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Let {X;}5°, be i.i.d. copies of a random vector X in R9 with
E[X] =0 and Cov(X) = X.
If Sy = % > Xiand G ~ N (0,X) then
"z

S, — G,

n—o0

in an appropriate sense.

e We usually normalize X to be isotropic, that is, ¥ = I4.

e We are interested in bounding the convergence rate.



Quantitative central limit theorem

Berry-Esseen is an early examples of a quantitative bound.

Theorem (Berry-Esseen)

In the 1-dimensional case, for any t € R,

EIXP]

P(S, <) -P(G<t)|<—



Quantitative central limit theorem

Berry-Esseen is an early examples of a quantitative bound.

Theorem (Berry-Esseen)

In the 1-dimensional case, for any t € R,

EIXP]

P(S, <) -P(G<t)|<—

This estimate is sharp.
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Quantitative central limit theorem

In higher dimensions the current best known result is due to
Bentkus.

Theorem (Bentkus, 2003)

In the d-dimensional case, for any convex set K C RY,

P(S, e K)—P(GeK)|< C“E\Uf‘nxm.

1 . e .
e The d4 term is the maximal Gaussian surface area of a convex
set in RY. If K¢ is the € enlargement of K then

P(G € K°\ K) < 4eds.

.1 . :
e Whether one can omit d# remains an open question.



Other metrics

We consider stronger notions of distance

Definition (Relative entropy between X and G)

Ent(X||G) := E[In(f(X))],

where f is the density of X with respect to G.



Other metrics

We consider stronger notions of distance

Definition (Relative entropy between X and G)

Ent(X||G) := E[In(f(X))],

where f is the density of X with respect to G.

Definition (Wasserstein distance between X and G)

Wa(X, G) = ir)rf{]Eﬂ (11X = 6|13 }1/2

where 7 ranges over all possible couplings of X and G.
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Relative entropy

For relative entropy, if A C RY is any measurable set, then by

Pinsker’s inequality,

IP(S, € A) —P(G € A)| < vEnt (5,]|G).

e In 84’ Barron showed that if Ent (X||G) < co then
nIme Ent (S,/|G) = 0.
e In 2011, Bobkov, Chistyakov and Gotze showed that if, in

addition, X has a finite fourth moment then
C
Ent (5,]|G) < .

e The above constant may depend on X as well as the

dimension.
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Wasserstein distance

The approximation error on a convex set K C RY, can be related
to the Wasserstein distance using the following inequality by Zhai

IP(S, € K) —P(G € K)| < dsW)(Sn, G)3.

Take the optimal coupling, so E [||S, — G|[*] = W2 (S, G)2.

P(S, € K)<P(||Sh— G|l <¢&,5, € K)+P(||S. — G|| > ¢)
P (G € K%) + e 2Ws(S,, G)?
P

(G € K) +ed + e 2W(S,, G)2.

IN

IN

Now, optimize over ¢. 0J
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Wasserstein distance

Theorem (Zhai)

If || X|| < B almost surely then

Wi (S G) < ﬂﬂ'f"g”

e Plugging this into the previous inequality shows

1 2
g5l
P(S, € K)—P(G e K)| < 227
ns3
e Substituting E [||X]]*] for 5 in Bentkus’ bound gives
1
ds 33
B(S, € K)~ P(G € K)| < 2F°.
n2

e the bounds are not comparable.
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Wasserstein distance

Consider X, distributed uniformly on ++/de;. In this case, 3 = Vd
and Zhai's bound gives

IB(S, € K) —P(G € K)| <

S ‘Q
W= ola

So, we can expect the CLT to hold whenever d3 << n.
On the other hand, Bentkus' bound gives

> ‘Q
NN

N=

P(S, e K)—P(GeK)| <

: . 7
In this case, we would require d2 << n for convergence.
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A Skorokhod embedding of X is a Brownian motion B; along
with a stopping time 7 such that B; has the same law as X.

Theorem (Skorokhod’s embedding theorem)

If X is 1-dimensional and E[X] = 0, there exists a Skorokhod
embedding of X with E [r] = E [X?]. Moreover, if X is bounded
almost surely then T has sub-exponential tails.



