Quantitative CLTs via Martingale Embeddings

Dan Mikulincer

Weizmann Institute of Science
Joint work with Ronen Eldan and Alex Zhai

The central limit theorem

Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be i.i.d. copies of a random vector X in \mathbb{R}^{d} with

$$
\mathbb{E}[X]=0 \text { and } \operatorname{Cov}(X)=\Sigma
$$

If $S_{n}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ and $G \sim \mathcal{N}(0, \Sigma)$ then

$$
S_{n} \underset{n \rightarrow \infty}{\longrightarrow} G
$$

in an appropriate sense.

- We usually normalize X to be isotropic, that is, $\Sigma=I_{d}$
- We are interested in bounding the convergence rate.

The central limit theorem

Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be i.i.d. copies of a random vector X in \mathbb{R}^{d} with

$$
\mathbb{E}[X]=0 \text { and } \operatorname{Cov}(X)=\Sigma
$$

If $S_{n}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ and $G \sim \mathcal{N}(0, \Sigma)$ then

$$
S_{n} \underset{n \rightarrow \infty}{\longrightarrow} G,
$$

in an appropriate sense.

- We usually normalize X to be isotropic, that is, $\Sigma=\mathrm{I}_{d}$.
- We are interested in bounding the convergence rate.

The central limit theorem

Let $\left\{X_{i}\right\}_{i=1}^{\infty}$ be i.i.d. copies of a random vector X in \mathbb{R}^{d} with

$$
\mathbb{E}[X]=0 \text { and } \operatorname{Cov}(X)=\Sigma
$$

If $S_{n}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ and $G \sim \mathcal{N}(0, \Sigma)$ then

$$
S_{n} \underset{n \rightarrow \infty}{\longrightarrow} G
$$

in an appropriate sense.

- We usually normalize X to be isotropic, that is, $\Sigma=I_{d}$.
- We are interested in bounding the convergence rate.

Quantitative central limit theorem

Berry-Esseen is an early examples of a quantitative bound.

Theorem (Berry-Esseen)

In the 1-dimensional case, for any $t \in \mathbb{R}$,

$$
\left|\mathbb{P}\left(S_{n} \leq t\right)-\mathbb{P}(G \leq t)\right| \leq \frac{\mathbb{E}\left[|X|^{3}\right]}{\sqrt{n}}
$$

This estimate is sharp

Quantitative central limit theorem

Berry-Esseen is an early examples of a quantitative bound.

Theorem (Berry-Esseen)

In the 1-dimensional case, for any $t \in \mathbb{R}$,

$$
\left|\mathbb{P}\left(S_{n} \leq t\right)-\mathbb{P}(G \leq t)\right| \leq \frac{\mathbb{E}\left[|X|^{3}\right]}{\sqrt{n}}
$$

This estimate is sharp.

Quantitative central limit theorem

In higher dimensions the current best known result is due to Bentkus.

Theorem (Bentkus, 2003)

In the d-dimensional case, for any convex set $K \subset \mathbb{R}^{d}$,

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{4}} \mathbb{E}\left[\|X\|^{3}\right]}{\sqrt{n}}
$$

- The $d^{\frac{1}{4}}$ term is the maximal Gaussian surface area of a convex set in \mathbb{R}^{d}. If K^{ε} is the ε enlargement of K then
- Whether one can omit $d^{\frac{1}{4}}$ remains an open question.

Quantitative central limit theorem

In higher dimensions the current best known result is due to Bentkus.

Theorem (Bentkus, 2003)

In the d-dimensional case, for any convex set $K \subset \mathbb{R}^{d}$,

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{4}} \mathbb{E}\left[\|X\|^{3}\right]}{\sqrt{n}}
$$

- The $d^{\frac{1}{4}}$ term is the maximal Gaussian surface area of a convex set in \mathbb{R}^{d}. If K^{ε} is the ε enlargement of K then

$$
\mathbb{P}\left(G \in K^{\varepsilon} \backslash K\right) \leq 4 \varepsilon d^{\frac{1}{4}}
$$

- Whether one can omit $d^{\frac{1}{4}}$ remains an open question.

Quantitative central limit theorem

In higher dimensions the current best known result is due to Bentkus.

Theorem (Bentkus, 2003)

In the d-dimensional case, for any convex set $K \subset \mathbb{R}^{d}$,

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{4}} \mathbb{E}\left[\|X\|^{3}\right]}{\sqrt{n}}
$$

- The $d^{\frac{1}{4}}$ term is the maximal Gaussian surface area of a convex set in \mathbb{R}^{d}. If K^{ε} is the ε enlargement of K then

$$
\mathbb{P}\left(G \in K^{\varepsilon} \backslash K\right) \leq 4 \varepsilon d^{\frac{1}{4}}
$$

- Whether one can omit $d^{\frac{1}{4}}$ remains an open question.

