Transportation along Langevin semigroups

Dan Mikulincer

MIT

Joint work with Yair Shenfeld

Let $X \sim \mu$ be a measure on \mathbb{R}^d and let $G \sim \gamma$ stand for the standard Gaussian. If φ is such that $\varphi(G) \stackrel{law}{=} X$, we call φ a *transport map*. Let $X \sim \mu$ be a measure on \mathbb{R}^d and let $G \sim \gamma$ stand for the standard Gaussian. If φ is such that $\varphi(G) \stackrel{law}{=} X$, we call φ a *transport map*.

The existence and properties of such maps are useful for:

- Generative models and sampling algorithms.
- Understanding analytic properties of μ .

$$\mathcal{W}_2(\mu,\gamma) := \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[||x-y||^2 \right] \right\}^{1/2}$$

where π ranges over all possible couplings of μ and $\gamma.$

$$\mathcal{W}_2(\mu,\gamma) := \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[||x-y||^2 \right] \right\}^{1/2}$$

where π ranges over all possible couplings of μ and $\gamma.$

Brenier 87': There exists a transport map $\psi^{\text{opt}} : \mathbb{R}^d \to \mathbb{R}^d$:

$$\mathbb{E}\left[\|\psi^{\mathrm{opt}}(\boldsymbol{G}) - \boldsymbol{G}\|^2\right] = \mathcal{W}_2^2(\mu, \gamma).$$

$$\mathcal{W}_2(\mu,\gamma) := \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[||x-y||^2 \right] \right\}^{1/2}$$

where π ranges over all possible couplings of μ and γ .

Brenier 87': There exists a transport map $\psi^{\text{opt}} : \mathbb{R}^d \to \mathbb{R}^d$:

$$\mathbb{E}\left[\|\psi^{\mathrm{opt}}(\mathcal{G}) - \mathcal{G}\|^2\right] = \mathcal{W}_2^2(\mu, \gamma).$$

Caffarelli 00': If μ is more log-concave than γ_d , $\psi^{\rm opt}$ is 1-Lipschitz.

$$\mathcal{W}_2(\mu,\gamma) := \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[||x-y||^2 \right] \right\}^{1/2}$$

where π ranges over all possible couplings of μ and $\gamma.$

Brenier 87': There exists a transport map $\psi^{\text{opt}} : \mathbb{R}^d \to \mathbb{R}^d$:

$$\mathbb{E}\left[\|\psi^{\mathrm{opt}}(\mathcal{G})-\mathcal{G}\|^2
ight]=\mathcal{W}_2^2(\mu,\gamma).$$

Caffarelli 00': If μ is more log-concave than γ_d , $\psi^{\rm opt}$ is 1-Lipschitz.

(strong log-concavity:
$$-\nabla^2 \log \left(\frac{d\mu}{dx}(x)\right) \succeq \text{Id.}$$
)

Gaussian Poincaré inequality: For any test function f,

 $\operatorname{Var}(f(G)) \leq \mathbb{E}\left[\|\nabla f(G)\|^2 \right].$

Gaussian Poincaré inequality: For any test function f,

 $\operatorname{Var}(f(G)) \leq \mathbb{E}\left[\|\nabla f(G)\|^2 \right].$

In general, $X\sim \mu$ satisfies a Poincaré inequality with constant $C_{\rm p}(\mu)>$ 0, if,

 $\operatorname{Var}(f(X)) \leq C_{\operatorname{p}}(\mu) \mathbb{E}\left[\| \nabla f(X) \|^2
ight].$

Theorem (Brascamp-Lieb 76')

If μ is more log-concave than γ_d , then $C_p(\mu) \leq 1$.

Theorem (Brascamp-Lieb 76')

If μ is more log-concave than γ_d , then $C_p(\mu) \leq 1$.

Proof.

