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Noise Operators

Consider the discrete hypercube Cn = {−1, 1}n with its uniform

probability measure µ.

For ρ ∈ (0, 1) define the noise operator Tρ, by

Tρf (x) = Ey∼ρ correlated with x [f (y)] .

We say that y is ρ correlated with x if E[yixi ] = ρ. In other

words, the law of y is the unique product measure with E[y ] = ρx .
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Noise Stability

For a Boolean function f : Cn → {−1, 1}, define its noise stability

by,

Stabρ(f ) := Eµ [fTρf ] .

Important concept in social choice theory and Boolean analysis.

Example:

Theorem (Kalai 02’)

If f : Cn → {−1, 1} is used to rank three candidates,

Pµ (f gives a rational outcome) =
3

4
(1 + Stab 1

3
(f )).
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Noise Stability

Question

Among all Boolean functions, which one maximizes the noise

stability?

Easy answer: among all Boolean functions the dictator f (x) := x1

has the largest noise stability.

Not a very useful fact in social choice theory.

Define the maximal influence of a Boolean function by:

inf = max
i∈[n]

Eµ
[
(∂i f )2

]
.
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Noise Stability

Question

Among all Boolean functions with small maximal influence,

which one maximizes the noise stability?

Easy answer: among all Boolean functions the dictator f (x) := x1
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Majority is Stablest

Theorem (Mossel-O’Donnel-Oleszkiewicz 05’)

Let f be a balanced Boolean function and suppose inf(f ) ≤ κ,

then,

Stabρ(f ) ≤ 2

π
arcsin(ρ) + O

(
log log( 1

κ)

log( 1
κ)

)
.

Define the majority function Majn(x) = sgn

(
1√
n

n∑
i=1

xi

)
.

� Computation: inf(Majn) ≤ 1√
n

.

� CLT: Stabρ(Majn)
n→∞−−−→ 2

π arcsin(ρ).
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Majority is Stablest - Proof Sketch

1. Prove analogous result in Gaussian space:

� Noise semi-group is replaced by Ornstein-Uhlenbeck

semi-group.

� Majority is replaced by indicator of halfspace.

Result follows from the isoperimetric inequality.

2. Prove invariance principle for low-influence polynomials:

|Eµ[p]− Eγ [p]| ≤ O(2degree(p) · inf(p)).

3. Replace f by Tεf , essentially a log-degree polynomial.

Turns out that ε = Θ

(
log log( 1

κ
)

log( 1
κ
)

)
works.
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Quantitative Majority is Stablest

We prove a quantitative version of the Majority theorem.

Theorem

Let f be a balanced Boolean function and suppose inf(f ) ≤ κ,

then,

Stabρ(f ) ≤ 2

π
arcsin(ρ) + poly(κ).

� The main idea is to realize (Stabρ(f ))ρ≥0 as a measurement

of some stochastic process.

� Allows using stochastic analysis to bypass the invariance

principle.

� For the proof we introduce a new martingale embedding of µ

as a re-normalized Brownian motion.
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Noise Stability - an Observation

If f : Cn → R, we extend it harmonically to f : [−1, 1]n → R. In

particular, Tρf (x) = f (ρx). So, if µρ = Uniform({−√ρ,√ρ}n),

Stabρ(f ) = Eµ[f (x) · f (ρx)] = Eµ[f (
√
ρx) · f (

√
ρx)] = Eµρ [f 2].

Now, if ν is any measure on [−1, 1], an orthogonal decomposition

of L2(µ) can be used to show

Stabν(f ) := Eν⊗n [f 2] = StabVar(ν)(f ).
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A Re-normalized Brownian Motion

Consider the following martingale,

dX (t) = σtdB(t) with σt = diag(
√

(1− Xi (t))(1 + Xi (t))),

and define νt = Law(X1(t)).

Lemma

Var(νt) = 1− e−t .

Proof.

X1(t)2 = martingale + (1− X1(t)2)dt. So,
d
dtE

[
X1(t)2

]
= 1− E

[
X1(t)2

]
. Now solve an ODE.

If Y (t) ∼ X (∞)|X (t) then E[Y (t)] = X (t) and Cov(Y (t)) = σt .
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General Proof Strategy

Let f : Cn → {−1, 1} and define the martingale Nt = f (X (t)).

Observe,

E [[N]t ] = E[N2
t ] = Eν⊗n

t

[
f 2
]

= StabVar(νt)(f ) = Stab1−e−t (f ).

The proof goes by finding a “model process” Mt to represent

Stabρ(Maj) and a coupling which affords an almost-sure path-wise

inequality,

[N]t ≤ [M]t .
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Interlude - Toy Example

Theorem

Among all Boolean functions, the dictator maximizes noise

stability.

� Let f : Cn → {−1, 1} and let g : Cn → {−1, 1}, g(x) = x1.

� Define the martingales Nt = f (X (t)),Mt = g(X (t)) = X1(t).

