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Transportation of measure

Given probability measures ν and µ, for now in Rd , we seek a

transport map T from ν to µ with “good properties”.

Drawing of a train leaving a high-dimensional city (DALLL·E)
2



Transportation of measure

Transportation: T transports ν to µ if

X ∼ ν ⇒ T (X ) ∼ µ,

µ(A) = ν(T−1(A))

and in terms of densities

dν(x) = dµ(T (x))| detDT (x)|

Good properties: T should be L-Lipschitz:

|T (x)− T (y)| ≤ L|x − y |,

and in terms of derivatives

|∇T (x)| ≤ L.
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Transportation of functional inequalities

∗ log-Sobolev:
∫
f 2 log(f )dν =: Entν(f

2) ≤ CLS(ν)Eν
[
|∇f |2

]
Claim

Suppose ν satisfies a log-Sobolev∗ inequality with constant CLS(ν).

Suppose there exist an L-Lipschitz map T : Rd → Rd which transports

ν to µ. Then, µ satisfies a log-Sobolev inequality with constant

CLS(µ) ≤ CLS(ν)L
2

Proof.

Entµ(f
2) = Entν((f ◦ T )2) ≤ CLS(ν)Eν

[
|∇(f ◦ T )|2

]
≤ CLS(ν)Eν

[
|DT |2|∇f (T )|2

]
≤ CLS(ν)L

2Eν
[
|∇f (T )|2

]
= CLS(ν)L

2Eµ
[
|∇f |2

]
.
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Optimal transport

Brenier 87’: For reasonable µ, ν there exists an optimal transport

map ψopt : Rd → Rd , satisfying:

ψopt = arg min
ψ∗ν=µ

Eν
[
∥ψ(x)− x∥2

]
.

Caffarelli 00’: If ν = γd is the standard Gaussian and µ is more

log-concave, ψopt is 1-Lipschitz.

(strong log-concavity: −∇2 log
(

dµ
dx (x)

)
⪰ Id.)
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Log-Sobolev inequalities

Gaussian log-Sobolev inequality (Gross 75’): For γd the

standard Gaussian and any test function f ,

Entγd (f
2) ≤ Eγd

[
∥∇f ∥2

]
.

Theorem (Bakry-Emery 85’)

If µ is more more log-concave than γd , then CLS(µ) ≤ 1.
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Further results

Caffarelli’s original result was extended in several directions, mostly

when ν = γd , and

� µ is a structured perturbation. Colombo, Figali, Jhaveri

(2017), Colombo, Fathi (2019), and Neeman (2022)

� µ is log-concave with bounded support. Kolesnikov (2011)

and M., Shenfeld (2021)

� µ is a Gaussian mixture. M., Shenfeld (2021) and Klartag,

Putterman (2021)

� µ is isotropic and log-concave.* M., Shenfeld (2021)

All the above examples were known to satisfy log-Sobolev

inequalities.
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Beyond Euclidean spaces

If ν and µ are measures on a Riemannian manifold (M, d) much

less is known.

McCann 2001’: For reasonable µ, ν there exists an optimal

transport map ψopt : M → M, satisfying:

ψopt = arg min
ψ∗ν=µ

Eν
[
d(ψ(x), x)2

]
.

Moreover, if µ, ν have full support, then ψopt is Lipschitz.

Question

Is there an analogue of Caffarelli’s theorem for manifolds?
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Beyond Euclidean spaces - example

Consider M the round sphere with ν as its uniform probability

measure. Let µ be uniform on a hemisphere,

{(x1, . . . xd) ∈ M|x1 > 0}.

The optimal transport map should not be Lipschitz in this case.
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When should Lipschitz transport maps exist?

Question

For a given ν, for which target µ should we expect to have

Lipschitz transport maps?

Rough intuition: the target measure µ should be more

“concentrated” than the source measure ν.

� µ is more log-concave than ν.

� µ is supported on a smaller set than ν.

� µ is a mixture of ν.

� µ is a bounded perturbation of ν.

� µ is a log-Lipschitz perturbation of ν. Today

(i.e.,dν = e−W dµ with W Lipschitz).
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What to expect?

Suppose that ν = γd and that dµ
dγd

= e−W , with W L-Lipschitz.

Miclo’s trick: µ satisfies a log-Sobolev inequality with constant

e
√
dL2 . The proof decomposes W = bounded + concave and then

invokes Holley-Stroock.

