A stochastic approach for noise stability on the hypercube

Dan Mikulincer
MIT

Joint work with Ronen Eldan and Prasad Raghavendra

Outline

1. Noise stability

2. "Majority is Stablest"
3. A stochastic approach for noise stability via a re-normalized Brownian motion
4. Interlude - from a toy example to the Courtade-Kumar conjecture
5. Back to Majority is Stablest

Noise Operators

Consider the discrete hypercube $\mathcal{C}_{n}=\{-1,1\}^{n}$ with its uniform probability measure μ.

For $\rho \in(0,1)$ define the noise operator T_{ρ}, by

$$
T_{\rho} f(x)=\mathbb{E}_{y \sim \rho \text { correlated with } x}[f(y)]
$$

We say that y is ρ correlated with x if $\mathbb{E}\left[y_{i} x_{i}\right]=\rho$. In other
words, the law of y is the unique product measure with $\mathbb{E}[y]=\rho x$.

Noise Operators

Consider the discrete hypercube $\mathcal{C}_{n}=\{-1,1\}^{n}$ with its uniform probability measure μ.

For $\rho \in(0,1)$ define the noise operator T_{ρ}, by

$$
T_{\rho} f(x)=\mathbb{E}_{y \sim \rho} \text { correlated with } x[f(y)] .
$$

We say that y is ρ correlated with x if $\mathbb{E}\left[y_{i} x_{i}\right]=\rho$. In other words, the law of y is the unique product measure with $\mathbb{E}[y]=\rho x$.

Noise Stability

For a Boolean function $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$, define its noise stability by,

$$
\operatorname{Stab}_{\rho}(f):=\mathbb{E}_{\mu}\left[f T_{\rho} f\right]
$$

Important concept in social choice theory and Boolean analysis. Example:

Theorem (Kalai 02')
If $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$ is used to rank three candidates,
$\mathbb{P}_{\mu}(f$ gives a rational outcome $)=\frac{3}{4}\left(1+\operatorname{Stab}_{\frac{1}{3}}(f)\right)$.

Noise Stability

For a Boolean function $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$, define its noise stability by,

$$
\operatorname{Stab}_{\rho}(f):=\mathbb{E}_{\mu}\left[f T_{\rho} f\right]
$$

Important concept in social choice theory and Boolean analysis.
Example:

Theorem (Kalai 02')

If $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$ is used to rank three candidates,

$$
\mathbb{P}_{\mu}(\text { fgives a rational outcome })=\frac{3}{4}\left(1+\operatorname{Stab}_{\frac{1}{3}}(f)\right) .
$$

Noise Stability

Question

Among all Boolean functions, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x):=x_{1}$
has the largest noise stability.
Not a very useful fact in social choice theory.
Define the maximal influence of a Boolean function by:

Noise Stability

Question

Among all Boolean functions, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x):=x_{1}$ has the largest noise stability.
Not a very useful fact in social choice theory.
Define the maximal influence of a Boolean function by:

Noise Stability

Question

Among all Boolean functions, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x):=x_{1}$ has the largest noise stability.
Not a very useful fact in social choice theory.
Define the maximal influence of a Boolean function by:

$$
\inf =\max _{i \in[n]} \mathbb{E}_{\mu}\left[\left(\partial_{i} f\right)^{2}\right]
$$

Noise Stability

Question

Among all Boolean functions with small maximal influence, which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator $f(x):=x_{1}$ has the largest noise stability.
Not a very useful fact in social choice theory.
Define the maximal influence of a Boolean function by:

$$
\inf =\max _{i \in[n]} \mathbb{E}_{\mu}\left[\left(\partial_{i} f\right)^{2}\right]
$$

Outline

1. Noise stability
2. "Majority is Stablest"
3. A stochastic approach to noise stability via a re-normalized Brownian motion
4. Interlude - from a toy example to the Courtade-Kumar conjecture
5. Back to Majority is Stablest

Majority is Stablest

Theorem (Mossel-O'Donnel-Oleszkiewicz 05')

Let f be a balanced Boolean function and suppose $\inf (f) \leq \kappa$, then,

$$
\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \arcsin (\rho)+O\left(\frac{\log \log \left(\frac{1}{\kappa}\right)}{\log \left(\frac{1}{\kappa}\right)}\right)
$$

- Computation: $\inf \left(\mathrm{Maj}_{n}\right) \leq \frac{1}{\sqrt{n}}$
- CIT.Stah.(Mai) $\xrightarrow{n \rightarrow \infty} \frac{2}{=} \arcsin (\rho)$

Majority is Stablest

Theorem (Mossel-O'Donnel-Oleszkiewicz 05')

Let f be a balanced Boolean function and suppose $\inf (f) \leq \kappa$, then,

$$
\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \arcsin (\rho)+O\left(\frac{\log \log \left(\frac{1}{\kappa}\right)}{\log \left(\frac{1}{\kappa}\right)}\right)
$$

Define the majority function $\operatorname{Maj}_{n}(x)=\operatorname{sgn}\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} x_{i}\right)$.