Other metrics

We consider stronger notions of distance

Definition (Relative entropy between X and G)

$$
\operatorname{Ent}(X \| G):=\mathbb{E}[\ln (f(X))]
$$

where f is the density of X with respect to G.
Definition (Wasserstein distance between X and G)

$$
\mathcal{W}_{2}(X, G):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|X-G\|^{2}\right]\right\}
$$

where π ranges over all possible couplings of X and G

Other metrics

We consider stronger notions of distance

Definition (Relative entropy between X and G)

$$
\operatorname{Ent}(X \| G):=\mathbb{E}[\ln (f(X))]
$$

where f is the density of X with respect to G.

Definition (Wasserstein distance between X and G)

$$
\mathcal{W}_{2}(X, G):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|X-G\|^{2}\right]\right\}^{1 / 2}
$$

where π ranges over all possible couplings of X and G.

Relative entropy

For relative entropy, if $A \subset \mathbb{R}^{d}$ is any measurable set, then by Pinsker's inequality,

$$
\left|\mathbb{P}\left(S_{n} \in A\right)-\mathbb{P}(G \in A)\right| \leq \sqrt{\operatorname{Ent}\left(S_{n} \| G\right)}
$$

- In 84 ' Barron showed that if $\operatorname{Ent}(X \| G)<\infty$ then $\lim \operatorname{Fnt}\left(S_{n} \| G\right)=0$
- In 2011, Bobkov, Chistyakov and Götze showed that if, in addition, X has a finite fourth moment then

- The above constant may depend on X as well as the dimension.

Relative entropy

For relative entropy, if $A \subset \mathbb{R}^{d}$ is any measurable set, then by Pinsker's inequality,

$$
\left|\mathbb{P}\left(S_{n} \in A\right)-\mathbb{P}(G \in A)\right| \leq \sqrt{\operatorname{Ent}\left(S_{n} \| G\right)}
$$

- In 84' Barron showed that if $\operatorname{Ent}(X \| G)<\infty$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Ent}\left(S_{n} \| G\right)=0
$$

- In 2011, Bobkov, Chistyakov and Götze showed that if, in addition, X has a finite fourth moment then

- The above constant may depend on X as well as the dimension.

Relative entropy

For relative entropy, if $A \subset \mathbb{R}^{d}$ is any measurable set, then by Pinsker's inequality,

$$
\left|\mathbb{P}\left(S_{n} \in A\right)-\mathbb{P}(G \in A)\right| \leq \sqrt{\operatorname{Ent}\left(S_{n} \| G\right)}
$$

- In 84 ' Barron showed that if $\operatorname{Ent}(X \| G)<\infty$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Ent}\left(S_{n} \| G\right)=0
$$

- In 2011, Bobkov, Chistyakov and Götze showed that if, in addition, X has a finite fourth moment then

$$
\operatorname{Ent}\left(S_{n} \| G\right) \leq \frac{C}{n}
$$

- The above constant may depend on X as well as the dimension.

Relative entropy

For relative entropy, if $A \subset \mathbb{R}^{d}$ is any measurable set, then by Pinsker's inequality,

$$
\left|\mathbb{P}\left(S_{n} \in A\right)-\mathbb{P}(G \in A)\right| \leq \sqrt{\operatorname{Ent}\left(S_{n} \| G\right)}
$$

- In 84 ' Barron showed that if $\operatorname{Ent}(X \| G)<\infty$ then

$$
\lim _{n \rightarrow \infty} \operatorname{Ent}\left(S_{n} \| G\right)=0
$$

- In 2011, Bobkov, Chistyakov and Götze showed that if, in addition, X has a finite fourth moment then

$$
\operatorname{Ent}\left(S_{n} \| G\right) \leq \frac{C}{n}
$$

- The above constant may depend on X as well as the dimension.

Wasserstein distance

The approximation error on a convex set $K \subset \mathbb{R}^{d}$, can be related to the Wasserstein distance using the following inequality by Zhai

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq d^{\frac{1}{6}} \mathcal{W}_{2}\left(S_{n}, G\right)^{\frac{2}{3}}
$$

Proof.

Tale the optimal coupling, so $\mathbb{E}\left[\left\|S_{n}-G\right\|^{2}\right]=W_{2}\left(S_{n}, G\right)^{2}$

$$
\begin{aligned}
& \leq \mathbb{P}\left(G \in K^{\varepsilon}\right)+\varepsilon^{-2} \mathcal{W}_{2}\left(S_{n}, G\right)^{2} \\
& \leq \mathbb{P}(G \in K)+\varepsilon d^{\frac{1}{4}}+\varepsilon^{-2} \mathcal{W}_{2}\left(S_{n}, G\right)^{2}
\end{aligned}
$$

Now, optimize over

Wasserstein distance

The approximation error on a convex set $K \subset \mathbb{R}^{d}$, can be related to the Wasserstein distance using the following inequality by Zhai

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq d^{\frac{1}{6}} \mathcal{W}_{2}\left(S_{n}, G\right)^{\frac{2}{3}}
$$

Proof.

