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The central limit theorem

Let {Xi}∞i=1 be i.i.d. copies of a random vector X in Rd with

E [X ] = 0 and Cov(X ) = Σ.

If Sn := 1√
n

n∑
i=1

Xi and G ∼ N (0,Σ) then

Sn −→
n→∞

G ,

in an appropriate sense.

• We usually normalize X to be isotropic, that is, Σ = Id .

• We are interested in bounding the convergence rate.
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Quantitative central limit theorem

Berry-Esseen is an early examples of a quantitative bound.

Theorem (Berry-Esseen)

In the 1-dimensional case, for any t ∈ R,

|P (Sn ≤ t)− P (G ≤ t) | ≤
E
[
|X |3

]
√
n

.

This estimate is sharp.
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Quantitative central limit theorem

In higher dimensions the current best known result is due to

Bentkus.

Theorem (Bentkus, 2003)

In the d-dimensional case, for any convex set K ⊂ Rd ,

|P (Sn ∈ K )− P (G ∈ K ) | ≤
d

1
4E
[
||X ||3

]
√
n

.

• The d
1
4 term is the maximal Gaussian surface area of a convex

set in Rd . If K ε is the ε enlargement of K then

P (G ∈ K ε \ K ) ≤ 4εd
1
4 .

• Whether one can omit d
1
4 remains an open question.
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Other metrics

We consider stronger notions of distance

Definition (Relative entropy between X and G)

Ent(X ||G ) := E[ln(f (X ))],

where f is the density of X with respect to G .

Definition (Wasserstein distance between X and G)

W2(X ,G ) := inf
π

{
Eπ
[
||X − G ||2

] }1/2

where π ranges over all possible couplings of X and G .
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Relative entropy

For relative entropy, if A ⊂ Rd is any measurable set, then by

Pinsker’s inequality,

|P(Sn ∈ A)− P (G ∈ A) | ≤
√

Ent (Sn||G ).

• In 84’ Barron showed that if Ent (X ||G ) <∞ then

lim
n→∞

Ent (Sn||G ) = 0.

• In 2011, Bobkov, Chistyakov and Götze showed that if, in

addition, X has a finite fourth moment then

Ent (Sn||G ) ≤ C

n
.

• The above constant may depend on X as well as the

dimension.
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Wasserstein distance

The approximation error on a convex set K ⊂ Rd , can be related

to the Wasserstein distance using the following inequality by Zhai

|P(Sn ∈ K )− P (G ∈ K ) | ≤ d
1
6W2(Sn,G )

2
3 .

Proof.

Take the optimal coupling, so E
[
||Sn − G ||2

]
=W2 (Sn,G )2 .

P (Sn ∈ K ) ≤ P (||Sn − G || ≤ ε, Sn ∈ K ) + P (||Sn − G || > ε)

≤ P (G ∈ K ε) + ε−2W2(Sn,G )2

≤ P(G ∈ K ) + εd
1
4 + ε−2W2(Sn,G )2.

Now, optimize over ε.
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Wasserstein distance

Theorem (Zhai)

If ||X || ≤ β almost surely then

W2 (Sn,G ) ≤
√
dβ log(n)√

n
.

• Plugging this into the previous inequality shows

|P(Sn ∈ K )− P (G ∈ K ) | ≤ d
1
2β

2
3

n
1
3

.

• Substituting E
[
||X ||3

]
for β3 in Bentkus’ bound gives

|P(Sn ∈ K )− P (G ∈ K ) | ≤ d
1
4β3

n
1
2

.

• the bounds are not comparable.
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Wasserstein distance

Consider X , distributed uniformly on ±
√
dei . In this case, β =

√
d

and Zhai’s bound gives

|P(Sn ∈ K )− P (G ∈ K ) | ≤ d
5
6

n
1
3

.

So, we can expect the CLT to hold whenever d
5
2 << n.

On the other hand, Bentkus’ bound gives

|P(Sn ∈ K )− P (G ∈ K ) | ≤ d
7
4

n
1
2

.

In this case, we would require d
7
2 << n for convergence.
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A new idea

Definition

A Skorokhod embedding of X is a Brownian motion Bt along

with a stopping time τ such that Bτ has the same law as X .

Theorem (Skorokhod’s embedding theorem)

If X is 1-dimensional and E[X ] = 0, there exists a Skorokhod

embedding of X with E [τ ] = E
[
X 2
]
. Moreover, if X is bounded

almost surely then τ has sub-exponential tails.
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From Skorokhod embedding to CLT

Consider (B i
t , τi ), i.i.d. Skorokhod embeddings of X . We then have

Sn =

∞∫
0

n∑
i=1

1[0,τi ](t)
√
n

dB i
t =

∞∫
0

1̃(t)dB̃t ,

where 1̃ =

√
n∑

i=1
1[0,τi ]

n and B̃t is a Brownian motion.
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From Skorokhod embedding to CLT

Denote Gn :=
∞∫
0

E
[
1̃(t)

]
dB̃t , a rescaled Brownian motion. So

that,

Sn =

∞∫
0

1̃(t)dB̃t = Gn +

∞∫
0

1̃(t)− E
[
1̃(t)

]
dB̃t .

