorname{poly}(\kappa).$$

- The main idea is to realize (Stab_ρ(f))_{ρ≥0} as a measurement of some stochastic process.
- Allows using stochastic analysis to bypass the invariance principle.
- For the proof we introduce a new martingale embedding of μ as a re-normalized Brownian motion.

- 1. Noise stability
- 2. "Majority is Stablest"
- 3. A stochastic approach to noise stability via a re-normalized Brownian motion
- 4. Interlude from a toy example to the Courtade-Kumar conjecture
- 5. Back to Majority is Stablest

If $f : C_n \to \mathbb{R}$, we extend it harmonically to $f : [-1, 1]^n \to \mathbb{R}$. In particular, $T_{\rho}f(x) = f(\rho x)$. So, if $\mu_{\rho} = \text{Uniform}(\{-\sqrt{\rho}, \sqrt{\rho}\}^n)$,

 $\operatorname{Stab}_{\rho}(f) = \mathbb{E}_{\mu}[f(x) \cdot f(\rho x)] = \mathbb{E}_{\mu}[f(\sqrt{\rho}x) \cdot f(\sqrt{\rho}x)] = \mathbb{E}_{\mu_{\rho}}[f^{2}].$

Now, if u is any measure on [-1,1], an orthogonal decomposition of $L^2(\mu)$ can be used to show

$$\operatorname{Stab}_{\nu}(f) := \mathbb{E}_{\nu^{\otimes n}}[f^2] = \operatorname{Stab}_{\operatorname{Var}(\nu)}(f).$$

If $f : C_n \to \mathbb{R}$, we extend it harmonically to $f : [-1, 1]^n \to \mathbb{R}$. In particular, $T_{\rho}f(x) = f(\rho x)$. So, if $\mu_{\rho} = \text{Uniform}(\{-\sqrt{\rho}, \sqrt{\rho}\}^n)$,

$$\operatorname{Stab}_{\rho}(f) = \mathbb{E}_{\mu}[f(x) \cdot f(\rho x)] = \mathbb{E}_{\mu}[f(\sqrt{\rho}x) \cdot f(\sqrt{\rho}x)] = \mathbb{E}_{\mu_{\rho}}[f^{2}].$$

Now, if u is any measure on [-1,1], an orthogonal decomposition of $L^2(\mu)$ can be used to show

$$\operatorname{Stab}_{\nu}(f) := \mathbb{E}_{\nu^{\otimes n}}[f^2] = \operatorname{Stab}_{\operatorname{Var}(\nu)}(f).$$

If $f : C_n \to \mathbb{R}$, we extend it harmonically to $f : [-1, 1]^n \to \mathbb{R}$. In particular, $T_{\rho}f(x) = f(\rho x)$. So, if $\mu_{\rho} = \text{Uniform}(\{-\sqrt{\rho}, \sqrt{\rho}\}^n)$,

$$\operatorname{Stab}_{\rho}(f) = \mathbb{E}_{\mu}[f(x) \cdot f(\rho x)] = \mathbb{E}_{\mu}[f(\sqrt{\rho}x) \cdot f(\sqrt{\rho}x)] = \mathbb{E}_{\mu_{\rho}}[f^{2}].$$

Now, if ν is any measure on [-1,1], an orthogonal decomposition of $L^2(\mu)$ can be used to show

$$\operatorname{Stab}_{\nu}(f) := \mathbb{E}_{\nu^{\otimes n}}[f^2] = \operatorname{Stab}_{\operatorname{Var}(\nu)}(f).$$

Consider the following martingale,

 $dX(t) = \sigma_t dB(t)$ with $\sigma_t = \text{diag}(\sqrt{(1 - X_i(t))(1 + X_i(t))}),$

and define $\nu_t = \text{Law}(X_1(t))$.

Lemma

 $\operatorname{Var}(\nu_t) = 1 - e^{-t}.$

Proof.

 $X_1(t)^2 = ext{martingale} + (1 - X_1(t)^2)dt$. So, $rac{d}{dt}\mathbb{E}\left[X_1(t)^2\right] = 1 - \mathbb{E}\left[X_1(t)^2\right]$. Now solve an ODE.