Take the optimal coupling, so $\mathbb{E}\left[\left\|S_{n}-G\right\|^{2}\right]=\mathcal{W}_{2}\left(S_{n}, G\right)^{2}$.

$$
\begin{aligned}
\mathbb{P}\left(S_{n} \in K\right) & \leq \mathbb{P}\left(\left\|S_{n}-G\right\| \leq \varepsilon, S_{n} \in K\right)+\mathbb{P}\left(\left\|S_{n}-G\right\|>\varepsilon\right) \\
& \leq \mathbb{P}\left(G \in K^{\varepsilon}\right)+\varepsilon^{-2} \mathcal{W}_{2}\left(S_{n}, G\right)^{2} \\
& \leq \mathbb{P}(G \in K)+\varepsilon d^{\frac{1}{4}}+\varepsilon^{-2} \mathcal{W}_{2}\left(S_{n}, G\right)^{2}
\end{aligned}
$$

Now, optimize over ε.

Wasserstein distance

Theorem (Zhai)
 If $||X|| \leq \beta$ almost surely then

$$
\mathcal{W}_{2}\left(S_{n}, G\right) \leq \frac{\sqrt{d} \beta \log (n)}{\sqrt{n}} .
$$

- Plugging this into the previous inequality shows
- Substituting $\mathbb{E}\left[\|X\|^{3}\right]$ for β^{3} in Bentkus' bound gives
\square
- the bounds are not comparable.

Wasserstein distance

Theorem (Zhai)

If $\|X\| \leq \beta$ almost surely then

$$
\mathcal{W}_{2}\left(S_{n}, G\right) \leq \frac{\sqrt{d} \beta \log (n)}{\sqrt{n}}
$$

- Plugging this into the previous inequality shows

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{2}} \beta^{\frac{2}{3}}}{n^{\frac{1}{3}}}
$$

- Substituting $\mathbb{E}\left[\|X\|^{3}\right]$ for β^{3} in Bentkus' bound gives
$\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right|$
- the bounds are not compara'te.

Wasserstein distance

Theorem (Zhai)

If $\|X\| \leq \beta$ almost surely then

$$
\mathcal{W}_{2}\left(S_{n}, G\right) \leq \frac{\sqrt{d} \beta \log (n)}{\sqrt{n}}
$$

- Plugging this into the previous inequality shows

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{2}} \beta^{\frac{2}{3}}}{n^{\frac{1}{3}}}
$$

- Substituting $\mathbb{E}\left[\|X\|^{3}\right]$ for β^{3} in Bentkus' bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{4}} \beta^{3}}{n^{\frac{1}{2}}}
$$

- the bounds are not comparable.

Wasserstein distance

Theorem (Zhai)

If $\|X\| \leq \beta$ almost surely then

$$
\mathcal{W}_{2}\left(S_{n}, G\right) \leq \frac{\sqrt{d} \beta \log (n)}{\sqrt{n}}
$$

- Plugging this into the previous inequality shows

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{2}} \beta^{\frac{2}{3}}}{n^{\frac{1}{3}}}
$$

- Substituting $\mathbb{E}\left[\|X\|^{3}\right]$ for β^{3} in Bentkus' bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{1}{4}} \beta^{3}}{n^{\frac{1}{2}}}
$$

- the bounds are not comparable.

Wasserstein distance

Consider X, distributed uniformly on $\pm \sqrt{d} e_{i}$. In this case, $\beta=\sqrt{d}$ and Zhai's bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{5}{6}}}{n^{\frac{1}{3}}}
$$

So, we can expect the CLT to hold whenever $d^{\frac{5}{2}} \ll n$.
On the other hand, Bentkus' bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right|
$$

In this case, we would require $d^{\frac{7}{2}} \ll n$ for convergence.

Wasserstein distance

Consider X, distributed uniformly on $\pm \sqrt{d} e_{i}$. In this case, $\beta=\sqrt{d}$ and Zhai's bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{5}{6}}}{n^{\frac{1}{3}}}
$$

So, we can expect the CLT to hold whenever $d^{\frac{5}{2}} \ll n$.
On the other hand, Bentkus' bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right|
$$

In this case, we would require $d^{\frac{7}{2}} \ll n$ for convergence.

Wasserstein distance

Consider X, distributed uniformly on $\pm \sqrt{d} e_{i}$. In this case, $\beta=\sqrt{d}$ and Zhai's bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{5}{6}}}{n^{\frac{1}{3}}} .
$$

So, we can expect the CLT to hold whenever $d^{\frac{5}{2}} \ll n$.
On the other hand, Bentkus' bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{7}{4}}}{n^{\frac{1}{2}}} .
$$

In this case, we would require $d^{\frac{7}{2}} \ll n$ for convergence.

