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The existence and properties of such maps are useful for:

e Generative models and sampling algorithms.

e Understanding analytic properties of .
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Optimal transport

Definition (Wasserstein distance between ;. and ~)

Wa(p,v) = i?rf {EW [HX _ sz] }1/2

where 7 ranges over all possible couplings of 1 and 7.

Brenier 87': There exists a transport map )°P* : R — RY:
E [[ly°PY(G) — GII*] = W5(u. ).

Caffarelli 00': If 4 is more log-concave than 74, 1°P! is 1-Lipschitz.

(strong log-concavity: —V?log (%(x)) = 1d.)
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Gaussian Poincaré inequality: For any test function f,

Var(f(G)) <E[|[VF(6)]] -

In general, X ~ p satisfies a Poincaré inequality with constant
Go(p) > 0, if,

Var(f(X)) < G(0)E [IIVF(X)]?].
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An inequality of Brascamp and Lieb

Theorem (Brascamp-Lieb 76’)

If 11 is more log-concave than 74, then Cy(p) < 1.

Var, (f) = Vary, (f 0 ¥°P%) < E.,, [|IV (£ o ) |12
< Eyy [IVYPYRIVF(9P)I1P] = E, [IVF7] -
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Main question and motivation

Can we find Lipschitz transport maps for target measures which

are not strongly log-concave?

A positive answer will go far beyond Poincaré inequalities:

1. Dimension-free ®-Sobolev inequalities (generalizing both
Poincaré and log-Sobolev).

2. Bounds for higher eigenvalues of the weighted Laplacian.
3. Isoperimetric inequalities.

4. Improved rates of convergence for the CLT.
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How to transport ;i to v?

Let (Y¢)e>0 be the Langevin dynamics:
dv
dY; = Vlog (d )(Yt)dt+fd3t, Yo ~ 1,

with (B;)¢>0 a Brownian motion in R?. Let (Q;) be the Langevin
semigroup Q:n(x) = E[n(Y:)| Yo = x], and let

=@ ,u dv = Law(Y}:) so that the path of measures
(pt)tZO mterpolates between pg = 1 to poo = V.



The continuity equation

The Langevin path (p:)¢>0 satisfies the continuity equation
Ope + V(Vepr) =0,

where

Vi(x) = —V log (‘Zf;) () = — o @ (;’5) (x)

(because 9;Qin = AQwn + (VQem, Vlog (4£))).
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Transportation along Langevin semigroups

Define the family of diffeomorphisms S; : RY — RY by
9eS5e(x) = Ve(Se(x)),  So(x) = x.

S; transports 11 = po to p; and T := S; ! transports p; to po = .
The transport maps along Langevin semigroups are defined as

SN = tIer;O St transports p = pg t0 poo = v,

TwN = tIer;O T transports v = po, to pg = U.
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Warm-up

Theorem (M, Shenfeld)

e Ifv =14 and p = k-log-concave (i.e.,
—V?2log <%(X)) = kly), for k >0, then T yy is

ﬁ—Lipschitz. The result is sharp and already follows from

results of Kim and E. Milman.

e Ifv =14 and pu = log-concave and (3-log-convex (i.e.,
—V2log (%(X)) < Bly), for B> 0, then S,y is
V/B-Lipschitz. The result is sharp.

The theorem parallels the analogous results for the optimal
transport map.
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Semi-log-concave measures with bounded support

Theorem (M, Shenfeld)

o Ifv=ryandpu is k- /og—concave With diam(supp(u)) < R,

and kR%2 < 1, then T yy is e = R Lipschitz.

e In particular, if ju is log-concave (so k = 0) with
diam(supp(u)) < R, then Ty is e'/2R-Lipschitz. The order
of the Lipschitz constant is sharp.

The question (due to Kolesnikov) of whether the optimal transport
map from 7, to p which is log-concave with diam(supp(i)) < R
is O(R)-Lipschitz, is open.
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Gaussian mixtures with bounded mixing measure

Theorem (M, Shenfeld)

If v =74 and . = g * m with diam(supp(m)) < R, then T 1yn
2

is eRT—Lipschitz. The order of the Lipschitz constant is sharp.

The theorem leads to improved log-Sobolev inequalities for
mixtures of Gaussians.



Isotropic log-concave measures - the Brownian transport map

There are adaptions of the technique to other settings.

Theorem (M, Shenfeld)

If v = v5 and p is log-concave and isotropic. There exists map
T, such that T,v = u and,

E, [||D®[*] < polylog(d).
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Isotropic log-concave measures - the Brownian transport map

There are adaptions of the technique to other settings.

Theorem (M, Shenfeld)

If v = v5 and p is log-concave and isotropic. There exists map
T, such that T,v = u and,

E, [||D®[*] < polylog(d).

The result it tightly connected to the KLS conjecture and builds
upon recent advances.
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High level idea of proofs

Recall

0:Se(x) = Vi(S¢(x)), So(x) = x,

B:VSe(x) = VV4(St(x))VSe(x).

Lemma

e The Lipschitz constant of T |y is at most
exp (fooo Supy )‘max(_v Vt(X))dt) .



e The key is to control Amax(—V V4(x)).

e Recall —VV;(x) = V2log Qt(;vl;)(x)'
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e The key is to control Amax(—V V4(x)).

e Recall —VV;(x) = V2log Q; (;éfj) (x).

e We show that V V;(x) can be represented as a covariance
matrix of some measure fi;.

e The measure p; turns out to be a Gaussian tilt of the measure
1.

e This allows to bound V V;(x) using covariance inequalities
such as Brascamp-Lieb or bounded support inequalities.
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