� The theorem will follow, if we can find a coupling of Nt and

Mt , such that [N]t ≤ [M]t almost surely.
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Interlude - Quadratic Variation

By Itô’s formula

dMt = ∇g(X (t))σtdBt =
√

(1− X1(t))(1 + X1(t))dBt .

Hence,

d

dt
[M]t = (1− X1(t))(1 + X1(t)) = (1−M2

t ).

In a similar way,

d

dt
[N]t = ‖∇f (X (t))σt‖22 =

∑
i

(1− Xi (t))(1 + Xi (t))∂i f (X (t)).

An application of Parseval’s inequality gives,

d

dt
[N]t ≤ (1− f (X (t)))(1 + f (X (t))) = (1− N2

t ).
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Interlude - a Coupling

By the Dambis-Dubins-Schwartz theorem, there exists a Brownian

motion Wt , such that,

W[N]t = Nt and W[M]t = Mt .

Reversing roles, for τ ≥ 0, write,

Wτ = NT1(τ) = MT2(τ).

So, keeping in mind that T1 is the inverse function of t → [N]t

T ′2(τ) =
1

1−M2
T2(τ)

=
1

1−W 2
τ

=
1

1− N2
T1(τ)

≤ T ′1(τ).

Hence, almost surely, T2(τ) ≤ T1(τ) =⇒ [M]τ ≥ [N]τ .
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Interlude - Beyond the Toy Example

Let ϕ : R→ R be any convex function and fix t ≥ 0.

E [ϕ(Mt)] = E
[
ϕ(W[M]t )

]
= E

[
E
[
ϕ(W[M]t )|W[N]t

]]
≥ E

[
ϕ
(
E
[
W[M]t |W[N]t

])]
= E

[
ϕ
(
W[N]t

)]
= E [ϕ(Nt)] .

Choose ϕ(x) = x log(x) + (1− x) log(1− x), to get,

E [ϕ(Nt)] = E [ϕ (E [f (X (∞))|X (t)])] = −Ent(f (X (∞))|X (t)).
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Interlude - Beyond the Toy Example

Define the mutual information I(X ;Y ) := Ent(X )− Ent(X |Y ).

Theorem (Most informative X (t) bit)

Among all Boolean functions, the dictator maximizes the mutual

information,

I(f (X (∞));X (t)).

Compare this with the ’most informative bit’ conjecture of

Courtade and Kumar.

Conjecture

Among all Boolean functions, the dictator maximizes the mutual

information,

I(f (X );Y ),

where X and Y are ρ-correlated copies of uniform vectors on Cn.
15
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Most informative bit theorem

� Note that while X (∞) and X (t) are correlated vectors, in

general

(X (∞),X (t)) 6= (X ,Y ),

for a ρ-correlated pair (X ,Y ).

� Thus while the theorem is in the spirit of the Courtade-Kumar

conjecture, it proves it with respect to a different noise model.

� Interestingly, the analog of the relation E [ϕ(Mt)] ≥ E [ϕ(Nt)],

for general convex ϕ is known to be under for the ’usual’ noise

semi-group.
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Back to Majority is Stablest

Theorem

Let f be a balanced Boolean function and suppose inf(f ) ≤ κ,

then,

Stabρ(f ) ≤ 2

π
arcsin(ρ) + poly(κ).

Main ingredients:

� A martingale Nt := f (Xt).

� A martingale Mt to represent noise stability of majority, or
2
π arcsin(ρ).

� A differential equality for [M]t .

� A differential inequality for [N]t .
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Constructing the Martingale Mt

There are infinitely many martingales Mt , which satisfy

E [[M]t ] = E
[
M2

t

]
=

2

π
arcsin(1− e−t) =

2

π
arcsin(ρ).

We require one whose paths interact well with the paths of

f (X (t)) when f has low influence.

One possibility is to take Mt = f (Majn). However, that depends

on the dimension.

Instead, we take a limiting object of Majn(x) = sign
(

1√
n

∑
xi

)
in

Gaussian space.
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Constructing the Martingale Mt

Let Φ stand for the Gaussian CDF and define the Gaussian

isoperimetric profile:

I (x) := Φ′ ◦ Φ−1(x).

Now, define Mt by, dMt = I (Mt)dBt .

It can be shown that E [[M]t ] encodes the limit of Stabρ(Majn).

Evidently, we have the differential equality

d

dt
[M]t = I (Mt)

2
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Level 1 Inequality

Lemma

Let f be a balanced Boolean function and suppose inf(f ) ≤ κ,

then, if Nt = f (X (t)),

d

dt
[N]t . (I (Nt) +

√
κ)2.

For the proof, we use the representation,

d

dt
[N]t = ‖∇f (X (t))σt‖22 =

∫
t≥α

tdν(t),

where ν is a marginal of X (∞)|X (t)−X (t)
σt

in direction ∇f .
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Thank You
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