This induces a natural coupling between Sn and Gn, which shows:

W2
2 (Sn,Gn) ≤ E

 ∞∫
0

(
1̃(t)− E

[
1̃(t)

])
dB̃t

2
=

∞∫
0

E
[(
1̃(t)− E

[
1̃(t)

])2
dt
]

=

∞∫
0

Var
(
1̃(t)

)
dt.
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Analysis of the coupling

• Recall 1̃(t) =

√
1
n

n∑
i=1

1[0,τi ], so Var
(
1̃(t)

)
→ 0.

• Moreover, one can show for any positive random variable Y

Var
(√

Y
)
≤ Var(Y )

E[Y ]
.

In our case, Var
(
1̃(t)

)
≤ 1

n .

• Also, Var
(
1̃(t)

)
≤ E

[
1[0,τ ](t)

]
= P (t < τ).

• So,

W2
2 (Sn,Gn) ≤

∞∫
0

min

(
1

n
,P (t < τ)

)
dt.
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Extending to higher dimensions

• The Skorokhod embedding is a 1-dimensional construction.

• For random vectors we wouldn’t expect such an embedding to

exist.

• We are thus led to a more general notion:

Definition (Martingale embedding)

The triplet (Mt , Γt , τ) is a martingale embedding of X , if Mt is a

martingale which satisfies dMt = ΓtdBt and Mτ has the same

law as X .

14
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Extending to higher dimensions

For martingale embeddings the same ideas used for the Skorokhod

embedding yields

Theorem

If (Mt , Γt , τ) is a martingale embedding of X , and Γt is positive

definite, then

W2
2 (Sn,G ) ≤

∞∫
0

min

(
1

n
Tr
(
E
[
Γ4
t

]
E
[
Γ2
t

]−1
)
,Tr

(
E
[
Γ2
t

]))
dt.

Note that if Γt is a projection matrix the bound simplifies to

W2
2 (Sn,G ) ≤ d

∞∫
0

min

(
1

n
,P (t ≤ τ)

)
dt.

15



Extending to higher dimensions

By repeatedly projecting a Brownian motion into lower dimensional

spaces we are able to construct a martingale embedding with

similar properties to the 1-dimensional Skorokhod embedding. In

particular

• Γt is a projection matrix.

• E[τ ] ≤ E
[
||X ||2

]
.

• If ||X || ≤ β almost surely, τ has sub exponential tails.

This leads to the following result

Theorem

If ||X || ≤ β almost surely

W2 (Sn,G ) ≤
√
dlog(n)β√

n
.
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Extending to higher dimensions - log concave measures

If X is log concave (it has a density f , such that −∇2log(f ) ≥ 0),

then we can improve beyond anything directly implied by the

previous theorem.

Denote κd := sup
Y

Var (||Y ||), where the supremum is taken over

all isotropic log concave random vectors in Rd .

Theorem

If X is isotropic and log concave then, up to logarithmic factors

W2 (Sn,G ) ≤
√

d

n
κd .

Moreover if X is 1
α -strongly log concave (−∇2 log(f ) ≥ αId) then

W2 (Sn,G ) ≤
√

d

nα
.
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Martingale embeddings in the entropic CLT

We may also use martingale embeddings to obtain quantitative

bounds in the entropic CLT:

Theorem

If (Mt , Γt , 1) is a martingale embedding of X , then

Ent(Sn||G ) ≤ 1

n

1∫
0

ETr
((

Γ2
t − E[Γ2

t ]
)2
)

(1− t)σ4
t

dt,

where σt is such that E [Γt ] ≥ σtId .

18



Sketch of proof

• Denote Γ̃t =

√∑
Γ2
t

n . As before

Sn =

1∫
0

Γ̃tdB̃t =

1∫
0

√
E
[
Γ̃2
t

]
dB̃t +

1∫
0

Γ̃t −
√

E
[
Γ̃2
t

]
dB̃t .

• Note that G
law
=

1∫
0

√
E
[
Γ̃2
t

]
dB̃t .

• Our goal is to reconstruct the discrepancy as an adapted drift

to which Girsanov’s theorem may apply.

19



Sketch of proof

• Denote Γ̃t =

√∑
Γ2
t

n . As before

Sn =

1∫
0

Γ̃tdB̃t =

1∫
0

√
E
[
Γ̃2
t

]
dB̃t +

1∫
0

Γ̃t −
√

E
[
Γ̃2
t

]
dB̃t .

• Note that G
law
=

1∫
0

√
E
[
Γ̃2
t

]
dB̃t .

