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Ising Models

For a matrix J, consider µ(x) ∝ exp (⟨x , Jx⟩), for {−1, 1}n.
Assigns state to particle system with pairwise interactions.

Question

How to sample from µ?
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Ising Models - Glauber Dynamics

Question

How to sample from µ?

Markov chain – construct (Xt)t≥0 such that Law(Xt)
t→∞−−−→ µ.

Glauber Dynamics – to go from Xt to Xt+1

1. Choose a random coordinate i = 1, . . . n.

2. Update Xt,i according to µ|X î
t
1.

How efficient?

1x î = (x1, . . . , xi−1, xi+1, . . . , xn)
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Glauber Dynamics - Curie Weiss

Take J = β
n1⊗ 1, so µ(x) ∝ exp

(
β
n (

∑
xi )

2
)
.

Assume X0 = 1 and consider the magnetization chain

St =
1
n ⟨Xt ,1⟩,

• St ∈ [−1, 1]

• St+1 − St ∈ {− 2
n , 0,

2
n}.

p := p(β,m) = P (St+1 = St + 2|St = m) ,

q := q(β,m) = P (St+1 = St − 2|St = m) .

p
q ≃ (1−m)(1+tanh(2βm))

(1+m)(1−tanh(2βm)) measures the positive drift.
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Glauber Dynamics - Curie Weiss

Theorem (Griffiths, Weng, Langer 66’)

Glauber dynamics for the Curie Weiss model mixes rapidly if and

only if β ≤ 1
2 .
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Stochastic Localization 101

One approach to handling general interaction matrices goes

through Eldan’s stochastic localization (SL)

• SL is a set of techniques, useful in the study of

high-dimensional probability.

• Decomposes a measure into a mixture of simple measures in a

tractable way.

• Simple: µ(x) → e−Q(x)µ(x), with Q PSD quadratic.

• Tractable: amenable to stochastic analysis.
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Stochastic Localization - Technical Details

Formally, define a measure-valued martingale via the SDE,

∂Ft(x) = ⟨x − at,CtdBt⟩Ft(x),F0(x) = 1.

• µt = Ftµ is a martingale so µ = E [µt ].

• Ct is a matrix process and at :=
∫
xFt(x)µ(x).

∂

∫
µt(x) = ∂

∫
Ft(x)µ(x) =

〈∫
xFt(x)µ(x)− at ,CtdBt

〉
= 0.

• µt(x) = exp

(
t∫
0

⟨x − as ,CsdBs⟩ − 1
2

t∫
0

∥Cs(x − as)∥2ds
)
µ(x).

• µt(x) ∝ exp

(
−1

2⟨x ,
(

t∫
0

C 2
s ds

)
x⟩+ ⟨Lt , x⟩

)
µ(x).

7



Stochastic Localization - Technical Details

Formally, define a measure-valued martingale via the SDE,

∂Ft(x) = ⟨x − at,CtdBt⟩Ft(x),F0(x) = 1.

• µt = Ftµ is a martingale so µ = E [µt ].

• Ct is a matrix process and at :=
∫
xFt(x)µ(x).

∂

∫
µt(x) = ∂

∫
Ft(x)µ(x) =

〈∫
xFt(x)µ(x)− at ,CtdBt

〉
= 0.

• µt(x) = exp

(
t∫
0

⟨x − as ,CsdBs⟩ − 1
2

t∫
0

∥Cs(x − as)∥2ds
)
µ(x).

• µt(x) ∝ exp

(
−1

2⟨x ,
(

t∫
0

C 2
s ds

)
x⟩+ ⟨Lt , x⟩

)
µ(x).

7



Stochastic Localization - Technical Details

Formally, define a measure-valued martingale via the SDE,

∂Ft(x) = ⟨x − at,CtdBt⟩Ft(x),F0(x) = 1.

• µt = Ftµ is a martingale so µ = E [µt ].

• Ct is a matrix process and at :=
∫
xFt(x)µ(x).

∂

∫
µt(x) = ∂

∫
Ft(x)µ(x) =

〈∫
xFt(x)µ(x)− at ,CtdBt

〉
= 0.

• µt(x) = exp

(
t∫
0

⟨x − as ,CsdBs⟩ − 1
2

t∫
0

∥Cs(x − as)∥2ds
)
µ(x).