Wasserstein distance

Consider X, distributed uniformly on $\pm \sqrt{d} e_{i}$. In this case, $\beta=\sqrt{d}$ and Zhai's bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{5}{6}}}{n^{\frac{1}{3}}}
$$

So, we can expect the CLT to hold whenever $d^{\frac{5}{2}} \ll n$.
On the other hand, Bentkus' bound gives

$$
\left|\mathbb{P}\left(S_{n} \in K\right)-\mathbb{P}(G \in K)\right| \leq \frac{d^{\frac{7}{4}}}{n^{\frac{1}{2}}}
$$

In this case, we would require $d^{\frac{7}{2}} \ll n$ for convergence.

A new idea

Definition

A Skorokhod embedding of X is a Brownian motion B_{t} along with a stopping time τ such that B_{τ} has the same law as X.

Theorem (Skorokhod's embedding theorem)
If X is 1-dimensional and $\mathbb{E}[X]=0$, there exists a Skorokhod embedding of X with $\mathbb{E}[\tau]=\mathbb{E}\left[X^{2}\right]$. Moreover, if X is boundea almost surely then τ has sub-exponential tails.

A new idea

Definition

A Skorokhod embedding of X is a Brownian motion B_{t} along with a stopping time τ such that B_{τ} has the same law as X.

Theorem (Skorokhod's embedding theorem)

If X is 1-dimensional and $\mathbb{E}[X]=0$, there exists a Skorokhod embedding of X with $\mathbb{E}[\tau]=\mathbb{E}\left[X^{2}\right]$. Moreover, if X is bounded almost surely then τ has sub-exponential tails.

From Skorokhod embedding to CLT

Consider $\left(B_{t}^{i}, \tau_{i}\right)$, i.i.d. Skorokhod embeddings of X. We then have

$$
S_{n}=\int_{0}^{\infty} \sum_{i=1}^{n} \frac{\mathbb{1}_{\left[0, \tau_{i}\right]}(t)}{\sqrt{n}} d B_{t}^{i}=\int_{0}^{\infty} \tilde{\mathbb{1}}(t) d \tilde{B}_{t}
$$

where $\tilde{\mathbb{1}}=\sqrt{\frac{\sum_{i=1}^{n} \mathbb{1}_{\left[0, \tau_{i}\right]}}{n}}$ and \tilde{B}_{t} is a Brownian motion.

From Skorokhod embedding to CLT

Denote $G_{n}:=\int_{0}^{\infty} \mathbb{E}[\tilde{\mathbb{1}}(t)] d \tilde{B}_{t}$, a rescaled Brownian motion. So that,

$$
S_{n}=\int_{0}^{\infty} \tilde{\mathbb{1}}(t) d \tilde{B}_{t}=G_{n}+\int_{0}^{\infty} \tilde{\mathbb{1}}(t)-\mathbb{E}[\tilde{\mathbb{1}}(t)] d \tilde{B}_{t} .
$$

This induces a natural coupling between S_{n} and G_{n}, which shows:

From Skorokhod embedding to CLT

Denote $G_{n}:=\int_{0}^{\infty} \mathbb{E}[\tilde{\mathbb{1}}(t)] d \tilde{B}_{t}$, a rescaled Brownian motion. So that,

$$
S_{n}=\int_{0}^{\infty} \tilde{\mathbb{1}}(t) d \tilde{B}_{t}=G_{n}+\int_{0}^{\infty} \tilde{\mathbb{1}}(t)-\mathbb{E}[\tilde{\mathbb{1}}(t)] d \tilde{B}_{t} .
$$

This induces a natural coupling between S_{n} and G_{n}, which shows:

$$
\begin{aligned}
\mathcal{W}_{2}^{2}\left(S_{n}, G_{n}\right) & \leq \mathbb{E}\left[\left(\int_{0}^{\infty}(\tilde{\mathbb{1}}(t)-\mathbb{E}[\tilde{\mathbb{1}}(t)]) d \tilde{B}_{t}\right)^{2}\right] \\
& =\int_{0}^{\infty} \mathbb{E}\left[(\tilde{\mathbb{I}}(t)-\mathbb{E}[\tilde{\mathbb{1}}(t)])^{2} d t\right]=\int_{0}^{\infty} \operatorname{Var}(\tilde{\mathbb{1}}(t)) d t .
\end{aligned}
$$

Analysis of the coupling

- Recall $\tilde{\mathbb{1}}(t)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left[0, \tau_{i}\right]}}$, so $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \rightarrow 0$.
- Moreover, one can show for any positive random variable Y

Analysis of the coupling

- Recall $\tilde{\mathbb{1}}(t)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left[0, \tau_{i}\right]}}$, so $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \rightarrow 0$.
- Moreover, one can show for any positive random variable Y

$$
\operatorname{Var}(\sqrt{Y}) \leq \frac{\operatorname{Var}(Y)}{\mathbb{E}[Y]}
$$

In our case, $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \leq \frac{1}{n}$.