- Computation: $\inf \left(\mathrm{Maj}_{n}\right) \leq \frac{1}{\sqrt{n}}$.
- CLT: $\operatorname{Stab}_{\rho}\left(\operatorname{Maj}_{n}\right) \xrightarrow{n \rightarrow \infty} \frac{2}{\pi} \arcsin (\rho)$.

Majority is Stablest - Proof Sketch

1. Prove analogous result in Gaussian space:

- Noise semi-group is replaced by Ornstein-Uhlenbeck semi-group.
- Majority is replaced by indicator of halfspace. Result follows from the isoperimetric inequality.

2. Prove invariance principle for low-influence polynomials $\left|\mathbb{E}_{\mu}[p]-\mathbb{E}_{\gamma}[p]\right| \leq O\left(2^{\text {degree }(\mathrm{p})} \cdot \inf (p)\right)$.
3. Replace f by $T_{\varepsilon} f$, essentially a log-degree polynomial Turns out that $\varepsilon=\Theta\left(\underline{\log \log \left(\frac{1}{\kappa}\right)}\right)$ works

Majority is Stablest - Proof Sketch

1. Prove analogous result in Gaussian space:

- Noise semi-group is replaced by Ornstein-Uhlenbeck semi-group.
- Majority is replaced by indicator of halfspace.

Result follows from the isoperimetric inequality.
2. Prove invariance principle for low-influence polynomials:

$$
\left|\mathbb{E}_{\mu}[p]-\mathbb{E}_{\gamma}[p]\right| \leq O\left(2^{\text {degree }(\mathrm{p})} \cdot \inf (p)\right)
$$

3. Replace f by $T_{\varepsilon} f$, essentially a log-degree polynomial Turns out that $\varepsilon=\Theta\left(\frac{\log \log \left(\frac{1}{\kappa}\right)}{\log \left(\frac{\hbar}{\kappa}\right)}\right)$ works.

Majority is Stablest - Proof Sketch

1. Prove analogous result in Gaussian space:

- Noise semi-group is replaced by Ornstein-Uhlenbeck semi-group.
- Majority is replaced by indicator of halfspace.

Result follows from the isoperimetric inequality.
2. Prove invariance principle for low-influence polynomials:

$$
\left|\mathbb{E}_{\mu}[p]-\mathbb{E}_{\gamma}[p]\right| \leq O\left(2^{\text {degree }(\mathrm{p})} \cdot \inf (p)\right)
$$

3. Replace f by $T_{\varepsilon} f$, essentially a log-degree polynomial. Turns out that $\varepsilon=\Theta\left(\frac{\log \log \left(\frac{1}{k}\right)}{\log \left(\frac{1}{\kappa}\right)}\right)$ works.

Quantitative Majority is Stablest

We prove a quantitative version of the Majority theorem.

Theorem

Let f be a balanced Boolean function and suppose $\inf (f) \leq \kappa$, then,

$$
\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \arcsin (\rho)+\operatorname{poly}(\kappa)
$$

- The main idea is to realize $\left(\operatorname{Stab}_{\rho}(f)\right)_{\rho \geq 0}$ as a measurement of some stochastic process.
- Allows using stochastic analysis to bypass the invariance principle
- For the nroof we introduce a new martingale embedding of μ as a re-normalized Brownian motion.

Quantitative Majority is Stablest

We prove a quantitative version of the Majority theorem.

Theorem

Let f be a balanced Boolean function and suppose $\inf (f) \leq \kappa$, then,

$$
\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \arcsin (\rho)+\operatorname{poly}(\kappa)
$$

- The main idea is to realize $\left(\operatorname{Stab}_{\rho}(f)\right)_{\rho \geq 0}$ as a measurement of some stochastic process.
- Allows using stochastic analysis to bypass the invariance principle.
- For the proof we introduce a new martingale embedding of μ as a re-normalized Brownian motion.