• Our goal is to reconstruct the discrepancy as an adapted drift

to which Girsanov’s theorem may apply.

19



Sketch of proof

• Denote Γ̃t =

√∑
Γ2
t

n . As before

Sn =

1∫
0

Γ̃tdB̃t =

1∫
0

√
E
[
Γ̃2
t

]
dB̃t +

1∫
0

Γ̃t −
√

E
[
Γ̃2
t

]
dB̃t .

• Note that G
law
=

1∫
0

√
E
[
Γ̃2
t

]
dB̃t .

• Our goal is to reconstruct the discrepancy as an adapted drift

to which Girsanov’s theorem may apply.

19



Sketch of proof

• Let ut :=
t∫

0

Γ̃s−
√

E[Γ̃2
s ]

1−s dB̃s so that

1∫
0

utdt =

1∫
0

t∫
0

Γ̃s −
√
E
[
Γ̃2
s

]
1− s

dB̃sdt =

1∫
0

1∫
s

Γ̃s −
√
E
[
Γ̃2
s

]
1− s

dtdB̃s

=

1∫
0

Γ̃s −
√
E
[
Γ̃2
s

]
dB̃s .

• So Sn = G +
1∫

0

utdt. By Girsanov’s theorem we get that,f ,

the density of Sn with respect to G satisfies

E [log(f )] ≤ 1

2

1∫
0

E
[∣∣∣∣∣∣E [Γ̃2

t

]− 1
2
ut

∣∣∣∣∣∣2] dt.
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Towards an embedding - the Föllmer drift

To find a good embedding we consider a solution to the following

variational problem:

vt := arg min
ut

1

2

1∫
0

E
[
||ut ||2

]
dt,

where ut ranges over all adapted drifts for which B1 +
1∫

0

utdt has

the same law as X .

21



Towards an embedding - the Föllmer drift

The process vt goes back at least to the works of Föllmer (85’). In

a later work by Lehec (13’) it is shown that if X has finite entropy

relative to the Gaussian, then vt is well defined and

Ent (X ||G ) =
1

2

1∫
0

E[||vt ||2]dt.

In this case, vt is a martingale and the process

Yt = Bt +

t∫
0

usds,

is a Brownian bridge between 0 and X .
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Constructing an embedding

We use Yt to construct a martingale embedding.

Xt := E [Y1|Ft ] .

The process Xt satisfies

Xt =

t∫
0

Cov (Y1|Fs)

1− s
dBs =

t∫
0

ΓsdBs .

This implies

vt =

t∫
0

Γs − Id
1− s

dBs .
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Entropic CLT for log concave vectors

Ent(X ||G ) =

1∫
0

E
∣∣∣∣∣∣ t∫

0

Γs − Id
1− s

dBs

∣∣∣∣∣∣2dt
=

1∫
0

t∫
0

ETr
(

(Γs − Id)2
)

(1− s)2
dsdt =

1∫
0

ETr
(

(Γt − Id)2
)

1− t
dt.

We use this observation to prove:
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Entropic CLT for log concave vectors

Theorem

1. If X is log concave and isotropic then

Ent(Sn||G ) ≤ poly(d)

n
Ent (X ||G ) .

2. If X is 1-strongly log concave (and not isotropic) then

Ent(Sn||G ) ≤ d

nσ4
Ent (X ||G ) ,

where σ is the minimal eigenvalue of Cov (X ).

25



Embeddings of log concave vectors

In the case where X is log concave, it turns out that Γt cannot be

large.

• If X has density f , then Y1|Ft has density proportional to

f (x) exp

(
− t

2(1− t)
||x ||2 +

〈Xt , x〉
1− t

)
.

• In particular, if X is log concave then X1|Ft is 1−t
t -strongly

log concave.

• Consequently, Γt ≤ 1
t Id .

• The same logic shows that Γt ≤ Id whenever X is 1-strongly

log concave.
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Embeddings of log concave vectors

Lemma

If X is 1-strongly log concave and Cov (X ) ≥ σId then

E [Γt ] ≥ σId .

Proof.

First note

Cov (Y1|Ft) = E
[
Y⊗2

1 |Ft

]
− E [Y1|Ft ]

⊗2 .

Hence, by Itô’s formula

d

dt
E [Cov (Y1|Ft)] = − d

dt
E
[
E [Y1|Ft ]

⊗2
]

= −E
[
Γ2
t

]
.
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Embeddings of log concave vectors

Proof (cont’d).

So,

d

dt
E [Γt ] =

d

dt
E
[
Cov (Y1|Ft)

1− t

]
=

E [Cov (Y1|Ft)]− (1− t)E
[
Γ2
t

]
(1− t)2

=
E [Γt ]− E

[
Γ2
t

]
1− t

.

Since Γt ≤ Id almost surely

E [Γt ]− E
[
Γ2
t

]
1− t

≥ 0.
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Thank you!