From Skorokhod embedding to CLT

Consider (B!, 7;), i.i.d. Skorokhod embeddings of X. We then have
T T (®) o [ s
S :/Z[”dlgg :/]l(t)dBt,
o =1 v 0

n
- 2. Ljo,7]
where 1 = |/ =2 -

and B; is a Brownian motion.
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From Skorokhod embedding to CLT

e}

Denote G, := [ E [1(t)] dB:, a rescaled Brownian motion. So
0

that,
Sp= [ I(t)dB: = G, + [ I(t) - E[i(t)] dB:
0/ 0/
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From Skorokhod embedding to CLT

o0
Denote G, fE[ } dBt a rescaled Brownian motion. So
0

that,
Sp= [ I(t)dB: = G, + [ I(t) - E[i(t)] dB:.
0/ 0/

This induces a natural coupling between S, and G, which shows:

_ /E[(ﬂ(t)—ﬂa[ﬁ(t)]fdt] /Var(ﬂ( )) dt

12



Analysis of the coupling

- n
e Recall I(t) = /1

1

. H[Oﬂ',‘]’ so Var (ﬂ(t)) — 0.
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Analysis of the coupling

H[Oﬂ',‘]’ so Var (ﬂ(t)) — 0.

M=

e Recall I(t) = /1
i

I
N

e Moreover, one can show for any positive random variable Y

Var (\/7) < VEIEQ]/).

In our case, Var (I(t)) <
e Also, Var (1(t)) <E [Lpp(t)] =P (t < 7).

3=

e So,
W2 (S,, G,) < /min <,17,}P’(t < T)> dt.
0
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Extending to higher dimensions

e The Skorokhod embedding is a 1-dimensional construction.

e For random vectors we wouldn't expect such an embedding to

exist.

e We are thus led to a more general notion:

Definition (Martingale embedding)

The triplet (M, ¢, 7) is a martingale embedding of X, if M, is a
martingale which satisfies dM; = ';dB; and M, has the same
law as X.



Extending to higher dimensions

For martingale embeddings the same ideas used for the Skorokhod
embedding yields

If (Mg, Ty, 7) is a martingale embedding of X, and T'; is positive
definite, then

(e.9]

W2 (S, G) < /min (,17Tr (ErJEr]™) ™ (E [r%])) dt.

0

Note that if ['; is a projection matrix the bound simplifies to

W2 (S,, G) < d/min <;l7,]P’(t < T)> dt.
0



Extending to higher dimensions

By repeatedly projecting a Brownian motion into lower dimensional
spaces we are able to construct a martingale embedding with
similar properties to the 1-dimensional Skorokhod embedding. In

particular

e [, is a projection matrix.
o Elr] <E[IXI?].
e If || X|| < B almost surely, 7 has sub exponential tails.
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Extending to higher dimensions

By repeatedly projecting a Brownian motion into lower dimensional
spaces we are able to construct a martingale embedding with
similar properties to the 1-dimensional Skorokhod embedding. In

particular

e [, is a projection matrix.
o Elr] <E[IXI?].
e If || X|| < B almost surely, 7 has sub exponential tails.

This leads to the following result

If ||X|| < B almost surely

\/ dlog(n)ﬂ'

Wo (Sn,G) < \/ﬁ



Extending to higher dimensions - log concave measures

If X is log concave (it has a density f, such that —V?/og(f) > 0),
then we can improve beyond anything directly implied by the
previous theorem.
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all isotropic log concave random vectors in RY.
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Extending to higher dimensions - log concave measures

If X is log concave (it has a density f, such that —V?/og(f) > 0),

then we can improve beyond anything directly implied by the

previous theorem.

Denote ky := sup Var (|| Y]|), where the supremum is taken over
Y

all isotropic log concave random vectors in RY.

If X is isotropic and log concave then, up to logarithmic factors

Wz (Sn, G) § \/f/ﬁd.

Moreover if X is L-strongly log concave (—V?log(f) > aly) then

«

Wa (S, G) < 1/ 2.

no



Martingale embeddings in the entropic CLT

We may also use martingale embeddings to obtain quantitative
bounds in the entropic CLT:

If (M, T¢,1) is a martingale embedding of X, then

FET: (12 -EIr2)°)

1
Ent(S,/|G) < = dt,
(S| )_n/ (1- )t
0

where oy is such that E[[¢] > o:14.