• µt(x) ∝ exp

(
−1

2⟨x ,
(

t∫
0

C 2
s ds

)
x⟩+ ⟨Lt , x⟩

)
µ(x).

7



Stochastic Localization - Technical Details

Formally, define a measure-valued martingale via the SDE,

∂Ft(x) = ⟨x − at,CtdBt⟩Ft(x),F0(x) = 1.

• µt = Ftµ is a martingale so µ = E [µt ].

• Ct is a matrix process and at :=
∫
xFt(x)µ(x).

∂

∫
µt(x) = ∂

∫
Ft(x)µ(x) =

〈∫
xFt(x)µ(x)− at ,CtdBt

〉
= 0.

• µt(x) = exp

(
t∫
0

⟨x − as ,CsdBs⟩ − 1
2

t∫
0

∥Cs(x − as)∥2ds
)
µ(x).

• µt(x) ∝ exp

(
−1

2⟨x ,
(

t∫
0

C 2
s ds

)
x⟩+ ⟨Lt , x⟩

)
µ(x).

7



Stochastic Localization - Technical Details

Formally, define a measure-valued martingale via the SDE,

∂Ft(x) = ⟨x − at,CtdBt⟩Ft(x),F0(x) = 1.

• µt = Ftµ is a martingale so µ = E [µt ].

• Ct is a matrix process and at :=
∫
xFt(x)µ(x).

∂

∫
µt(x) = ∂

∫
Ft(x)µ(x) =

〈∫
xFt(x)µ(x)− at ,CtdBt

〉
= 0.

• µt(x) = exp

(
t∫
0

⟨x − as ,CsdBs⟩ − 1
2

t∫
0

∥Cs(x − as)∥2ds
)
µ(x).

• µt(x) ∝ exp

(
−1

2⟨x ,
(

t∫
0

C 2
s ds

)
x⟩+ ⟨Lt , x⟩

)
µ(x).

7



Stochastic Localization - Ising Model

Consider µ(x) = exp (⟨x , Jx⟩) , x ∈ {−1, 1}n and its Glauber dynamics.

Want: control the spectral gap, Varµ(φ) ≤ C(µ)Eµ(φ).

(Possible) Solution: choose Ct in SL to satisfy:

• Varµt (φ) is a martingale.

• For Jt = J − 1
2

∫ t

0
C 2
s ds, Jt is strictly decreasing when rank(Jt) ≥ 2.

If τ := min{t|rank(Jt) = 1}, then

Varµ(φ) = E [Varµτ
(φ)] ≤ CE [Eµτ

(φ)] ≤ CEµ(φ).

with C the maximal Poincaré constant ranging over measures

exp (⟨x ,Rx⟩+ ⟨ℓ, x⟩) ,R ≤ J, rank(R) = 1.
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Stochastic Localization - Ising Model

If ν(x) ∝ exp
(
⟨v , x⟩2 + ⟨ℓ, x⟩

)
then C (ν) ≤ 1

1−2∥v∥2 .

Theorem (Eldan, Koehler, Zeitouni 20’)

If J is PSD with ∥J∥op < 1
2 and µ(x) ∝ exp (⟨x , Jx⟩) ,

C (µ) ≤ 1

1− 2∥J∥op
.

1. Essentially sharp for the Curie-Weiss model J = β
n1⊗ 1.

2. Meaningful bounds for the Sherrington-Kirkpatrick model.

3. Crucially relies on J being quadratic.
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Stochastic Localization - Tensor Models?

Crucially relies on J being quadratic. Why?

1. Waiting for Jt = J −
∫ t
0 C 2

s ds to collapse.

2. Came from a ‘Gaussian tilt’,

µt(x) ≃ exp

(
−1

2
⟨x ,

∫ t

0

C 2
s dsx⟩

)
µ(x) = exp

(
⟨x , J − 1

2

∫ t

0

C 2
s dsx⟩

)
.

3. Induced by the quadratic variation of CtdBt .

Question

Can a similar technique work for interactions of higher degrees?

Can we induce non-Gaussian tilts?
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Tensor Models - Possible Approaches

Let T ∈ (Rn)⊗4, equivalently T : Hom(Rn,Rn) → Hom(Rn,Rn).

Pedestrian view: T is an n2 × n2 matrix.

