Spectral gaps for measures on the cube via a generalized stochastic localization process

Dan Mikulincer

UW

Joint work with Arianna Piana

For a matrix J, consider $\mu(x) \propto \exp{(\langle x, Jx \rangle)}$, for $\{-1, 1\}^n$. Assigns state to particle system with pairwise interactions.

How to sample from μ ?

For a matrix J, consider $\mu(x) \propto \exp{(\langle x, Jx \rangle)}$, for $\{-1, 1\}^n$. Assigns state to particle system with pairwise interactions.

How to sample from μ ?

For a matrix J, consider $\mu(x) \propto \exp{(\langle x, Jx \rangle)}$, for $\{-1, 1\}^n$. Assigns state to particle system with pairwise interactions.

Question How to sample from μ ?

Question

How to sample from μ ?

Markov chain – construct $(X_t)_{t\geq 0}$ such that $\text{Law}(X_t) \xrightarrow{t\to\infty} \mu$.

Glauber Dynamics – to go from X_t to X_{t+1}

- 1. Choose a random coordinate $i = 1, \ldots n$.
- 2. Update $\mathsf{X}_{t,i}$ according to $\mu|\mathsf{X}_t^{\hat{i}1}.$

Question

How to sample from μ ?

Markov chain – construct $(X_t)_{t\geq 0}$ such that $\text{Law}(X_t) \xrightarrow{t\to\infty} \mu$.

Glauber Dynamics – to go from X_t to X_{t+1}

- 1. Choose a random coordinate $i = 1, \ldots n$.
- 2. Update $X_{t,i}$ according to $\mu |X_t^{\hat{i}1}.$

$$
{}^1x^{\hat{i}}=(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_n)
$$

Question

How to sample from μ ?

Markov chain – construct $(X_t)_{t\geq 0}$ such that $\text{Law}(X_t) \xrightarrow{t\to\infty} \mu$.

Glauber Dynamics – to go from X_t to X_{t+1}

- 1. Choose a random coordinate $i = 1, \ldots n$.
- 2. Update $X_{t,i}$ according to $\mu |X_t^{\hat{i}1}.$

How efficient?

$$
{}^{1}x^{\hat{i}} = (x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n)
$$

Take $J=\frac{\beta}{n}$ $\frac{\beta}{n} \mathbb{1} \otimes \mathbb{1}$, so $\mu(\mathsf{x}) \propto \exp\left(\frac{\beta}{n}\right)$ $\frac{\beta}{n} \left(\sum x_i \right)^2$. Assume $X_0 = \mathbb{1}$ and consider the magnetization chain $\frac{1}{n}\langle X_t, \mathbb{1}\rangle$,

- $S_t \in [-1, 1]$
- $S_{t+1} S_t \in \{-\frac{2}{n}, 0, \frac{2}{n}\}$

 $\frac{p}{q} \simeq \frac{(1 - m)(1 + \tanh(2\beta m))}{(1 + m)(1 - \tanh(2\beta m))}$ measures the positive drift.

Take $J=\frac{\beta}{n}$ $\frac{\beta}{n} \mathbb{1} \otimes \mathbb{1}$, so $\mu(\mathsf{x}) \propto \exp\left(\frac{\beta}{n}\right)$ $\frac{\beta}{n} \left(\sum x_i \right)^2$. Assume $X_0 = \mathbb{1}$ and consider the magnetization chain $S_t = \frac{1}{n}$ $\frac{1}{n}\langle X_t, \mathbb{1}\rangle$,

• $S_t \in [-1, 1]$

•
$$
S_{t+1} - S_t \in \{-\frac{2}{n}, 0, \frac{2}{n}\}.
$$

$$
p := p(\beta, m) = \mathbb{P}(S_{t+1} = S_t + 2|S_t = m),
$$

$$
q := q(\beta, m) = \mathbb{P}(S_{t+1} = S_t - 2|S_t = m).
$$

p $\frac{p}{q} \simeq \frac{(1 - m)(1 + \tanh(2\beta m))}{(1 + m)(1 - \tanh(2\beta m))}$ measures the positive drift.