Outline

1. Noise stability
2. "Majority is Stablest"
3. A stochastic approach to noise stability via a re-normalized Brownian motion
4. Interlude - from a toy example to the Courtade-Kumar conjecture
5. Back to Majority is Stablest

Noise Stability - an Observation

If $f: \mathcal{C}_{n} \rightarrow \mathbb{R}$, we extend it harmonically to $f:[-1,1]^{n} \rightarrow \mathbb{R}$. In particular, $T_{\rho} f(x)=f(\rho x)$. So, if $\mu_{\rho}=$ Uniform $\left(\{-\sqrt{\rho}, \sqrt{\rho}\}^{n}\right)$,
$\operatorname{Stab}_{\rho}(f)=\mathbb{E}_{\mu}[f(x) \cdot f(\rho x)]=\mathbb{E}_{\mu}[f(\sqrt{\rho} x) \cdot f(\sqrt{\rho} x)]=\mathbb{E}_{\mu_{\rho}}\left[f^{2}\right]$
Now, if ν is any measure on $[-1,1]$, an orthogonal decomposition of $L^{2}(\mu)$ can be used to show

$$
\operatorname{Stab}_{\nu}(f):=\mathbb{E}_{\nu \otimes n}\left[f^{2}\right]=\operatorname{Stab}_{\operatorname{Var}(\nu)}(f) .
$$

Noise Stability - an Observation

If $f: \mathcal{C}_{n} \rightarrow \mathbb{R}$, we extend it harmonically to $f:[-1,1]^{n} \rightarrow \mathbb{R}$. In particular, $T_{\rho} f(x)=f(\rho x)$. So, if $\mu_{\rho}=\operatorname{Uniform}\left(\{-\sqrt{\rho}, \sqrt{\rho}\}^{n}\right)$,
$\operatorname{Stab}_{\rho}(f)=\mathbb{E}_{\mu}[f(x) \cdot f(\rho x)]=\mathbb{E}_{\mu}[f(\sqrt{\rho} x) \cdot f(\sqrt{\rho} x)]=\mathbb{E}_{\mu_{\rho}}\left[f^{2}\right]$.
Now, if ν is any measure on $[-1,1]$, an orthogonal decomposition of $L^{2}(\mu)$ can be used to show
$\operatorname{Stab}_{\nu}(f):=\mathbb{E}_{\nu \otimes n}\left[f^{2}\right]=\operatorname{Stab}_{\operatorname{Var}(\nu)}(f)$.

Noise Stability - an Observation

If $f: \mathcal{C}_{n} \rightarrow \mathbb{R}$, we extend it harmonically to $f:[-1,1]^{n} \rightarrow \mathbb{R}$. In particular, $T_{\rho} f(x)=f(\rho x)$. So, if $\mu_{\rho}=\operatorname{Uniform}\left(\{-\sqrt{\rho}, \sqrt{\rho}\}^{n}\right)$,

$$
\operatorname{Stab}_{\rho}(f)=\mathbb{E}_{\mu}[f(x) \cdot f(\rho x)]=\mathbb{E}_{\mu}[f(\sqrt{\rho} x) \cdot f(\sqrt{\rho} x)]=\mathbb{E}_{\mu_{\rho}}\left[f^{2}\right] .
$$

Now, if ν is any measure on $[-1,1]$, an orthogonal decomposition of $L^{2}(\mu)$ can be used to show

$$
\operatorname{Stab}_{\nu}(f):=\mathbb{E}_{\nu{ }^{\otimes n}}\left[f^{2}\right]=\operatorname{Stab}_{\operatorname{Var}(\nu)}(f)
$$

A Re-normalized Brownian Motion

Consider the following martingale,

$$
d X(t)=\sigma_{t} d B(t) \text { with } \sigma_{t}=\operatorname{diag}\left(\sqrt{\left(1-X_{i}(t)\right)\left(1+X_{i}(t)\right)}\right)
$$

and define $\nu_{t}=\operatorname{Law}\left(X_{1}(t)\right)$.

A Re-normalized Brownian Motion

Consider the following martingale,

$$
d X(t)=\sigma_{t} d B(t) \text { with } \sigma_{t}=\operatorname{diag}\left(\sqrt{\left(1-X_{i}(t)\right)\left(1+X_{i}(t)\right)}\right)
$$

and define $\nu_{t}=\operatorname{Law}\left(X_{1}(t)\right)$.