If $Y(t)\sim X(\infty)|X(t)$ then $\mathbb{E}[Y(t)]=X(t)$ and $\mathrm{Cov}(Y(t))=\sigma_t.$

Consider the following martingale,

 $dX(t) = \sigma_t dB(t)$ with $\sigma_t = \text{diag}(\sqrt{(1 - X_i(t))(1 + X_i(t))}),$

and define $\nu_t = \text{Law}(X_1(t))$.

Lemma

$$\operatorname{Var}(\nu_t) = 1 - e^{-t}.$$

Proof.

 $X_1(t)^2 = \text{martingale} + (1 - X_1(t)^2)dt$. So, $\frac{d}{dt}\mathbb{E}\left[X_1(t)^2\right] = 1 - \mathbb{E}\left[X_1(t)^2\right]$. Now solve an ODE.

If $Y(t) \sim X(\infty) | X(t)$ then $\mathbb{E}[Y(t)] = X(t)$ and $\operatorname{Cov}(Y(t)) = \sigma_t$.

Consider the following martingale,

 $dX(t) = \sigma_t dB(t)$ with $\sigma_t = \text{diag}(\sqrt{(1 - X_i(t))(1 + X_i(t))}),$

and define $\nu_t = \text{Law}(X_1(t))$.

Lemma

$$\operatorname{Var}(\nu_t) = 1 - e^{-t}.$$

Proof.

 $X_1(t)^2 = \text{martingale} + (1 - X_1(t)^2)dt$. So, $\frac{d}{dt}\mathbb{E}\left[X_1(t)^2\right] = 1 - \mathbb{E}\left[X_1(t)^2\right]$. Now solve an ODE.

If $Y(t) \sim X(\infty) | X(t)$ then $\mathbb{E}[Y(t)] = X(t)$ and $\operatorname{Cov}(Y(t)) = \sigma_t$.

Let $f : C_n \to \{-1, 1\}$ and define the martingale $N_t = f(X(t))$. Observe,

$$\mathbb{E}\left[[N]_t\right] = \mathbb{E}[N_t^2] = \mathbb{E}_{\nu_t^{\otimes n}}\left[f^2\right]$$
$$= \operatorname{Stab}_{\operatorname{Var}(\nu_t)}(f) = \operatorname{Stab}_{1-e^{-t}}(f).$$

The proof goes by finding a "model process" M_t to represent $\operatorname{Stab}_{\rho}(\operatorname{Maj})$ and a coupling which affords an almost-sure path-wise inequality,

 $[N]_t \leq [M]_t.$

Let $f : \mathcal{C}_n \to \{-1, 1\}$ and define the martingale $N_t = f(X(t))$. Observe,

$$\mathbb{E}\left[[N]_t\right] = \mathbb{E}[N_t^2] = \mathbb{E}_{\nu_t^{\otimes n}}\left[f^2\right]$$
$$= \operatorname{Stab}_{\operatorname{Var}(\nu_t)}(f) = \operatorname{Stab}_{1-e^{-t}}(f).$$

The proof goes by finding a "model process" M_t to represent $\operatorname{Stab}_{\rho}(\operatorname{Maj})$ and a coupling which affords an almost-sure path-wise inequality,

 $[N]_t \leq [M]_t.$

Let $f : \mathcal{C}_n \to \{-1, 1\}$ and define the martingale $N_t = f(X(t))$. Observe,

$$\mathbb{E}\left[[N]_t\right] = \mathbb{E}[N_t^2] = \mathbb{E}_{\nu_t^{\otimes n}}\left[f^2\right]$$
$$= \operatorname{Stab}_{\operatorname{Var}(\nu_t)}(f) = \operatorname{Stab}_{1-e^{-t}}(f).$$

The proof goes by finding a "model process" M_t to represent $\operatorname{Stab}_{\rho}(\operatorname{Maj})$ and a coupling which affords an almost-sure path-wise inequality,

 $[N]_t \leq [M]_t.$

- 1. Noise stability
- 2. "Majority is Stablest"
- 3. A stochastic approach to noise stability via a re-normalized Brownian motion
- 4. Interlude from a toy example to the Courtade-Kumar conjecture
- 5. Back to Majority is Stablest

Theorem

Among all Boolean functions, the dictator maximizes noise stability.