Glauber Dynamics - Curie Weiss

Glauber dynamics for the Curie Weiss model mixes rapidly if and only if $\beta \leq \frac{1}{2}$

Glauber Dynamics - Curie Weiss

Theorem (Griffiths, Weng, Langer 66')

Glauber dynamics for the Curie Weiss model mixes rapidly if and only if $\beta \leq \frac{1}{2}$ $\frac{1}{2}$.

One approach to handling general interaction matrices goes through Eldan's stochastic localization (SL)

- SL is a set of techniques, useful in the study of high-dimensional probability.
- Decomposes a measure into a mixture of simple measures in a tractable way.
- Simple: $\mu(x) \to e^{-Q(x)} \mu(x)$, with Q PSD quadratic.
- Tractable: amenable to stochastic analysis.

One approach to handling general interaction matrices goes through Eldan's stochastic localization (SL)

- SL is a set of techniques, useful in the study of high-dimensional probability.
- Decomposes a measure into a mixture of simple measures in a tractable way.
- Simple: $\mu(x) \to e^{-Q(x)} \mu(x)$, with Q PSD quadratic.
- Tractable: amenable to stochastic analysis.

One approach to handling general interaction matrices goes through Eldan's stochastic localization (SL)

- SL is a set of techniques, useful in the study of high-dimensional probability.
- Decomposes a measure into a mixture of simple measures in a tractable way.
- Simple: $\mu(x) \to e^{-Q(x)} \mu(x)$, with Q PSD quadratic.
- Tractable: amenable to stochastic analysis.

Formally, define a measure-valued martingale via the SDE, $\partial F_t(x) = \langle x - \mathbf{a_t}, \mathbf{C_t} dB_t \rangle F_t(x), F_0(x) = 1.$

- $\mu_t = F_t \mu$ is a martingale so $\mu = \mathbb{E} [\mu_t]$.
- C_t is a matrix process and $a_t := \int x F_t(x) \mu(x)$.

$$
\partial \int \mu_t(x) = \partial \int F_t(x) \mu(x) = \left\langle \int x F_t(x) \mu(x) - a_t, C_t dB_t \right\rangle = 0.
$$

•
$$
\mu_t(x) = \exp\left(\int_0^t \langle x - a_s, C_s dB_s \rangle - \frac{1}{2} \int_0^t \|C_s(x - a_s)\|^2 ds\right) \mu(x).
$$

\n• $\mu_t(x) \propto \exp\left(-\frac{1}{2}\langle x, \left(\int_0^t C_s^2 ds\right) x \rangle + \langle L_t, x \rangle\right) \mu(x).$

Formally, define a measure-valued martingale via the SDE,

 $\partial F_t(x) = \langle x - \mathbf{a_t}, \mathbf{C_t} dB_t \rangle F_t(x), F_0(x) = 1.$

- $\mu_t = F_t \mu$ is a martingale so $\mu = \mathbb{E} [\mu_t]$.
- C_t is a matrix process and $a_t := \int x F_t(x) \mu(x)$.

$$
\partial \int \mu_t(x) = \partial \int F_t(x) \mu(x) = \left\langle \int x F_t(x) \mu(x) - a_t, C_t dB_t \right\rangle = 0.
$$

•
$$
\mu_t(x) = \exp\left(\int_0^t \langle x - a_s, C_s dB_s \rangle - \frac{1}{2} \int_0^t \|C_s(x - a_s)\|^2 ds\right) \mu(x).
$$

\n• $\mu_t(x) \propto \exp\left(-\frac{1}{2}\langle x, \left(\int_0^t C_s^2 ds\right) x \rangle + \langle L_t, x \rangle\right) \mu(x).$

Formally, define a measure-valued martingale via the SDE,

$$
\partial F_t(x) = \langle x - \mathbf{a_t}, \mathbf{C_t} dB_t \rangle F_t(x), F_0(x) = 1.
$$