Lemma

$\operatorname{Var}\left(\nu_{t}\right)=1-e^{-t}$.

Proof.

$X_{1}(t)^{2}=$ martingale $+\left(1-X_{1}(t)^{2}\right) d t$. So,
$\frac{d}{d t} \mathbb{E}\left[X_{1}(t)^{2}\right]=1-\mathbb{E}\left[X_{1}(t)^{2}\right]$. Now solve an ODE.
If $Y(t) \sim X(\infty) \mid X(t)$ then $\mathbb{E}[Y(t)]=X(t)$ and $\operatorname{Cov}(Y(t))=\sigma_{t}$.

A Re-normalized Brownian Motion

Consider the following martingale,

$$
d X(t)=\sigma_{t} d B(t) \text { with } \sigma_{t}=\operatorname{diag}\left(\sqrt{\left(1-X_{i}(t)\right)\left(1+X_{i}(t)\right)}\right)
$$

and define $\nu_{t}=\operatorname{Law}\left(X_{1}(t)\right)$.

Lemma

$\operatorname{Var}\left(\nu_{t}\right)=1-e^{-t}$.

Proof.

$X_{1}(t)^{2}=$ martingale $+\left(1-X_{1}(t)^{2}\right) d t$. So,
$\frac{d}{d t} \mathbb{E}\left[X_{1}(t)^{2}\right]=1-\mathbb{E}\left[X_{1}(t)^{2}\right]$. Now solve an ODE.
If $Y(t) \sim X(\infty) \mid X(t)$ then $\mathbb{E}[Y(t)]=X(t)$ and $\operatorname{Cov}(Y(t))=\sigma_{t}$.

General Proof Strategy

Let $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$ and define the martingale $N_{t}=f(X(t))$. Observe,

The proof goes by finding a "model process" M_{t} to represent Stab_{ρ} (Maj) and a coupling which affords an almost-sure path-wise inequality,

General Proof Strategy

Let $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$ and define the martingale $N_{t}=f(X(t))$.
Observe,

$$
\begin{aligned}
\mathbb{E}\left[[N]_{t}\right] & =\mathbb{E}\left[N_{t}^{2}\right]=\mathbb{E}_{\nu_{t}^{\otimes n}}\left[f^{2}\right] \\
& =\operatorname{Stab}_{\operatorname{Var}\left(\nu_{t}\right)}(f)=\operatorname{Stab}_{1-e^{-t}}(f)
\end{aligned}
$$

The proof goes by finding a "model process" M_{t} to represent
Stab_{ρ} (Maj) and a coupling which affords an almost-sure path-wise
inequality,

$$
[N]_{t} \leq[M]_{t} .
$$

General Proof Strategy

Let $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$ and define the martingale $N_{t}=f(X(t))$.
Observe,

$$
\begin{aligned}
\mathbb{E}\left[[N]_{t}\right] & =\mathbb{E}\left[N_{t}^{2}\right]=\mathbb{E}_{\nu_{t}^{\otimes n}}\left[f^{2}\right] \\
& =\operatorname{Stab}_{\operatorname{Var}\left(\nu_{t}\right)}(f)=\operatorname{Stab}_{1-e^{-t}}(f)
\end{aligned}
$$

The proof goes by finding a "model process" M_{t} to represent $\operatorname{Stab}_{\rho}$ (Maj) and a coupling which affords an almost-sure path-wise inequality,

$$
[N]_{t} \leq[M]_{t}
$$

Outline

1. Noise stability
2. "Majority is Stablest"
3. A stochastic approach to noise stability via a re-normalized Brownian motion
4. Interlude - from a toy example to the Courtade-Kumar conjecture
5. Back to Majority is Stablest

Interlude - Toy Example

Theorem

Among all Boolean functions, the dictator maximizes noise stability.

- Let $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$ and let $g: \mathcal{C}_{n} \rightarrow\{-1,1\}, g(x)=x_{1}$.
- Define the martingales $N_{+}=f(X(t)) . M_{+}=g(X(t))=X_{1}(t)$.
- The theorem will follow, if we can find a coupling of N_{t} and M_{t}, such that $[N]_{t} \leq[M]_{t}$ almost surely.

Interlude - Toy Example

Theorem

Among all Boolean functions, the dictator maximizes noise stability.