- Let $f : \mathcal{C}_n \to \{-1, 1\}$ and let $g : \mathcal{C}_n \to \{-1, 1\}$, $g(x) = x_1$.
- Define the martingales $N_t = f(X(t)), M_t = g(X(t)) = X_1(t).$
- The theorem will follow, if we can find a coupling of N_t and M_t , such that $[N]_t \leq [M]_t$ almost surely.

Theorem

Among all Boolean functions, the dictator maximizes noise stability.

- Let $f : \mathcal{C}_n \to \{-1, 1\}$ and let $g : \mathcal{C}_n \to \{-1, 1\}$, $g(x) = x_1$.
- Define the martingales $N_t = f(X(t)), M_t = g(X(t)) = X_1(t).$
- The theorem will follow, if we can find a coupling of N_t and M_t , such that $[N]_t \leq [M]_t$ almost surely.

By Itô's formula

$$dM_t = \nabla g(X(t))\sigma_t dB_t = \sqrt{(1-X_1(t))(1+X_1(t))}dB_t.$$

Hence,

$$\frac{d}{dt}[M]_t = (1 - X_1(t))(1 + X_1(t)) = (1 - M_t^2).$$

In a similar way,

$$\frac{d}{dt}[N]_t = \|\nabla f(X(t))\sigma_t\|_2^2 = \sum_i (1 - X_i(t))(1 + X_i(t))\partial_i f(X(t)).$$

An application of Parseval's inequality gives,

$$\frac{d}{dt}[N]_t \le (1 - f(X(t)))(1 + f(X(t))) = (1 - N_t^2).$$

By Itô's formula

$$dM_t = \nabla g(X(t))\sigma_t dB_t = \sqrt{(1-X_1(t))(1+X_1(t))}dB_t.$$

Hence,

$$\frac{d}{dt}[M]_t = (1 - X_1(t))(1 + X_1(t)) = (1 - M_t^2)$$

In a similar way,

$$\frac{d}{dt}[N]_t = \|\nabla f(X(t))\sigma_t\|_2^2 = \sum_i (1 - X_i(t))(1 + X_i(t))\partial_i f(X(t)).$$

An application of Parseval's inequality gives,

$$\frac{d}{dt}[N]_t \leq (1 - f(X(t)))(1 + f(X(t))) = (1 - N_t^2).$$

By the Dambis-Dubins-Schwartz theorem, there exists a Brownian motion W_t , such that,

$$W_{[N]_t} = N_t$$
 and $W_{[M]_t} = M_t$.

Reversing roles, for $\tau \ge 0$, write,

$$W_{\tau} = N_{T_1(\tau)} = M_{T_2(\tau)}$$

So, keeping in mind that T_1 is the inverse function of $t \to [N]_t$

$$T_2'(au) = rac{1}{1-M_{T_2(au)}^2} = rac{1}{1-W_{ au}^2} = rac{1}{1-N_{T_1(au)}^2} \leq T_1'(au).$$

Hence, almost surely, $T_2(\tau) \leq T_1(\tau) \implies [M]_{\tau} \geq [N]_{\tau}$.

By the Dambis-Dubins-Schwartz theorem, there exists a Brownian motion W_t , such that,

$$W_{[N]_t} = N_t$$
 and $W_{[M]_t} = M_t$.

Reversing roles, for $\tau \ge 0$, write,

$$W_{\tau} = N_{T_1(\tau)} = M_{T_2(\tau)}$$

So, keeping in mind that T_1 is the inverse function of $t \to [N]_t$

$$T_2'(au) = rac{1}{1-M_{T_2(au)}^2} = rac{1}{1-W_{ au}^2} = rac{1}{1-N_{T_1(au)}^2} \leq T_1'(au).$$

Hence, almost surely, $T_2(\tau) \leq T_1(\tau) \implies [M]_{\tau} \geq [N]_{\tau}$.