- Also, $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \leq \mathbb{E}\left[\mathbb{1}_{[0, \tau]}(t)\right]=\mathbb{P}(t<\tau)$. $\mathcal{W}_{2}^{2}\left(S_{n}, G_{n}\right) \leq \int_{0}^{\infty} \min \left(\frac{1}{n}, \mathbb{P}(t<\tau)\right) d t$.

Analysis of the coupling

- Recall $\tilde{\mathbb{1}}(t)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left[0, \tau_{i}\right]}}$, so $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \rightarrow 0$.
- Moreover, one can show for any positive random variable Y

$$
\operatorname{Var}(\sqrt{Y}) \leq \frac{\operatorname{Var}(Y)}{\mathbb{E}[Y]}
$$

In our case, $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \leq \frac{1}{n}$.

- Also, $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \leq \mathbb{E}\left[\mathbb{1}_{[0, \tau]}(t)\right]=\mathbb{P}(t<\tau)$.

Analysis of the coupling

- Recall $\tilde{\mathbb{1}}(t)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{\left[0, \tau_{i}\right]}}$, so $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \rightarrow 0$.
- Moreover, one can show for any positive random variable Y

$$
\operatorname{Var}(\sqrt{Y}) \leq \frac{\operatorname{Var}(Y)}{\mathbb{E}[Y]}
$$

In our case, $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \leq \frac{1}{n}$.

- Also, $\operatorname{Var}(\tilde{\mathbb{1}}(t)) \leq \mathbb{E}\left[\mathbb{1}_{[0, \tau]}(t)\right]=\mathbb{P}(t<\tau)$.
- So,

$$
\mathcal{W}_{2}^{2}\left(S_{n}, G_{n}\right) \leq \int_{0}^{\infty} \min \left(\frac{1}{n}, \mathbb{P}(t<\tau)\right) d t
$$

Extending to higher dimensions

- The Skorokhod embedding is a 1-dimensional construction.
- For random vectors we wouldn't expect such an embedding to exist.
- We are thus led to a more general notion:

Definition (Martingale embedding)
The triplet $\left(M_{t}, \Gamma_{+}, \tau\right)$ is a martingale em sedding of X, if M_{t} is a martingale which satisfies $d M_{t}=\Gamma_{t} d B_{t}$ and M_{τ} has the same law as X

Extending to higher dimensions

- The Skorokhod embedding is a 1-dimensional construction.
- For random vectors we wouldn't expect such an embedding to exist.
- We are thus led to a more general notion:

Definition (Martingale embedding)
The triplet $\left(M_{+}, \Gamma_{+}, \tau\right)$ is a martingale em sedding of X, if M_{t} is a martingale which satisfies $d M_{t}=\Gamma_{t} d B_{t}$ and M_{τ} has the same law as X

Extending to higher dimensions

- The Skorokhod embedding is a 1-dimensional construction.
- For random vectors we wouldn't expect such an embedding to exist.
- We are thus led to a more general notion:

Definition (Martingale embedding)

The triplet $\left(M_{t}, \Gamma_{t}, \tau\right)$ is a martingale embedding of X, if M_{t} is a martingale which satisfies $d M_{t}=\Gamma_{t} d B_{t}$ and M_{τ} has the same law as X.

Extending to higher dimensions

For martingale embeddings the same ideas used for the Skorokhod embedding yields

Theorem

If $\left(M_{t}, \Gamma_{t}, \tau\right)$ is a martingale embedding of X, and Γ_{t} is positive definite, then

$$
\mathcal{W}_{2}^{2}\left(S_{n}, G\right) \leq \int_{0}^{\infty} \min \left(\frac{1}{n} \operatorname{Tr}\left(\mathbb{E}\left[\Gamma_{t}^{4}\right] \mathbb{E}\left[\Gamma_{t}^{2}\right]^{-1}\right), \operatorname{Tr}\left(\mathbb{E}\left[\Gamma_{t}^{2}\right]\right)\right) d t
$$

Note that if Γ_{t} is a projection matrix the bound simplifies to

$$
\mathcal{W}_{2}^{2}\left(S_{n}, G\right) \leq d \int_{0}^{\infty} \min \left(\frac{1}{n}, \mathbb{P}(t \leq \tau)\right) d t
$$

Extending to higher dimensions

By repeatedly projecting a Brownian motion into lower dimensional spaces we are able to construct a martingale embedding with similar properties to the 1-dimensional Skorokhod embedding. In particular

- Γ_{t} is a projection matrix.
- $\mathbb{E}[\tau] \leq \mathbb{E}\left[\|X\|^{2}\right]$.
- If $\|X\| \leq \beta$ almost surely, τ has sub exponential tails.

This leads to the following result

Theorem
If $\|X\| \leq \beta$ almost surely

Extending to higher dimensions

By repeatedly projecting a Brownian motion into lower dimensional spaces we are able to construct a martingale embedding with similar properties to the 1-dimensional Skorokhod embedding. In particular

- Γ_{t} is a projection matrix.
- $\mathbb{E}[\tau] \leq \mathbb{E}\left[\|X\|^{2}\right]$.
- If $\|X\| \leq \beta$ almost surely, τ has sub exponential tails.