- Let $f: \mathcal{C}_{n} \rightarrow\{-1,1\}$ and let $g: \mathcal{C}_{n} \rightarrow\{-1,1\}, g(x)=x_{1}$.
- Define the martingales $N_{t}=f(X(t)), M_{t}=g(X(t))=X_{1}(t)$.
- The theorem will follow, if we can find a coupling of N_{t} and M_{t}, such that $[N]_{t} \leq[M]_{t}$ almost surely.

Interlude - Quadratic Variation

By Itô's formula

$$
d M_{t}=\nabla g(X(t)) \sigma_{t} d B_{t}=\sqrt{\left(1-X_{1}(t)\right)\left(1+X_{1}(t)\right)} d B_{t} .
$$

Hence,

$$
\frac{d}{d t}[M]_{t}=\left(1-X_{1}(t)\right)\left(1+X_{1}(t)\right)=\left(1-M_{t}^{2}\right)
$$

An application of Parseval's inequality gives,

Interlude - Quadratic Variation

By Itô's formula

$$
d M_{t}=\nabla g(X(t)) \sigma_{t} d B_{t}=\sqrt{\left(1-X_{1}(t)\right)\left(1+X_{1}(t)\right)} d B_{t}
$$

Hence,

$$
\frac{d}{d t}[M]_{t}=\left(1-X_{1}(t)\right)\left(1+X_{1}(t)\right)=\left(1-M_{t}^{2}\right)
$$

In a similar way,

$$
\frac{d}{d t}[N]_{t}=\left\|\nabla f(X(t)) \sigma_{t}\right\|_{2}^{2}=\sum_{i}\left(1-X_{i}(t)\right)\left(1+X_{i}(t)\right) \partial_{i} f(X(t))
$$

An application of Parseval's inequality gives,

$$
\frac{d}{d t}[N]_{t} \leq(1-f(X(t)))(1+f(X(t)))=\left(1-N_{t}^{2}\right)
$$

Interlude - a Coupling

By the Dambis-Dubins-Schwartz theorem, there exists a Brownian motion W_{t}, such that,

$$
W_{[N]_{t}}=N_{t} \text { and } W_{[M]_{t}}=M_{t}
$$

Reversing roles, for $\tau \geq 0$, write,

$$
W_{\tau}=N_{T_{1}(\tau)}=M_{T_{2}(\tau)}
$$

So, keeping in mind that T_{1} is the inverse function of $t \rightarrow[N]_{t}$

Hence, almost surely, $T_{2}(\tau) \leq T_{1}(\tau) \Longrightarrow[M]_{\tau} \geq[N]_{\tau}$.

Interlude - a Coupling

By the Dambis-Dubins-Schwartz theorem, there exists a Brownian motion W_{t}, such that,

$$
W_{[N]_{t}}=N_{t} \text { and } W_{[M]_{t}}=M_{t}
$$

Reversing roles, for $\tau \geq 0$, write,

$$
W_{\tau}=N_{T_{1}(\tau)}=M_{T_{2}(\tau)}
$$

So, keeping in mind that T_{1} is the inverse function of $t \rightarrow[N]_{t}$

$$
T_{2}^{\prime}(\tau)=\frac{1}{1-M_{T_{2}(\tau)}^{2}}=\frac{1}{1-W_{\tau}^{2}}=\frac{1}{1-N_{T_{1}(\tau)}^{2}} \leq T_{1}^{\prime}(\tau)
$$

Hence, almost surely, $T_{2}(\tau) \leq T_{1}(\tau) \Longrightarrow[M]_{\tau} \geq[N]_{\tau}$.

Interlude - Beyond the Toy Example

Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be any convex function and fix $t \geq 0$.

$$
\begin{aligned}
\mathbb{E}\left[\varphi\left(M_{t}\right)\right] & =\mathbb{E}\left[\varphi\left(W_{[M]_{t}}\right)\right]=\mathbb{E}\left[\mathbb{E}\left[\varphi\left(W_{[M]_{t}}\right) W_{\left.[N]_{t}\right]}\right]\right. \\
& \geq \mathbb{E}\left[\varphi\left(\mathbb{E}\left[W_{[M]_{t}} \mid W_{[N]_{t}}\right]\right)\right]=\mathbb{E}\left[\varphi\left(W_{[N]_{t}}\right)\right] \\
& =\mathbb{E}\left[\varphi\left(N_{t}\right)\right] .
\end{aligned}
$$

Choose $\varphi(x)=x \log (x)+(1-x) \log (1-x)$, to get,
$\mathbb{E}\left[\varphi\left(N_{t}\right)\right]=\mathbb{E}[\varphi(\mathbb{E}[f(X(\infty)) \mid X(t)])]=-\operatorname{Ent}(f(X(\infty)) \mid X(t))$.

