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Transport maps

Let X ∼ µ be a measure on Rd and let G ∼ γ stand for the

standard Gaussian.

If φ is such that φ(G )
law
= X , we call φ a transport map.

The existence and properties of such maps are useful for:

� Generative models and sampling algorithms.

� Understanding analytic properties of µ.
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Optimal transport

Definition (Wasserstein distance between µ and γ)

W2(µ, γ) := inf
π

{
Eπ

[
||x − y ||2

] }1/2

where π ranges over all possible couplings of µ and γ.

Brenier 87’: There exists a transport map ψopt : Rd → Rd :

E
[
∥ψopt(G )− G∥2

]
= W2

2 (µ, γ).

Caffarelli 00’: If µ is more log-concave than γd , ψ
opt is 1-Lipschitz.

(strong log-concavity: −∇2 log
(

dµ
dx (x)

)
⪰ Id.)
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Poincaré inequalities

Gaussian Poincaré inequality: For any test function f ,

Var(f (G )) ≤ E
[
∥∇f (G )∥2

]
.

In general, X ∼ µ satisfies a Poincaré inequality with constant

Cp(µ) > 0, if,

Var(f (X )) ≤ Cp(µ)E
[
∥∇f (X )∥2

]
.
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An inequality of Brascamp and Lieb

Theorem (Brascamp-Lieb 76’)

If µ is more log-concave than γd , then Cp(µ) ≤ 1.

Proof.

Varµ(f ) = Varγd (f ◦ ψ
opt) ≤ Eγd

[
∥∇

(
f ◦ ψopt

)
∥2
]

≤ Eγd

[
∥∇ψopt∥2∥∇f (ψopt)∥2

]
= Eµ

[
∥∇f ∥2

]
.
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Main question and motivation

Question

Can we find Lipschitz transport maps for target measures which

are not strongly log-concave?

A positive answer will go far beyond Poincaré inequalities:

1. Dimension-free Φ-Sobolev inequalities (generalizing both

Poincaré and log-Sobolev).

2. Bounds for higher eigenvalues of the weighted Laplacian.

3. Isoperimetric inequalities.

4. Improved rates of convergence for the CLT.
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Poincaré and log-Sobolev).

2. Bounds for higher eigenvalues of the weighted Laplacian.

3. Isoperimetric inequalities.

4. Improved rates of convergence for the CLT.

6



Main question and motivation

Question

Can we find Lipschitz transport maps for target measures which

are not strongly log-concave?

A positive answer will go far beyond Poincaré inequalities:
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How to transport µ to ν?

Let (Yt)t≥0 be the Langevin dynamics:

dYt = ∇ log

(
dν

dx

)
(Yt)dt +

√
2dBt , Y0 ∼ µ,

with (Bt)t≥0 a Brownian motion in Rd .

Let (Qt) be the Langevin

semigroup: Qtη(x) = E [η(Yt)|Y0 = x ], and let

ρt := Qt

(
dµ
dν

)
dν = Law(Yt) so that the path of measures

(ρt)t≥0 interpolates between ρ0 = µ to ρ∞ = ν.
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The continuity equation

The Langevin path (ρt)t≥0 satisfies the continuity equation

∂tρt +∇(Vtρt) = 0,

where

Vt(x) = −∇ log

(
dρt
dν

)
(x) = −∇ logQt

(
dµ

dν

)
(x)

(because ∂tQtη = ∆Qtη + ⟨∇Qtη,∇ log
(
dν
dx

)
⟩).
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Transportation along Langevin semigroups

Define the family of diffeomorphisms St : Rd → Rd by

∂tS t(x) = Vt(S t(x)), S0(x) = x .

S t transports µ = ρ0 to ρt and T t := S−1
t transports ρt to ρ0 = µ.