This leads to the following result

Theorem

If $|\mid X \| \leq \beta$ almost surely

$$
\mathcal{W}_{2}\left(S_{n}, G\right) \leq \frac{\sqrt{d \log (n)} \beta}{\sqrt{n}}
$$

Extending to higher dimensions - log concave measures

If X is \log concave (it has a density f, such that $-\nabla^{2} \log (f) \geq 0$), then we can improve beyond anything directly implied by the previous theorem.

Theorem

If X is isntro ic and log concave then, up to logarithmic factors

Moreover if X is $\frac{1}{\alpha}$-strongly \log concave $\left(-\nabla^{2} \log (f) \geq \alpha \mathrm{I}_{d}\right)$ then

Extending to higher dimensions - log concave measures

If X is \log concave (it has a density f, such that $-\nabla^{2} \log (f) \geq 0$), then we can improve beyond anything directly implied by the previous theorem.
Denote $\kappa_{d}:=\sup _{Y} \operatorname{Var}(\|Y\|)$, where the supremum is taken over all isotropic log concave random vectors in \mathbb{R}^{d}.

Theorem
If X is isotropic and log concave then, up to logarithmic factors

Moreover if X is $\frac{1}{\alpha}$-strongly \log concave $\left(-\nabla^{2} \log (f) \geq \alpha \mathrm{I}_{d}\right)$ then

Extending to higher dimensions - log concave measures

If X is \log concave (it has a density f, such that $-\nabla^{2} \log (f) \geq 0$), then we can improve beyond anything directly implied by the previous theorem.
Denote $\kappa_{d}:=\sup _{Y} \operatorname{Var}(\|Y\|)$, where the supremum is taken over all isotropic log concave random vectors in \mathbb{R}^{d}.

Theorem

If X is isotropic and log concave then, up to logarithmic factors

$$
\mathcal{W}_{2}\left(S_{n}, G\right) \leq \sqrt{\frac{d}{n}} \kappa_{d}
$$

Moreover if X is $\frac{1}{\alpha}$-strongly \log concave $\left(-\nabla^{2} \log (f) \geq \alpha \mathrm{I}_{d}\right)$ then

$$
\mathcal{W}_{2}\left(S_{n}, G\right) \leq \sqrt{\frac{d}{n \alpha}}
$$

Martingale embeddings in the entropic CLT

We may also use martingale embeddings to obtain quantitative bounds in the entropic CLT:

Theorem

If $\left(M_{t}, \Gamma_{t}, 1\right)$ is a martingale embedding of X, then

$$
\operatorname{Ent}\left(S_{n} \| G\right) \leq \frac{1}{n} \int_{0}^{1} \frac{\mathbb{E} \operatorname{Tr}\left(\left(\Gamma_{t}^{2}-\mathbb{E}\left[\Gamma_{t}^{2}\right]\right)^{2}\right)}{(1-t) \sigma_{t}^{4}} d t
$$

where σ_{t} is such that $\mathbb{E}\left[\Gamma_{t}\right] \geq \sigma_{t} \mathrm{I}_{d}$.

Sketch of proof

- Denote $\tilde{\Gamma}_{t}=\sqrt{\frac{\sum \Gamma_{t}^{2}}{n}}$. As before

$$
S_{n}=\int_{0}^{1} \tilde{\Gamma}_{t} d \tilde{B}_{t}=\int_{0}^{1} \sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t}+\int_{0}^{1} \tilde{\Gamma}_{t}-\sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t} .
$$

- Note that $G \stackrel{\operatorname{law}}{=} \int_{0}^{1} \sqrt{\mathbb{E}\left[\tilde{r}_{t}\right]_{t}} d \tilde{B}_{t}$.
- Our goal is to reconstruct the discrepancy as an adapted drift to which Girsanov's theorem may apply.

Sketch of proof

- Denote $\tilde{\Gamma}_{t}=\sqrt{\frac{\sum \Gamma_{t}^{2}}{n}}$. As before

$$
S_{n}=\int_{0}^{1} \tilde{\Gamma}_{t} d \tilde{B}_{t}=\int_{0}^{1} \sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t}+\int_{0}^{1} \tilde{\Gamma}_{t}-\sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t}
$$

- Note that $G \stackrel{\text { law }}{=} \int_{0}^{1} \sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t}$.
- Our goal is to reconstruct the discrepancy as an adapted drift
to which Girsanov's theorem may apply.