- $\mu_t = F_t \mu$ is a martingale so $\mu = \mathbb{E} [\mu_t]$.
- C_t is a matrix process and $a_t := \int x F_t(x) \mu(x)$.

$$
\partial \int \mu_t(x) = \partial \int F_t(x) \mu(x) = \left\langle \int x F_t(x) \mu(x) - a_t, C_t dB_t \right\rangle = 0.
$$

•
$$
\mu_t(x) = \exp\left(\int_0^t \langle x - a_s, C_s dB_s \rangle - \frac{1}{2} \int_0^t \|C_s(x - a_s)\|^2 ds\right) \mu(x).
$$

\n• $\mu_t(x) \propto \exp\left(-\frac{1}{2}\langle x, \left(\int_0^t C_s^2 ds\right) x \rangle + \langle L_t, x \rangle\right) \mu(x).$

Formally, define a measure-valued martingale via the SDE,

$$
\partial F_t(x) = \langle x - \mathbf{a_t}, \mathbf{C_t} dB_t \rangle F_t(x), F_0(x) = 1.
$$

- $\mu_t = F_t \mu$ is a martingale so $\mu = \mathbb{E} [\mu_t]$.
- C_t is a matrix process and $a_t := \int x F_t(x) \mu(x)$.

$$
\partial \int \mu_t(x) = \partial \int F_t(x) \mu(x) = \left\langle \int x F_t(x) \mu(x) - a_t, C_t dB_t \right\rangle = 0.
$$

• $\mu_t(x) = \exp\left(\int_0^t$ 0 $\langle x-a_s, C_s dB_s \rangle - \frac{1}{2} \int_a^t$ 0 $\|C_s(x-a_s)\|^2 ds\bigg)\,\mu(x).$ $\bullet \;\mu_t(x) \propto \exp \left(- \frac{1}{2} \right)$

Formally, define a measure-valued martingale via the SDE,

$$
\partial F_t(x) = \langle x - \mathbf{a_t}, \mathbf{C_t} dB_t \rangle F_t(x), F_0(x) = 1.
$$

- $\mu_t = F_t \mu$ is a martingale so $\mu = \mathbb{E} [\mu_t]$.
- C_t is a matrix process and $a_t := \int x F_t(x) \mu(x)$.

$$
\partial \int \mu_t(x) = \partial \int F_t(x) \mu(x) = \left\langle \int x F_t(x) \mu(x) - a_t, C_t dB_t \right\rangle = 0.
$$

•
$$
\mu_t(x) = \exp\left(\int_0^t \langle x - a_s, C_s dB_s \rangle - \frac{1}{2} \int_0^t \|C_s(x - a_s)\|^2 ds\right) \mu(x).
$$

\n• $\mu_t(x) \propto \exp\left(-\frac{1}{2}\langle x, \left(\int_0^t C_s^2 ds\right) x \rangle + \langle L_t, x \rangle\right) \mu(x).$

Want: control the spectral gap, $\text{Var}_{\mu}(\varphi) \leq \mathbf{C}(\mu)\mathcal{E}_{\mu}(\varphi)$. (Possible) Solution: choose C_t in SL to satisfy:

- $\bullet \ \ \text{Var}_{\mu_t}(\varphi)$ is a martingale.
- For $J_t = J \frac{1}{2} \int_0^t C_s^2 ds$, J_t is strictly decreasing when $\text{rank}(J_t) \geq 2$.

If $\tau := \min\{t | \text{rank}(J_t) = 1\}$, then

with C the maximal Poincaré constant ranging over measures

Want: control the spectral gap, $\text{Var}_{\mu}(\varphi) \leq \mathbf{C}(\mu)\mathcal{E}_{\mu}(\varphi)$.

(Possible) Solution: choose C_t in SL to satisfy:

- $\bullet \ \ \text{Var}_{\mu_t}(\varphi)$ is a martingale.
- For $J_t = J \frac{1}{2} \int_0^t C_s^2 ds$, J_t is strictly decreasing when $\text{rank}(J_t) \geq 2$.