Lower bound: If W (x) = L|x | is is straightforward to show that µ

satisfies a log-Sobolev inequality with constant eL
2
.
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Theorem

Theorem (informal)

Let ν and µ be two measures on a Riemannian manifold (M, d).

Assume that (M, d , ν) satisfies an appropriate curvature

assumption and that µ is an L-log-Lipschitz perturbation of ν.

Then, there exists a transport with Lipschitz constant ee
L2

.

Moreover, if M ∈ {Rd ,Sd} then the Lipschitz constant can be

improved to eL
2
.

Theorem (Improved Miclo’s trick)

Let ν = γd and µ as above. Then, CLS(µ) ≤ eL
2
.
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Our approach - Transportation along Langevin dynamics

Kim and E. Milman (2012) were the first to consider

transportation along Langevin dynamics, building on the work of

Otto, Villani (2000). In particular, they were the first to consider

Lipschitz properties.

Rather than constructing the transport map at once as a solution

to an optimization problem, the map is constructed infinitesimally

along the Langevin dynamics.
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Transportation along Langevin dynamics

Let (Xt)t≥0 be the Langevin process:

dXt = ∇ log

(
dν

dx

)
(Xt)dt +

√
2dBt , X0 ∼ µ,

with (Bt)t≥0 a Brownian motion.

Ptη(x) := E [η(Xt)|X0 = x ] Langevin semigroup.

ρt := Pt

(
dµ

dν

)
dν = Law(Xt)

is a path of measures interpolating between ρ0 = µ to ρ∞ = ν.
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The continuity equation

Recall

ρt := Pt

(
dµ

dν

)
dν = Law(Xt).

The Langevin path (ρt) satisfies the continuity equation

∂tρt +∇· (−Vtρt) = 0.

∂tρt +∇·
(
−∇ logPt

(
dµ

dν

)
︸ ︷︷ ︸

=Vt

ρt
)
= 0.

15
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Transportation along Langevin dynamics

Define the family of diffeomorphisms St : Rd → Rd by

∂tSt(x) = Vt(St(x)), S0(x) = x .

St transports µ = ρ0 to ρt and Tt := S−1
t transports ρt to ρ0 = µ.

The transport map along Langevin dynamics is

TLVN := lim
t→∞

Tt transporting ν = ρ∞ to ρ0 = µ.
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Lipschitz properties of TLVN

Recall

∂tSt(x) = Vt(St(x)), S0(x) = x

so

∂t∇St(x) = ∇Vt(St(x))∇St(x).

Lemma

The Lipschitz constant of TLVN is at most

exp
(∫∞

0 supx λmax (−∇Vt) dt
)
.

Hence, the key point is to bound −∇Vt = ∇2 logPt

(
dµ
dν (x)

)
.
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Examples of upper bounds

Known bounds on ∇2 logPt

(
dµ
dν (x)

)
:

� µ is more log-concave than ν = Gaussian [Kim and E. Milman

(2012)]. The Ornstein-Uhlenbeck semigroup (Pt) preserves

log-concavity.

� ν = Gaussian and µ = log-concave with compact support [M.,

Shenfeld (2022)]. ∇2 logPt

(
dµ
dν (x)

)
can be written as a

covariance matrix. Deduce two bounds: one for compact

support and one for log-concavity. Optimize bounds.
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Euclidean spaces

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and µ be two measures on Rd .

Assumptions for the source:

� Convexity: ν is κ log-concave, −∇2 log(dνdx ) ≥ κId.

� Third order regularity:
∣∣∇3 log

(
dν
dx

)∣∣ ≤ K

Assumptions for the target:

� Log-Lipschitz: µ is an L-log-Lipschitz, |∇ log dµ
dν | ≤ L.

Then: TLVN is O
(
exp

(
L2

κ + L√
κ
+ LK

κ2

))
-Lipschitz.
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Bismut’s formula

For f = dµ
dν , integration by parts on Wiener space (Malliavin

calculus) ⇒

∇2Pt f (x) = ∇2E [f (X x
t )] =

1

t
√
2
E
[
∇f (X x

t )∇X x
t

∫ t

0
⟨∇Xs , dBs⟩

]
+

1

t

∫ t

0
E
[
∇Pt−s f (X

x
s )∇2X x

s

]
ds.

where

∇uX
x
t := lim

ε↓0

X x+εu
t − X x

t

ε
∈ Rd ,

∇2
u,vX

x
t := lim

ε↓0

∇vX
x+εu
t −∇vX

x
t

ε
∈ Rd .
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Under the hood

We need to upper bound: ∇f (X x
t ),∇X x

t ,∇2X x
t and∫ t

0 ⟨∇Xs , dBs⟩.