The transport maps along Langevin semigroups are defined as

SLVN := lim
t→∞

S t transports µ = ρ0 to ρ∞ = ν,

T LVN := lim
t→∞

T t transports ν = ρ∞ to ρ0 = µ.
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Warm-up

Theorem (M, Shenfeld)

� If ν = γd and µ = κ-log-concave (i.e.,

−∇2 log
(
dµ
dx (x)

)
⪰ κId), for κ > 0, then T LVN is

1√
κ
-Lipschitz. The result is sharp and already follows from

results of Kim and E. Milman.

� If ν = γd and µ = log-concave and β-log-convex (i.e.,

−∇2 log
(
dµ
dx (x)

)
⪯ βId), for β > 0, then SLVN is

√
β-Lipschitz. The result is sharp.

The theorem parallels the analogous results for the optimal

transport map.

10



Warm-up

Theorem (M, Shenfeld)

� If ν = γd and µ = κ-log-concave (i.e.,

−∇2 log
(
dµ
dx (x)

)
⪰ κId), for κ > 0, then T LVN is

1√
κ
-Lipschitz. The result is sharp and already follows from

results of Kim and E. Milman.

� If ν = γd and µ = log-concave and β-log-convex (i.e.,

−∇2 log
(
dµ
dx (x)

)
⪯ βId), for β > 0, then SLVN is

√
β-Lipschitz. The result is sharp.

The theorem parallels the analogous results for the optimal

transport map.

10



Warm-up

Theorem (M, Shenfeld)

� If ν = γd and µ = κ-log-concave (i.e.,

−∇2 log
(
dµ
dx (x)

)
⪰ κId), for κ > 0, then T LVN is

1√
κ
-Lipschitz. The result is sharp and already follows from

results of Kim and E. Milman.

� If ν = γd and µ = log-concave and β-log-convex (i.e.,

−∇2 log
(
dµ
dx (x)

)
⪯ βId), for β > 0, then SLVN is

√
β-Lipschitz. The result is sharp.

The theorem parallels the analogous results for the optimal

transport map.

10



Semi-log-concave measures with bounded support

Theorem (M, Shenfeld)

� If ν = γd and µ is κ-log-concave with diam(supp(µ)) ≤ R,

and κR2 < 1, then T LVN is e
1−κR2

2 R-Lipschitz.

� In particular, if µ is log-concave (so κ = 0) with

diam(supp(µ)) ≤ R, then T LVN is e1/2R-Lipschitz. The order

of the Lipschitz constant is sharp.

The question (due to Kolesnikov) of whether the optimal transport

map from γd to µ which is log-concave with diam(supp(µ)) ≤ R

is O(R)-Lipschitz, is open.
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Gaussian mixtures with bounded mixing measure

Theorem (M, Shenfeld)

If ν = γd and µ = γd ⋆m with diam(supp(m)) ≤ R, then T LVN

is e
R2

2 -Lipschitz. The order of the Lipschitz constant is sharp.

The theorem leads to improved log-Sobolev inequalities for

mixtures of Gaussians.
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Isotropic log-concave measures - the Brownian transport map

There are adaptions of the technique to other settings.

Theorem (M, Shenfeld)

If ν = γ∞ and µ is log-concave and isotropic. There exists map

T , such that T ∗ν = µ and,

Eγ

[
∥DΦ∥2

]
≤ polylog(d).

The result it tightly connected to the KLS conjecture and builds

upon recent advances.
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High level idea of proofs

Recall

∂tS t(x) = Vt(S t(x)), S0(x) = x ,

so

∂t∇S t(x) = ∇Vt(S t(x))∇S t(x).

Lemma

� The Lipschitz constant of T LVN is at most

exp
(∫∞

0 supx λmax(−∇Vt(x))dt
)
.
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Proof idea

� The key is to control λmax(−∇Vt(x)).

� Recall −∇Vt(x) = ∇2 logQt

(
dµ
dγd

)
(x).

� We show that ∇Vt(x) can be represented as a covariance

matrix of some measure µt .

� The measure µt turns out to be a Gaussian tilt of the measure

µ.

� This allows to bound ∇Vt(x) using covariance inequalities

such as Brascamp-Lieb or bounded support inequalities.
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Thank You
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