For µ(x) = exp(T (x))2, define the SL process,

∂Ft(x) = ⟨x ⊗ x − at ,MtdWt⟩Ft(x),F0(x) = 1.

1. at - Barycenter, Wt - Dyson Brownian motion, Mt - 4 tensor.

2. Set µt = Ftµ, a probability measure, because of at .

3. µt(x) = exp
(∫ t

0
⟨x ⊗ x − as ,MsdWs⟩ − 1

2

∫ t

0
∥Ms(x ⊗ x − as)∥2ds

)
µ(x).

2T (x) := T (x , x , x , x) = ⟨T (xxT ), xxT ⟩HS
11
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Tensor Models - Possible Approaches

µt(x) = exp

(∫ t

0

⟨x ⊗ x − as ,MsdWs⟩ −
1

2

∫ t

0

∥Ms(x ⊗ x − as)∥2ds
)
µ(x)

Or, equivalently

µt(x) ∝ exp

(
T (x)− 1

2

∫ t

0

M2
s (x)ds + ⟨Lt , x ⊗ x⟩

)

Problem 1: ⟨Lt , x ⊗ x⟩ is not linear in x . Spectral gap can be bad.

Problem 2: We treat T as a matrix, so T (x)− 1
2

∫ t
0 M2

s (x)ds

collapses to D ⊗ D, rather than v⊗4.
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About Problem 1

Problem 1: ⟨Lt , x ⊗ x⟩ is not linear in x . Need to eliminate

Lt =

∫ t

0
MsdWs +

∫ t

0
asds.

• Remove at . Add a constraint to Mt to fix
∫
1µt(x).

• Introduce a new drift vt to ensure that
∫ t
0 MsdWs +

∫ t
0 vsds is

arbitrarily small.
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About Problem 1

Lemma

For any ‘reasonable’ adapted matrix-process Mt and δ > 0, there

exists an adapted drift vt , such that∥∥∥∥∫ t

0
MsdWs +

∫ t

0
vsds

∥∥∥∥ < δ,

almost surely, for t arbitrarily large.

Define now the SL process

∂Ft(x) = ⟨x ⊗ x − vt ,MtdWt⟩Ft(x),F0(x) = 1.

Mt encodes constraints: mass preservation, variance martingale.
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About Problem 2

∂Ft(x) = ⟨x ⊗ x − vt ,MtdWt⟩Ft(x),F0(x) = 1.

Define Tt = T − 1
2

t∫
0

M2
s ds and τ := min{t|rank(Tt) = 2}. We

have the expression,

µτ ∝ exp (⟨x ⊗ x ,D1 ⊗ D1⟩+ ⟨x ⊗ x ,D2 ⊗ D2⟩)
= exp

(
⟨x ,D1x⟩2 + ⟨x ,D2x⟩2

)
.

with n × n matrices. ∥D1∥op, ∥D2∥op ≤ ∥T∥inj.

No immediate results for measures exp
(
⟨x ,D1x⟩2

)
.
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About Problem 2

Iterate!!

exp
(
⟨x ,D1x⟩2 + ⟨x ,D2x⟩2

)
=⇒

exp
((
⟨v1, x⟩2 + ⟨v2, x⟩2

)
⟨x ,D1x⟩+ ⟨x ,D2x⟩2

)
=⇒

exp
((
⟨v1, x⟩2 + ⟨v2, x⟩2

) (
⟨u1, x⟩2 + ⟨u2, x⟩2

)
+ ⟨x ,D2x⟩2

)
=⇒

exp
(
Σ2
i ,j=1⟨vi , x⟩2⟨ui , x⟩2 +Σ4

i ,j=3⟨vi , x⟩2⟨ui , x⟩2
)
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Spectral Gaps of Tensor Models

exp
(∑2

i ,j=1⟨vi , x⟩2⟨ui , x⟩2 +
∑4

i ,j=3⟨vi , x⟩2⟨ui , x⟩2
)

Enough to bound spectral gap of rank 8 tensors.

Theorem

If T is PSD 4-tensor with ∥T∥inj < 1
8·12n and µ(x) ∝ exp (T (x)) ,

C (µ) ≲
1

1− 8 · 12n∥T∥inj
.

1. Not tight, by about a factor of 8.

2. Also applies to spin glass models, lose another constant factor.

3. Can be extended to higher order degrees or mixed spins.
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Thank You
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