Interlude - Beyond the Toy Example

Let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be any convex function and fix $t \geq 0$.

$$
\begin{aligned}
\mathbb{E}\left[\varphi\left(M_{t}\right)\right] & =\mathbb{E}\left[\varphi\left(W_{[M]_{t}}\right)\right]=\mathbb{E}\left[\mathbb{E}\left[\varphi\left(W_{[M]_{t}}\right) \mid W_{\left.[N]_{t}\right]}\right]\right. \\
& \geq \mathbb{E}\left[\varphi\left(\mathbb{E}\left[W_{[M]_{t}} \mid W_{[N]_{t}}\right]\right)\right]=\mathbb{E}\left[\varphi\left(W_{[N]_{t}}\right)\right] \\
& =\mathbb{E}\left[\varphi\left(N_{t}\right)\right] .
\end{aligned}
$$

Choose $\varphi(x)=x \log (x)+(1-x) \log (1-x)$, to get,

$$
\mathbb{E}\left[\varphi\left(N_{t}\right)\right]=\mathbb{E}[\varphi(\mathbb{E}[f(X(\infty)) \mid X(t)])]=-\operatorname{Ent}(f(X(\infty)) \mid X(t))
$$

Interlude - Beyond the Toy Example

Define the mutual information $\mathrm{I}(X ; Y):=\operatorname{Ent}(X)-\operatorname{Ent}(X \mid Y)$.

Theorem (Most informative $X(t)$ bit)

Among all Boolean functions, the dictator maximizes the mutual information,

$$
\mathrm{I}(f(X(\infty)) ; X(t))
$$

Compare this with the 'most informative bit' conjecture of

Courtade and Kumar
Among all Boolean functions, the dictator maximizes the mutual
information,

where X and Y are ρ-correlated copies of uniform vectors on \mathcal{C}_{n}.

Interlude - Beyond the Toy Example

Define the mutual information $\mathrm{I}(X ; Y):=\operatorname{Ent}(X)-\operatorname{Ent}(X \mid Y)$.

Theorem (Most informative $X(t)$ bit)

Among all Boolean functions, the dictator maximizes the mutual information,

$$
\mathrm{I}(f(X(\infty)) ; X(t))
$$

Compare this with the 'most informative bit' conjecture of
Courtade and Kumar.

Conjecture

Among all Boolean functions, the dictator maximizes the mutual information,

$$
\mathrm{I}(f(X) ; Y)
$$

where X and Y are ρ-correlated copies of uniform vectors on \mathcal{C}_{n}.

Most informative bit theorem

- Note that while $X(\infty)$ and $X(t)$ are correlated vectors, in general

$$
(X(\infty), X(t)) \neq(X, Y)
$$

for a ρ-correlated pair (X, Y).

- Thus while the theorem is in the spirit of the Courtade-Kumar conjecture, it proves it with respect to a different noise model
- Interestingly the analog of the relation $\mathbb{E}\left[\rho\left(M_{t}\right)\right]>\mathbb{E}\left[\varphi_{\varphi}\left(N_{t}\right)\right]$ for general convex φ is known to be under for the 'usual' noise semi-group.

Most informative bit theorem

- Note that while $X(\infty)$ and $X(t)$ are correlated vectors, in general

$$
(X(\infty), X(t)) \neq(X, Y)
$$

for a ρ-correlated pair (X, Y).

- Thus while the theorem is in the spirit of the Courtade-Kumar conjecture, it proves it with respect to a different noise model.
- Interestingly, the analog of the relation $\mathbb{E}\left[\varphi\left(M_{t}\right)\right] \geq \mathbb{E}\left[\varphi\left(N_{t}\right)\right]$, for general convex φ is known to be under for the 'usual' noise semi-group.