Relative density ∇f (X x
t ): Use L-log-Lipschitz assumption.

First variation ∇Xs : Use κ-log-concavity.

Second variation ∇2Xs : Use κ-log-concavity + K bound on 3rd

derivative of log dν
dx .

Martingale
∫ t
0 ⟨∇Xs , dBs⟩: The correct bound is the key for sharp

result.
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First variation

Recall

dX x
t = ∇ log

(
dν

dx

)
(X x

t )dt +
√
2dBt , X x

0 = x .

Differentiate to get

d

dt
∇X x

t = ∇2 log

(
dν

dx

)
(X x

t )∇X x
t , ∇X x

0 = Id.

So, ∇X x
t can be controlled since −∇2 log

(
dν
dx

)
≥ κId.
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Second variation

Recall

d

dt
∇X x

t = ∇2 log

(
dν

dx

)
(X x

t )∇X x
t , ∇X x

0 = Id.

Differentiate to get

d

dt
∇2X x

t = ∇3 log

(
dµ

dx

)
(X x

t )(∇X x
t ,∇X x

t )

+∇2 log

(
dµ

dx

)
(X x

t )∇2X x
t .

So, ∇2X x
t can be controlled since

∣∣∣∇3 log
(
dµ
dx

)∣∣∣ ≤ K and

−∇2 log
(
dµ
dx

)
≥ κId.
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Second variation

Recall

d

dt
∇X x

t = ∇2 log
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dν

dx

)
(X x

t )∇X x
t , ∇X x

0 = Id.

Differentiate to get
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The martingale

Recall Bismut’s formula:

∇2Pt f (x) =
1

t
√
2
E
[
∇f (X x

t )∇X x
t

∫ t

0
⟨∇Xs , dBs⟩

]
+

1

t

∫ t

0
E
[
∇Pt−s f (X

x
s )∇2X x

s

]
ds.

Need to control E
[
∇f (X x

t )∇X x
t

∫ t

0
⟨∇Xs , dBs⟩

]
. If we control

∇f (X x
t )∇X x

t and
∫ t
0 ⟨∇Xs , dBs⟩ separately we get sub-optimal

results. Instead, a more refined analysis is needed to get the sharp

results.
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Manifolds

Theorem (Fathi, M., Shenfeld (Work in progress))

Let ν and µ be two measures on a Riemannian manifold (M, d).

Assumptions for the source:

� Convexity: (M, d , ν) is CD(κ,∞),

RicM −∇2 log( dν
dVol) ≥ κId.

� Third order regularity:
∣∣∇3 log

(
dν
dVol

)
+ curavture

∣∣ ≤ K

Assumptions for the target:

� Log-Lipschitz: µ is an L-log-Lipschitz, |∇ log dµ
dν | ≤ L.

Then: TLVN is

O

(
exp

(
L2

κ + L√
κ
+ LK

κ2
+ e

L2

κ ∥Riem∥∞
))

-Lipschitz.

Curvature terms := ∇Ric+ d∗Riem+ Riem(∇ log( dν
dVol )). 25
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Bismut’s formula on manifolds

A similar Bismut formula (properly interpreted), due to Cheng

Thalmaier, and Wang also applies on manifolds:

∇2Pt f (x) =
1

t
√
2
E
[
∇f (X x

t )∇X x
t

∫ t

0
⟨∇Xs , dBs⟩

]
+

1

t

∫ t

0
E
[
∇Pt−s f (X

x
s )∇2X x

s

]
ds

+ curvature terms.

Better control of the curvature terms, as in the sphere, can lead to

better bounds.

26



Bismut’s formula on manifolds

A similar Bismut formula (properly interpreted), due to Cheng

Thalmaier, and Wang also applies on manifolds:

∇2Pt f (x) =
1

t
√
2
E
[
∇f (X x

t )∇X x
t

∫ t

0
⟨∇Xs , dBs⟩

]
+

1

t

∫ t

0
E
[
∇Pt−s f (X

x
s )∇2X x

s

]
ds

+ curvature terms.

Better control of the curvature terms, as in the sphere, can lead to

better bounds.

26



Further Questions

� Is third order regularity necessary?

� Is the double exponential necessary?

� More generally, when should we expect the existence of

Lipschitz transport maps on manifolds?

� Even more generally, can we characterize which measures can

be coupled by Lipschitz maps? What about when the source

measure is Gaussian?
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Thank You
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