If $\tau := \min\{t | \text{rank}(J_t) = 1\}$, then

with C the maximal Poincaré constant ranging over measures

Want: control the spectral gap, $\text{Var}_{\mu}(\varphi) \leq \mathbf{C}(\mu)\mathcal{E}_{\mu}(\varphi)$. **(Possible) Solution:** choose C_t in SL to satisfy:

- $\bullet\ \ \text{Var}_{\mu_t}(\varphi)$ is a martingale.
- For $J_t = J \frac{1}{2} \int_0^t C_s^2 ds$, J_t is strictly decreasing when $\text{rank}(J_t) \geq 2$.

If $\tau := \min\{t | \text{rank}(J_t) = 1\}$, then

with C the maximal Poincaré constant ranging over measures

Want: control the spectral gap, $\text{Var}_{\mu}(\varphi) \leq \mathbf{C}(\mu)\mathcal{E}_{\mu}(\varphi)$. **(Possible) Solution:** choose C_t in SL to satisfy:

- $\bullet\ \ \text{Var}_{\mu_t}(\varphi)$ is a martingale.
- For $J_t = J \frac{1}{2} \int_0^t C_s^2 ds$, J_t is strictly decreasing when $\text{rank}(J_t) \geq 2$.

If $\tau := \min\{t | \text{rank}(J_t) = 1\}$, then

 $\text{Var}_{\mu}(\varphi) = \mathbb{E} \left[\text{Var}_{\mu_{\tau}}(\varphi) \right] \leq C \mathbb{E} \left[\mathcal{E}_{\mu_{\tau}}(\varphi) \right] \leq C \mathcal{E}_{\mu}(\varphi).$

with C the maximal Poincaré constant ranging over measures

 $\exp (\langle x, Rx \rangle + \langle \ell, x \rangle), R \leq J$, $\text{rank}(R) = 1$.

If
$$
\nu(x) \propto \exp\left(\langle v, x \rangle^2 + \langle \ell, x \rangle\right)
$$
 then $C(\nu) \le \frac{1}{1-2||v||^2}$.

$$
C(\mu) \leq \frac{1}{1-2\|J\|_{\text{op}}}
$$

- 1. Essentially sharp for the Curie-Weiss model $J=\frac{\beta}{n}$
- 2. Meaningful bounds for the Sherrington-Kirkpatrick model.
- 3. Crucially relies on J being quadratic.

If
$$
\nu(x) \propto \exp\left(\langle \nu, x \rangle^2 + \langle \ell, x \rangle\right)
$$
 then $C(\nu) \le \frac{1}{1-2||\nu||^2}$.

Theorem (Eldan, Koehler, Zeitouni 20')

$$
C(\mu)\leq \frac{1}{1-2\|J\|_{\text{op}}}.
$$

- 1. Essentially sharp for the Curie-Weiss model $J=\frac{\beta}{n}$
- 2. Meaningful bounds for the Sherrington-Kirkpatrick model.
- 3. Crucially relies on J being quadratic.

If
$$
\nu(x) \propto \exp((\nu, x)^2 + \langle \ell, x \rangle)
$$
 then $C(\nu) \le \frac{1}{1-2||\nu||^2}$.

Theorem (Eldan, Koehler, Zeitouni 20')

$$
C(\mu)\leq \frac{1}{1-2\|J\|_{\text{op}}}.
$$

- 1. Essentially sharp for the Curie-Weiss model $J=\frac{\beta}{n}$ $\frac{\beta}{n}1\otimes 1$.
- 2. Meaningful bounds for the Sherrington-Kirkpatrick model.
- 3. Crucially relies on J being quadratic.

If
$$
\nu(x) \propto \exp((\nu, x)^2 + \langle \ell, x \rangle)
$$
 then $C(\nu) \le \frac{1}{1-2||\nu||^2}$.