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be any convex function and fix $t \ge 0$.

$$\begin{split} \mathbb{E}\left[\varphi(M_t)\right] &= \mathbb{E}\left[\varphi(W_{[M]_t})\right] = \mathbb{E}\left[\mathbb{E}\left[\varphi(W_{[M]_t})|W_{[N]_t}\right]\right] \\ &\geq \mathbb{E}\left[\varphi\left(\mathbb{E}\left[W_{[M]_t}|W_{[N]_t}\right]\right)\right] = \mathbb{E}\left[\varphi\left(W_{[N]_t}\right)\right] \\ &= \mathbb{E}\left[\varphi(N_t)\right]. \end{split}$$

Choose $\varphi(x) = x \log(x) + (1-x) \log(1-x)$, to get,

 $\mathbb{E}\left[\varphi(N_t)\right] = \mathbb{E}\left[\varphi\left(\mathbb{E}\left[f(X(\infty))|X(t)\right]\right)\right] = -\mathrm{Ent}(f(X(\infty))|X(t)).$

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be any convex function and fix $t \ge 0$.

$$\begin{split} \mathbb{E}\left[\varphi(M_t)\right] &= \mathbb{E}\left[\varphi(W_{[M]_t})\right] = \mathbb{E}\left[\mathbb{E}\left[\varphi(W_{[M]_t})|W_{[N]_t}\right]\right] \\ &\geq \mathbb{E}\left[\varphi\left(\mathbb{E}\left[W_{[M]_t}|W_{[N]_t}\right]\right)\right] = \mathbb{E}\left[\varphi\left(W_{[N]_t}\right)\right] \\ &= \mathbb{E}\left[\varphi(N_t)\right]. \end{split}$$

Choose $\varphi(x) = x \log(x) + (1 - x) \log(1 - x)$, to get,

 $\mathbb{E}\left[\varphi(N_t)\right] = \mathbb{E}\left[\varphi\left(\mathbb{E}\left[f(X(\infty))|X(t)]\right)\right] = -\mathrm{Ent}(f(X(\infty))|X(t)).$

Interlude - Beyond the Toy Example

Define the mutual information I(X; Y) := Ent(X) - Ent(X|Y).

Theorem (Most informative X(t) bit)

Among all Boolean functions, the dictator maximizes the mutual information,

 $\mathrm{I}(f(X(\infty));X(t)).$

Compare this with the 'most informative bit' conjecture of Courtade and Kumar.

Conjecture

Among all Boolean functions, the dictator maximizes the mutual information,

I(f(X); Y),

where X and Y are ρ -correlated copies of uniform vectors on \mathcal{C}_n .

Interlude - Beyond the Toy Example

Define the mutual information I(X; Y) := Ent(X) - Ent(X|Y).

Theorem (Most informative X(t) **bit)**

Among all Boolean functions, the dictator maximizes the mutual information,

 $I(f(X(\infty)); X(t)).$

Compare this with the 'most informative bit' conjecture of Courtade and Kumar.

Conjecture

Among all Boolean functions, the dictator maximizes the mutual information,

I(f(X); Y),

where X and Y are ρ -correlated copies of uniform vectors on C_n .

• Note that while $X(\infty)$ and X(t) are correlated vectors, in general

 $(X(\infty), X(t)) \neq (X, Y),$

for a ρ -correlated pair (X, Y).

- Thus while the theorem is in the spirit of the Courtade-Kumar conjecture, it proves it with respect to a different noise model.
- Interestingly, the analog of the relation E [φ(M_t)] ≥ E [φ(N_t)], for general convex φ is known to be under for the 'usual' noise semi-group.

• Note that while $X(\infty)$ and X(t) are correlated vectors, in general

 $(X(\infty), X(t)) \neq (X, Y),$

for a ρ -correlated pair (X, Y).

- Thus while the theorem is in the spirit of the Courtade-Kumar conjecture, it proves it with respect to a different noise model.
- Interestingly, the analog of the relation E [φ(M_t)] ≥ E [φ(N_t)], for general convex φ is known to be under for the 'usual' noise semi-group.