Sketch of proof

e Denote Iy = \/ ZTI? As before
1 1 1
5, — /r dB, — /,/E dBt+/ft— E [F2]dB:.
0 0
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Sketch of proof

e Denote Iy = \/ ZTI? As before
1
S,,: B:/ IE dBt+ F JE [f2]dBt.
0
1
e Note that G 2 [,/E r2
0
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Sketch of proof

1 ~ ~
o Note that G 2 [\ /E [2] dB,.
0

e Qur goal is to reconstruct the discrepancy as an adapted drift

to which Girsanov's theorem may apply.

19



Sketch of proof

o Let ug Oftfs mdB so that

1 i 1
fro [
[r.- e len

e S50S5,=G+ f uzdt. By Girsanov's theorem we get that,f,

o\w
||

||
—|x

0
the density of S, with respect to G satisfies
1

Blos(nl <3 [E[[l2[f] " w

0

2
| .

20



Towards an embedding - the Follmer drift

To find a good embedding we consider a solution to the following
variational problem:

1

1

Ve := argmin 2/[E [I]ue] 2] dit,
0

1
where u; ranges over all adapted drifts for which By + [ u;dt has
0

the same law as X.

21



Towards an embedding - the Follmer drift

The process v; goes back at least to the works of Féllmer (85'). In
a later work by Lehec (13') it is shown that if X has finite entropy
relative to the Gaussian, then v; is well defined and

1
1
Ent (X||6) = 5 [ EllwPld:
0

22



Towards an embedding - the Follmer drift

The process v; goes back at least to the works of Féllmer (85'). In
a later work by Lehec (13') it is shown that if X has finite entropy
relative to the Gaussian, then v; is well defined and

1

Ent (X||6) = 5 [ EllwPld:
0

In this case, v; is a martingale and the process

t

Yt = Bt -+ / Usds7
0

is a Brownian bridge between 0 and X.

22



Constructing an embedding

We use Y;: to construct a martingale embedding.

Xt =E[Y1|Ft].
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Xt =E[Y1|Ft].
The process X; satisfies
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Constructing an embedding

We use Y;: to construct a martingale embedding.

Xt =E[Y1|Ft].
The process X; satisfies
t C Y t
xt:/ov( 17s) g, :/Fsst.
1—s
0 0
This implies
t
s —1
ve = / 9 dB,.
1—s
0

23



Entropic CLT for log concave vectors
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Entropic CLT for log concave vectors

We use this observation to prove:

24



Entropic CLT for log concave vectors

1. If X is log concave and isotropic then

Ent(S,|G) < Wm (X/|6).

2. If X is 1-strongly log concave (and not isotropic) then
d
no

where o is the minimal eigenvalue of Cov (X).

25



Embeddings of log concave vectors

In the case where X is log concave, it turns out that I'; cannot be

large.

e If X has density f, then Yi|F; has density proportional to

(e (5= 7+ <X“t>).

e In particular, if X is log concave then Xi|F; is

—strongly
log concave.

e Consequently, 'y < %Id.

e The same logic shows that ['; < I, whenever X is 1-strongly

log concave.

26



Embeddings of log concave vectors

If X is 1-strongly log concave and Cov (X) > oly then

E[e] > ol
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Embeddings of log concave vectors

If X is 1-strongly log concave and Cov (X) > oly then

E[e] > ol

First note
Cov (Y1|F:) = E[Y{?|F:] — E[Y1|F]®2.
Hence, by It6's formula

%]E [Cov (Y4|F2)] = —%E [E[viI7]®*| = -E[r3].

27



Embeddings of log concave vectors

Proof (cont’d).

So,
d IE [Me] = iE [Covl(yll}—t)]
_E[Cov(Vi|F)| -1 -t)E[}] E[r]-E[rF]
- (1—1t)2 - 1-t

Since 'y < Iy almost surely

E[r-E[r3] _
1-—t¢ -

28



Thank you!