Theorem (Eldan, Koehler, Zeitouni 20')

$$
C(\mu)\leq \frac{1}{1-2\|J\|_{\text{op}}}.
$$

- 1. Essentially sharp for the Curie-Weiss model $J=\frac{\beta}{n}$ $\frac{\beta}{n}1\otimes 1$.
- 2. Meaningful bounds for the Sherrington-Kirkpatrick model.
- 3. Crucially relies on J being quadratic.

Crucially relies on J being quadratic. Why?

1. Waiting for $J_t = J - \int_0^t C_s^2 ds$ to collapse.

$$
\mu_t(x) \simeq \exp\left(-\frac{1}{2}\langle x, \int_0^t C_s^2 d s x\rangle\right) \mu(x) = \exp\left(\langle x, J - \frac{1}{2} \int_0^t C_s^2 d s x\rangle\right).
$$

3. Induced by the quadratic variation of $C_t d B_t$.

Can a similar technique work for interactions of higher degrees?

Crucially relies on J being quadratic. Why?

- 1. Waiting for $J_t = J \int_0^t C_s^2 ds$ to collapse.
- 2. Came from a 'Gaussian tilt',

$$
\mu_t(x) \simeq \exp\left(-\frac{1}{2}\langle x, \int_0^t C_s^2 ds x\rangle\right) \mu(x) = \exp\left(\langle x, J - \frac{1}{2} \int_0^t C_s^2 ds x\rangle\right).
$$

3. Induced by the quadratic variation of $C_t dB_t$.

Question

Can a similar technique work for interactions of higher degrees? Can we induce non-Gaussian tilts?

Let $\mathcal{T} \in (\mathbb{R}^n)^{\otimes 4}$, equivalently $\mathcal{T} : \text{Hom}(\mathbb{R}^n, \mathbb{R}^n) \to \text{Hom}(\mathbb{R}^n, \mathbb{R}^n)$. **Pedestrian view:** T is an $n^2 \times n^2$ matrix.

For $\mu(x) = \exp(\mathcal{T}(x))^2$, define the SL process,

 $\partial F_t(x) = \langle x \otimes x - a_t, M_t dW_t \rangle F_t(x), F_0(x) = 1.$

1. a_t - Barycenter, W_t - Dyson Brownian motion, M_t - 4 tensor. 2. Set $\mu_t = F_t \mu$, a probability measure, because of a_t .

Let $\mathcal{T} \in (\mathbb{R}^n)^{\otimes 4}$, equivalently $\mathcal{T} : \text{Hom}(\mathbb{R}^n, \mathbb{R}^n) \to \text{Hom}(\mathbb{R}^n, \mathbb{R}^n)$. **Pedestrian view:** T is an $n^2 \times n^2$ matrix.

For $\mu(x) = \exp(T(x))^2$, define the SL process,

 $\partial F_t(x) = \langle x \otimes x - a_t, M_t dW_t \rangle F_t(x), F_0(x) = 1.$

1. a_t - Barycenter, W_t - Dyson Brownian motion, M_t - 4 tensor. 2. Set $\mu_t = F_t \mu$, a probability measure, because of a_t . 3. $\mu_t(x) = \exp \left(\int_0^t \langle x \otimes x - a_s, M_s dW_s \rangle - \frac{1}{2} \int_0^t \| M_s(x \otimes x - a_s) \|^2 ds \right) \mu(x).$

 $\mathcal{C}^2 \mathcal{T}(x) := \mathcal{T}(x, x, x, x) = \langle \mathcal{T}(xx^{\mathcal{T}}), xx^{\mathcal{T}} \rangle_{\mathit{HST}}$

$$
\mu_t(x) = \text{exp}\left(\int_0^t \langle x \otimes x - a_s, M_s dW_s \rangle - \frac{1}{2} \int_0^t \|M_s(x \otimes x - a_s)\|^2 ds\right) \mu(x)
$$