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \operatorname{Var}_{\gamma_{d}}(f \circ \psi^{\operatorname{opt}}) \leq \mathbb{E}_{\gamma_{d}} \left[\|\nabla \left(f \circ \psi^{\operatorname{opt}} \right)\|^{2} \right] \\ &\leq \mathbb{E}_{\gamma_{d}} \left[\|\nabla \psi^{\operatorname{opt}}\|^{2} \|\nabla f(\psi^{\operatorname{opt}})\|^{2} \right] = \mathbb{E}_{\mu} \left[\|\nabla f\|^{2} \right] \end{aligned}$$

Can we find Lipschitz transport maps for target measures which are not strongly log-concave?

Can we find Lipschitz transport maps for target measures which are not strongly log-concave?

A positive answer will go far beyond Poincaré inequalities:

 Dimension-free Φ-Sobolev inequalities (generalizing both Poincaré and log-Sobolev).

Can we find Lipschitz transport maps for target measures which are not strongly log-concave?

A positive answer will go far beyond Poincaré inequalities:

- Dimension-free Φ-Sobolev inequalities (generalizing both Poincaré and log-Sobolev).
- 2. Bounds for higher eigenvalues of the weighted Laplacian.

Can we find Lipschitz transport maps for target measures which are not strongly log-concave?

A positive answer will go far beyond Poincaré inequalities:

- Dimension-free Φ-Sobolev inequalities (generalizing both Poincaré and log-Sobolev).
- 2. Bounds for higher eigenvalues of the weighted Laplacian.
- 3. Isoperimetric inequalities.

Can we find Lipschitz transport maps for target measures which are not strongly log-concave?

A positive answer will go far beyond Poincaré inequalities:

- Dimension-free Φ-Sobolev inequalities (generalizing both Poincaré and log-Sobolev).
- 2. Bounds for higher eigenvalues of the weighted Laplacian.
- 3. Isoperimetric inequalities.
- 4. Improved rates of convergence for the CLT.

Let $(Y_t)_{t\geq 0}$ be the Langevin dynamics:

$$dY_t = \nabla \log\left(\frac{d\nu}{dx}\right)(Y_t)dt + \sqrt{2}dB_t, \quad Y_0 \sim \mu,$$

with $(B_t)_{t\geq 0}$ a Brownian motion in \mathbb{R}^d .

Let $(Y_t)_{t\geq 0}$ be the Langevin dynamics:

$$dY_t = \nabla \log\left(\frac{d\nu}{dx}\right)(Y_t)dt + \sqrt{2}dB_t, \quad Y_0 \sim \mu_t$$

with $(B_t)_{t\geq 0}$ a Brownian motion in \mathbb{R}^d . Let (Q_t) be the Langevin semigroup: $Q_t\eta(x) = E[\eta(Y_t)|Y_0 = x]$,

Let $(Y_t)_{t\geq 0}$ be the Langevin dynamics:

$$dY_t = \nabla \log\left(\frac{d\nu}{dx}\right)(Y_t)dt + \sqrt{2}dB_t, \quad Y_0 \sim \mu$$

with $(B_t)_{t\geq 0}$ a Brownian motion in \mathbb{R}^d . Let (Q_t) be the Langevin semigroup: $Q_t\eta(x) = E[\eta(Y_t)|Y_0 = x]$, and let $\rho_t := Q_t \left(\frac{d\mu}{d\nu}\right) d\nu = \text{Law}(Y_t)$ so that the path of measures $(\rho_t)_{t\geq 0}$ interpolates between $\rho_0 = \mu$ to $\rho_{\infty} = \nu$.

The Langevin path $(\rho_t)_{t\geq 0}$ satisfies the continuity equation

 $\partial_t \rho_t + \nabla (V_t \rho_t) = 0,$

where

$$V_t(x) = -\nabla \log \left(\frac{d\rho_t}{d\nu}
ight)(x) = -\nabla \log Q_t \left(\frac{d\mu}{d\nu}
ight)(x)$$

(because $\partial_t Q_t \eta = \Delta Q_t \eta + \langle \nabla Q_t \eta, \nabla \log \left(\frac{d \nu}{d x} \right) \rangle$).