Sketch of proof

- Denote $\tilde{\Gamma}_{t}=\sqrt{\frac{\sum \Gamma_{t}^{2}}{n}}$. As before

$$
S_{n}=\int_{0}^{1} \tilde{\Gamma}_{t} d \tilde{B}_{t}=\int_{0}^{1} \sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t}+\int_{0}^{1} \tilde{\Gamma}_{t}-\sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t}
$$

- Note that $G \stackrel{\text { law }}{=} \int_{0}^{1} \sqrt{\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]} d \tilde{B}_{t}$.
- Our goal is to reconstruct the discrepancy as an adapted drift to which Girsanov's theorem may apply.

Sketch of proof

- Let $u_{t}:=\int_{0}^{t} \frac{\tilde{r}_{s}-\sqrt{\mathbb{E}\left[\tilde{\Gamma}_{s}^{2}\right]}}{1-s} d \tilde{B}_{s}$ so that

$$
\begin{aligned}
\int_{0}^{1} u_{t} d t & =\int_{0}^{1} \int_{0}^{t} \frac{\tilde{\Gamma}_{s}-\sqrt{\mathbb{E}\left[\tilde{\Gamma}_{s}^{2}\right]}}{1-s} d \tilde{B}_{s} d t=\int_{0}^{1} \int_{s}^{1} \frac{\tilde{\Gamma}_{s}-\sqrt{\mathbb{E}\left[\tilde{\Gamma}_{s}^{2}\right]}}{1-s} d t d \tilde{B}_{s} \\
& =\int_{0}^{1} \tilde{\Gamma}_{s}-\sqrt{\mathbb{E}\left[\tilde{\Gamma}_{s}^{2}\right]} d \tilde{B}_{s}
\end{aligned}
$$

- So $S_{n}=G+\int_{0}^{1} u_{t} d t$. By Girsanov's theorem we get that, f, the density of S_{n} with respect to G satisfies

$$
\mathbb{E}[\log (f)] \leq \frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|\mathbb{E}\left[\tilde{\Gamma}_{t}^{2}\right]^{-\frac{1}{2}} u_{t}\right\|^{2}\right] d t
$$

Towards an embedding - the Föllmer drift

To find a good embedding we consider a solution to the following variational problem:

$$
v_{t}:=\arg \min _{u_{t}} \frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|u_{t}\right\|^{2}\right] d t
$$

where u_{t} ranges over all adapted drifts for which $B_{1}+\int_{0}^{1} u_{t} d t$ has the same law as X.

Towards an embedding - the Föllmer drift

The process v_{t} goes back at least to the works of Föllmer (85'). In a later work by Lehec (13') it is shown that if X has finite entropy relative to the Gaussian, then v_{t} is well defined and

$$
\operatorname{Ent}(X \| G)=\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t
$$

In this case, v_{t} is a martingale and the process

is a Brownian bridge between 0 and X.

Towards an embedding - the Föllmer drift

The process v_{t} goes back at least to the works of Föllmer (85'). In a later work by Lehec (13') it is shown that if X has finite entropy relative to the Gaussian, then v_{t} is well defined and

$$
\operatorname{Ent}(X \| G)=\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t
$$

In this case, v_{t} is a martingale and the process

$$
Y_{t}=B_{t}+\int_{0}^{t} u_{s} d s
$$

is a Brownian bridge between 0 and X.

Constructing an embedding

We use Y_{t} to construct a martingale embedding.

$$
X_{t}:=\mathbb{E}\left[Y_{1} \mid \mathcal{F}_{t}\right]
$$

The process X_{t} satisfies

Constructing an embedding

We use Y_{t} to construct a martingale embedding.

$$
X_{t}:=\mathbb{E}\left[Y_{1} \mid \mathcal{F}_{t}\right]
$$

The process X_{t} satisfies

$$
X_{t}=\int_{0}^{t} \frac{\operatorname{Cov}\left(Y_{1} \mid \mathcal{F}_{s}\right)}{1-s} d B_{s}=\int_{0}^{t} \Gamma_{s} d B_{s}
$$

Constructing an embedding

We use Y_{t} to construct a martingale embedding.

$$
X_{t}:=\mathbb{E}\left[Y_{1} \mid \mathcal{F}_{t}\right]
$$

The process X_{t} satisfies

$$
X_{t}=\int_{0}^{t} \frac{\operatorname{Cov}\left(Y_{1} \mid \mathcal{F}_{s}\right)}{1-s} d B_{s}=\int_{0}^{t} \Gamma_{s} d B_{s}
$$

This implies

$$
v_{t}=\int_{0}^{t} \frac{\Gamma_{s}-I_{d}}{1-s} d B_{s}
$$

Entropic CLT for log concave vectors

$$
\begin{aligned}
\operatorname{Ent}(X \| G) & =\int_{0}^{1} \mathbb{E}\left\|\int_{0}^{t} \frac{\Gamma_{s}-\mathrm{I}_{d}}{1-s} d B_{s}\right\|^{2} d t \\
& =\int_{0}^{1} \int_{0}^{t} \frac{\mathbb{E} \operatorname{Tr}\left(\left(\Gamma_{s}-\mathrm{I}_{d}\right)^{2}\right)}{(1-s)^{2}} d s d t=\int_{0}^{1} \frac{\mathbb{E} \operatorname{Tr}\left(\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right)}{1-t} d t
\end{aligned}
$$