Outline

1. Noise stability
2. "Majority is Stablest"
3. A stochastic approach to noise stability via a re-normalized Brownian motion
4. Interlude - from a toy example to the Courtade-Kumar conjecture
5. Back to Majority is Stablest

Back to Majority is Stablest

Theorem

Let f be a balanced Boolean function and suppose $\inf (f) \leq \kappa$, then,

$$
\operatorname{Stab}_{\rho}(f) \leq \frac{2}{\pi} \arcsin (\rho)+\operatorname{poly}(\kappa)
$$

Main ingredients:

- A martingale $N_{t}:=f\left(X_{t}\right)$.
- A martingale M_{t} to represent noise stability of majority, or $\frac{2}{\pi} \arcsin (\rho)$.
- A differential equality for $[M]_{t}$.
- A differential inequality for $[N]_{t}$.

Constructing the Martingale M_{t}

There are infinitely many martingales M_{t}, which satisfy

$$
\mathbb{E}\left[[M]_{t}\right]=\mathbb{E}\left[M_{t}^{2}\right]=\frac{2}{\pi} \arcsin \left(1-e^{-t}\right)=\frac{2}{\pi} \arcsin (\rho) .
$$

We require one whose paths interact well with the paths of $f(X(t))$ when f has low influence.

One possibility is to take $M_{t}=f\left(\mathrm{Maj}_{n}\right)$. However, that depends on the dimension.

Instead, we take a limiting object of $\operatorname{Maj}_{n}(x)=\operatorname{sign}\left(\frac{1}{\sqrt{n}} \sum x_{i}\right)$ in Gaussian space.

Constructing the Martingale M_{t}

There are infinitely many martingales M_{t}, which satisfy

$$
\mathbb{E}\left[[M]_{t}\right]=\mathbb{E}\left[M_{t}^{2}\right]=\frac{2}{\pi} \arcsin \left(1-e^{-t}\right)=\frac{2}{\pi} \arcsin (\rho) .
$$

We require one whose paths interact well with the paths of $f(X(t))$ when f has low influence.

One possibility is to take $M_{t}=f\left(\mathrm{Maj}_{n}\right)$. However, that depends on the dimension. Instead, we take a limiting object of $\operatorname{Maj}_{n}(x)=\operatorname{sign}\left(\frac{1}{\sqrt{n}} \sum x_{i}\right)$ in Gaussian space.

Constructing the Martingale M_{t}

Let Φ stand for the Gaussian CDF and define the Gaussian isoperimetric profile:

$$
I(x):=\Phi^{\prime} \circ \Phi^{-1}(x)
$$

Now, define M_{t} by, $d M_{t}=I\left(M_{t}\right) d B_{t}$.
It can be shown that $\mathbb{E}\left[[M]_{t}\right]$ encodes the limit of $\operatorname{Stab}_{\rho}\left(\mathrm{Maj}_{n}\right)$ Evidently, we have the differential equality

Constructing the Martingale M_{t}

Let Φ stand for the Gaussian CDF and define the Gaussian isoperimetric profile:

$$
I(x):=\Phi^{\prime} \circ \Phi^{-1}(x)
$$

Now, define M_{t} by, $d M_{t}=I\left(M_{t}\right) d B_{t}$.
It can be shown that $\mathbb{E}\left[[M]_{t}\right]$ encodes the limit of $\operatorname{Stab}_{\rho}\left(\mathrm{Maj}_{n}\right)$.
Evidently, we have the differential equality

$$
\frac{d}{d t}[M]_{t}=I\left(M_{t}\right)^{2}
$$

Level 1 Inequality

Lemma

Let f be a balanced Boolean function and suppose $\inf (f) \leq \kappa$, then, if $N_{t}=f(X(t))$,

$$
\frac{d}{d t}[N]_{t} \lesssim\left(I\left(N_{t}\right)+\sqrt{\kappa}\right)^{2} .
$$

For the proof, we use the representation,

where ν is a marginal of $\frac{X(\infty) \mid X(t)-X(t)}{\sigma_{t}}$ in direction ∇f.

Level 1 Inequality

Lemma

Let f be a balanced Boolean function and suppose $\inf (f) \leq \kappa$, then, if $N_{t}=f(X(t))$,

$$
\frac{d}{d t}[N]_{t} \lesssim\left(I\left(N_{t}\right)+\sqrt{\kappa}\right)^{2}
$$

For the proof, we use the representation,

$$
\frac{d}{d t}[N]_{t}=\left\|\nabla f(X(t)) \sigma_{t}\right\|_{2}^{2}=\int_{t \geq \alpha} t d \nu(t)
$$

where ν is a marginal of $\frac{X(\infty) \mid X(t)-X(t)}{\sigma_{t}}$ in direction ∇f.

Thank You