Define the family of diffeomorphisms $S_t : \mathbb{R}^d \to \mathbb{R}^d$ by

 $\partial_t S_t(x) = V_t(S_t(x)), \quad S_0(x) = x.$

Define the family of diffeomorphisms $S_t : \mathbb{R}^d \to \mathbb{R}^d$ by

$$\partial_t S_t(x) = V_t(S_t(x)), \quad S_0(x) = x.$$

 S_t transports $\mu = \rho_0$ to ρ_t and $T_t := S_t^{-1}$ transports ρ_t to $\rho_0 = \mu$.

Define the family of diffeomorphisms $S_t : \mathbb{R}^d \to \mathbb{R}^d$ by

$$\partial_t \mathbf{S}_t(x) = V_t(\mathbf{S}_t(x)), \quad \mathbf{S}_0(x) = x.$$

 S_t transports $\mu = \rho_0$ to ρ_t and $T_t := S_t^{-1}$ transports ρ_t to $\rho_0 = \mu$. The transport maps along Langevin semigroups are defined as

$$\begin{split} & \mathcal{S}_{\text{LVN}} := \lim_{t \to \infty} \mathcal{S}_t \quad \text{transports } \mu = \rho_0 \text{ to } \rho_\infty = \nu, \\ & \mathcal{T}_{\text{LVN}} := \lim_{t \to \infty} \mathcal{T}_t \quad \text{transports } \nu = \rho_\infty \text{ to } \rho_0 = \mu. \end{split}$$

Warm-up

Theorem (M, Shenfeld)

• If
$$\nu = \gamma_d$$
 and $\mu = \kappa$ -log-concave (i.e.,
 $-\nabla^2 \log \left(\frac{d\mu}{dx}(x)\right) \succeq \kappa I_d$), for $\kappa > 0$, then T_{LVN} is
 $\frac{1}{\sqrt{\kappa}}$ -Lipschitz. The result is sharp and already follows from
results of Kim and E. Milman.

Warm-up

Theorem (M, Shenfeld)

- If $\nu = \gamma_d$ and $\mu = \kappa$ -log-concave (i.e., $-\nabla^2 \log\left(\frac{d\mu}{dx}(x)\right) \succeq \kappa I_d$), for $\kappa > 0$, then T_{LVN} is $\frac{1}{\sqrt{\kappa}}$ -Lipschitz. The result is sharp and already follows from results of Kim and E. Milman.
- If $\nu = \gamma_d$ and $\mu = log$ -concave and β -log-convex (i.e., $-\nabla^2 \log \left(\frac{d\mu}{dx}(x)\right) \leq \beta I_d$), for $\beta > 0$, then S_{LVN} is $\sqrt{\beta}$ -Lipschitz. The result is sharp.

Warm-up

Theorem (M, Shenfeld)

- If $\nu = \gamma_d$ and $\mu = \kappa$ -log-concave (i.e., $-\nabla^2 \log\left(\frac{d\mu}{dx}(x)\right) \succeq \kappa I_d$), for $\kappa > 0$, then T_{LVN} is $\frac{1}{\sqrt{\kappa}}$ -Lipschitz. The result is sharp and already follows from results of Kim and E. Milman.
- If $\nu = \gamma_d$ and $\mu = log$ -concave and β -log-convex (i.e., $-\nabla^2 \log \left(\frac{d\mu}{dx}(x)\right) \leq \beta I_d$), for $\beta > 0$, then S_{LVN} is $\sqrt{\beta}$ -Lipschitz. The result is sharp.

The theorem parallels the analogous results for the optimal transport map.

• If $\nu = \gamma_d$ and μ is κ -log-concave with diam(supp(μ)) $\leq R$, and $\kappa R^2 < 1$, then T_{LVN} is $e^{\frac{1-\kappa R^2}{2}}R$ -Lipschitz.

• If $\nu = \gamma_d$ and μ is κ -log-concave with diam(supp(μ)) $\leq R$, and $\kappa R^2 < 1$, then T_{LVN} is $e^{\frac{1-\kappa R^2}{2}}R$ -Lipschitz.