Entropic CLT for log concave vectors

$$
\begin{aligned}
\operatorname{Ent}(X \| G) & =\int_{0}^{1} \mathbb{E}\left\|\int_{0}^{t} \frac{\Gamma_{s}-\mathrm{I}_{d}}{1-s} d B_{s}\right\|^{2} d t \\
& =\int_{0}^{1} \int_{0}^{t} \frac{\mathbb{E} \operatorname{Tr}\left(\left(\Gamma_{s}-\mathrm{I}_{d}\right)^{2}\right)}{(1-s)^{2}} d s d t=\int_{0}^{1} \frac{\mathbb{E} \operatorname{Tr}\left(\left(\Gamma_{t}-\mathrm{I}_{d}\right)^{2}\right)}{1-t} d t
\end{aligned}
$$

We use this observation to prove:

Entropic CLT for log concave vectors

Theorem

1. If X is \log concave and isotropic then

$$
\operatorname{Ent}\left(S_{n} \| G\right) \leq \frac{\operatorname{poly}(d)}{n} \operatorname{Ent}(X \| G)
$$

2. If X is 1 -strongly log concave (and not isotropic) then

$$
\operatorname{Ent}\left(S_{n} \| G\right) \leq \frac{d}{n \sigma^{4}} \operatorname{Ent}(X \| G)
$$

where σ is the minimal eigenvalue of $\operatorname{Cov}(X)$.

Embeddings of log concave vectors

In the case where X is log concave, it turns out that Γ_{t} cannot be large.

- If X has density f, then $Y_{1} \mid \mathcal{F}_{t}$ has density proportional to

$$
f(x) \exp \left(-\frac{t}{2(1-t)}\|x\|^{2}+\frac{\left\langle X_{t}, x\right\rangle}{1-t}\right) .
$$

- In particular, if X is \log concave then $X_{1} \mid \mathcal{F}_{t}$ is $\frac{1-t}{t}$-strongly log concave.
- Consequently, $\Gamma_{t} \leq \frac{1}{t} \mathrm{I}_{d}$.
- The same logic shows that $\Gamma_{t} \leq \mathrm{I}_{d}$ whenever X is 1 -strongly log concave.

Embeddings of log concave vectors

Lemma
If X is 1 -strongly \log concave and $\operatorname{Cov}(X) \geq \sigma \mathrm{I}_{d}$ then
$\mathbb{E}\left[\Gamma_{t}\right] \geq \sigma \mathrm{I}_{d}$.

Proof.
First note

Hence, by Itô's formula

Embeddings of log concave vectors

Lemma
If X is 1 -strongly \log concave and $\operatorname{Cov}(X) \geq \sigma \mathrm{I}_{d}$ then

$$
\mathbb{E}\left[\Gamma_{t}\right] \geq \sigma \mathrm{I}_{d}
$$

Proof.

First note

$$
\operatorname{Cov}\left(Y_{1} \mid \mathcal{F}_{t}\right)=\mathbb{E}\left[Y_{1}^{\otimes 2} \mid \mathcal{F}_{t}\right]-\mathbb{E}\left[Y_{1} \mid \mathcal{F}_{t}\right]^{\otimes 2}
$$

Hence, by Itô's formula

$$
\frac{d}{d t} \mathbb{E}\left[\operatorname{Cov}\left(Y_{1} \mid \mathcal{F}_{t}\right)\right]=-\frac{d}{d t} \mathbb{E}\left[\mathbb{E}\left[Y_{1} \mid \mathcal{F}_{t}\right]^{\otimes 2}\right]=-\mathbb{E}\left[\Gamma_{t}^{2}\right]
$$

Embeddings of log concave vectors

Proof (cont'd).

So,

$$
\begin{aligned}
\frac{d}{d t} \mathbb{E}\left[\Gamma_{t}\right] & =\frac{d}{d t} \mathbb{E}\left[\frac{\operatorname{Cov}\left(Y_{1} \mid \mathcal{F}_{t}\right)}{1-t}\right] \\
& =\frac{\mathbb{E}\left[\operatorname{Cov}\left(Y_{1} \mid \mathcal{F}_{t}\right)\right]-(1-t) \mathbb{E}\left[\Gamma_{t}^{2}\right]}{(1-t)^{2}}=\frac{\mathbb{E}\left[\Gamma_{t}\right]-\mathbb{E}\left[\Gamma_{t}^{2}\right]}{1-t} .
\end{aligned}
$$

Since $\Gamma_{t} \leq \mathrm{I}_{d}$ almost surely

$$
\frac{\mathbb{E}\left[\Gamma_{t}\right]-\mathbb{E}\left[\Gamma_{t}^{2}\right]}{1-t} \geq 0
$$

Thank you!