- 1. Noise stability
- 2. "Majority is Stablest"
- 3. A stochastic approach to noise stability via a re-normalized Brownian motion
- 4. Interlude from a toy example to the Courtade-Kumar conjecture
- 5. Back to Majority is Stablest

Theorem

Let f be a balanced Boolean function and suppose $\inf(f) \le \kappa$, then,

$$\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \operatorname{arcsin}(\rho) + \operatorname{poly}(\kappa).$$

Main ingredients:

- A martingale $N_t := f(X_t)$.
- A martingale M_t to represent noise stability of majority, or $\frac{2}{\pi} \arcsin(\rho)$.
- A differential equality for $[M]_t$.
- A differential *inequality* for $[N]_t$.

There are infinitely many martingales M_t , which satisfy

$$\mathbb{E}\left[[M]_t\right] = \mathbb{E}\left[M_t^2\right] = \frac{2}{\pi} \arcsin(1 - e^{-t}) = \frac{2}{\pi} \arcsin(\rho).$$

We require one whose paths interact well with the paths of f(X(t)) when f has low influence.

One possibility is to take $M_t = f(Maj_n)$. However, that depends on the dimension.

Instead, we take a limiting object of $\operatorname{Maj}_n(x) = \operatorname{sign}\left(\frac{1}{\sqrt{n}}\sum x_i\right)$ in Gaussian space.

There are infinitely many martingales M_t , which satisfy

$$\mathbb{E}\left[[M]_t\right] = \mathbb{E}\left[M_t^2\right] = \frac{2}{\pi} \arcsin(1 - e^{-t}) = \frac{2}{\pi} \arcsin(\rho).$$

We require one whose paths interact well with the paths of f(X(t)) when f has low influence.

One possibility is to take $M_t = f(Maj_n)$. However, that depends on the dimension.

Instead, we take a limiting object of $\operatorname{Maj}_n(x) = \operatorname{sign}\left(\frac{1}{\sqrt{n}}\sum x_i\right)$ in Gaussian space.

Let Φ stand for the Gaussian CDF and define the *Gaussian* isoperimetric profile:

$$I(x) := \Phi' \circ \Phi^{-1}(x).$$

Now, define M_t by, $dM_t = I(M_t)dB_t$.

It can be shown that $\mathbb{E}[[M]_t]$ encodes the limit of $\operatorname{Stab}_{\rho}(\operatorname{Maj}_n)$. Evidently, we have the differential equality

 $\frac{d}{dt}[M]_t = I(M_t)^2$

Let Φ stand for the Gaussian CDF and define the *Gaussian* isoperimetric profile:

$$I(x) := \Phi' \circ \Phi^{-1}(x).$$

Now, define M_t by, $dM_t = I(M_t)dB_t$.

It can be shown that $\mathbb{E}[[M]_t]$ encodes the limit of $\operatorname{Stab}_{\rho}(\operatorname{Maj}_n)$. Evidently, we have the differential equality

$$\frac{d}{dt}[M]_t = I(M_t)^2$$

Lemma

Let f be a balanced Boolean function and suppose $\inf(f) \le \kappa$, then, if $N_t = f(X(t))$,

$$\frac{d}{dt}[N]_t \lesssim (I(N_t) + \sqrt{\kappa})^2.$$

For the proof, we use the representation,

$$\frac{d}{dt}[N]_t = \|\nabla f(X(t))\sigma_t\|_2^2 = \int_{t \ge \alpha} t d\nu(t),$$

where ν is a marginal of $\frac{X(\infty)|X(t)-X(t)}{\sigma_t}$ in direction ∇f .

Lemma

Let f be a balanced Boolean function and suppose $\inf(f) \le \kappa$, then, if $N_t = f(X(t))$,

$$\frac{d}{dt}[N]_t \lesssim (I(N_t) + \sqrt{\kappa})^2.$$

For the proof, we use the representation,

$$\frac{d}{dt}[N]_t = \|\nabla f(X(t))\sigma_t\|_2^2 = \int_{t \ge \alpha} t d\nu(t),$$

where ν is a marginal of $\frac{X(\infty)|X(t)-X(t)}{\sigma_t}$ in direction ∇f .

Thank You