 In particular, if μ is log-concave (so κ = 0) with diam(supp(μ)) ≤ R, then T_{LVN} is e^{1/2}R-Lipschitz. The order of the Lipschitz constant is sharp.

• If $\nu = \gamma_d$ and μ is κ -log-concave with diam(supp(μ)) $\leq R$, and $\kappa R^2 < 1$, then T_{LVN} is $e^{\frac{1-\kappa R^2}{2}}R$ -Lipschitz.

 In particular, if μ is log-concave (so κ = 0) with diam(supp(μ)) ≤ R, then T_{LVN} is e^{1/2}R-Lipschitz. The order of the Lipschitz constant is sharp.

The question (due to Kolesnikov) of whether the optimal transport map from γ_d to μ which is log-concave with diam $(\operatorname{supp}(\mu)) \leq R$ is O(R)-Lipschitz, is open.

If $\nu = \gamma_d$ and $\mu = \gamma_d \star m$ with diam(supp(m)) $\leq R$, then T_{LVN} is $e^{\frac{R^2}{2}}$ -Lipschitz. The order of the Lipschitz constant is sharp.

If $\nu = \gamma_d$ and $\mu = \gamma_d \star m$ with diam(supp(m)) $\leq R$, then T_{LVN} is $e^{\frac{R^2}{2}}$ -Lipschitz. The order of the Lipschitz constant is sharp.

The theorem leads to improved log-Sobolev inequalities for mixtures of Gaussians.

There are adaptions of the technique to other settings.

Theorem (M, Shenfeld)

If $\nu = \gamma_{\infty}$ and μ is log-concave and isotropic. There exists map T, such that $T_*\nu = \mu$ and,

 $\mathbb{E}_{\gamma}\left[\|D\Phi\|^2\right] \leq \operatorname{polylog}(d).$

There are adaptions of the technique to other settings.

Theorem (M, Shenfeld)

If $\nu = \gamma_{\infty}$ and μ is log-concave and isotropic. There exists map T, such that $T_*\nu = \mu$ and,

$$\mathbb{E}_{\gamma}\left[\|D\Phi\|^2\right] \leq \operatorname{polylog}(d).$$

The result it tightly connected to the KLS conjecture and builds upon recent advances.

Recall

$$\partial_t \mathbf{S}_t(x) = V_t(\mathbf{S}_t(x)), \quad \mathbf{S}_0(x) = x,$$

Recall

$$\partial_t \mathbf{S}_t(x) = V_t(\mathbf{S}_t(x)), \quad \mathbf{S}_0(x) = x,$$

SO

$$\partial_t \nabla \boldsymbol{S}_t(x) = \nabla V_t(\boldsymbol{S}_t(x)) \nabla \boldsymbol{S}_t(x).$$

Recall

$$\partial_t \mathbf{S}_t(x) = V_t(\mathbf{S}_t(x)), \quad \mathbf{S}_0(x) = x,$$

SO

$$\partial_t \nabla \boldsymbol{S}_t(x) = \nabla V_t(\boldsymbol{S}_t(x)) \nabla \boldsymbol{S}_t(x).$$

Lemma

• The Lipschitz constant of T_{LVN} is at most $\exp\left(\int_0^\infty \sup_x \lambda_{\max}(-\nabla V_t(x))dt\right).$

- The key is to control $\lambda_{\max}(-\nabla V_t(x))$.
- Recall $-\nabla V_t(x) = \nabla^2 \log Q_t \left(\frac{d\mu}{d\gamma_d}\right)(x).$

- The key is to control $\lambda_{\max}(-\nabla V_t(x))$.
- Recall $-\nabla V_t(x) = \nabla^2 \log Q_t \left(\frac{d\mu}{d\gamma_d}\right)(x).$
- We show that ∇V_t(x) can be represented as a covariance matrix of some measure μ_t.
- The measure μ_t turns out to be a Gaussian tilt of the measure μ .
- This allows to bound ∇V_t(x) using covariance inequalities such as Brascamp-Lieb or bounded support inequalities.

Thank You