Or, equivalently

$$
\mu_t(x) \propto \exp\left(\mathcal{T}(x) - \frac{1}{2}\int_0^t M_s^2(x)ds + \langle L_t, x \otimes x \rangle\right)
$$

Problem 1: $\langle L_t, x \otimes x \rangle$ is not linear in x. Spectral gap can be bad. **Problem 2:** We treat T as a matrix, so $T(x) - \frac{1}{2}$ $\frac{1}{2} \int_0^t M_s^2(x) ds$ collapses to $D\otimes D$, rather than $v^{\otimes 4}.$

$$
\mu_t(x) = \text{exp}\left(\int_0^t \langle x \otimes x - a_s, M_s dW_s \rangle - \frac{1}{2} \int_0^t \|M_s(x \otimes x - a_s)\|^2 ds\right) \mu(x)
$$

Or, equivalently

$$
\mu_t(x) \propto \exp\left(\mathcal{T}(x) - \frac{1}{2}\int_0^t M_s^2(x)ds + \langle L_t, x \otimes x \rangle\right)
$$

Problem 1: $\langle L_t, x \otimes x \rangle$ is not linear in x. Spectral gap can be bad.

Problem 2: We treat T as a matrix, so $T(x) - \frac{1}{2}$ $\frac{1}{2} \int_0^t M_s^2(x) ds$ collapses to $D\otimes D$, rather than $v^{\otimes 4}.$

$$
\mu_t(x) = \exp\left(\int_0^t \langle x \otimes x - a_s, M_s dW_s \rangle - \frac{1}{2} \int_0^t \|M_s(x \otimes x - a_s)\|^2 ds\right) \mu(x)
$$

Or, equivalently

$$
\mu_t(x) \propto \exp\left(\mathcal{T}(x) - \frac{1}{2}\int_0^t M_s^2(x)ds + \langle L_t, x \otimes x \rangle\right)
$$

Problem 1: $\langle L_t, x \otimes x \rangle$ is not linear in x. Spectral gap can be bad. **Problem 2:** We treat T as a matrix, so $T(x) - \frac{1}{2}$ $\frac{1}{2} \int_0^t M_s^2(x) ds$ collapses to $D\otimes D$, rather than $v^{\otimes 4}.$

Problem 1: $\langle L_t, x \otimes x \rangle$ is not linear in x. Need to eliminate

$$
L_t = \int_0^t M_s dW_s + \int_0^t a_s ds.
$$

- Remove a_t . Add a constraint to M_t to fix $\int 1\mu_t(x)$.
- Introduce a new drift v_t to ensure that $\int_0^t M_s dW_s + \int_0^t v_s ds$ is

Problem 1: $\langle L_t, x \otimes x \rangle$ is not linear in x. Need to eliminate

$$
L_t = \int_0^t M_s dW_s + \int_0^t a_s ds.
$$

- Remove a_t . Add a constraint to M_t to fix $\int 1\mu_t(x)$.
- Introduce a new drift v_t to ensure that $\int_0^t M_s dW_s + \int_0^t v_s ds$ is arbitrarily small.

Problem 1: $\langle L_t, x \otimes x \rangle$ is not linear in x. Need to eliminate

$$
L_t = \int_0^t M_s dW_s + \int_0^t a_s ds.
$$

- Remove a_t . Add a constraint to M_t to fix $\int 1\mu_t(x)$.
- Introduce a new drift v_t to ensure that $\int_0^t M_s dW_s + \int_0^t v_s ds$ is arbitrarily small.

Lemma

For any 'reasonable' adapted matrix-process M_t and $\delta > 0$, there exists an adapted drift v_t , such that

$$
\left\|\int_0^t M_s dW_s + \int_0^t v_s ds\right\| < \delta,
$$

almost surely, for t arbitrarily large.

Define now the SL process

 M_t encodes constraints: mass preservation, variance martingale.

Lemma

For any 'reasonable' adapted matrix-process M_t and $\delta > 0$, there exists an adapted drift v_t , such that

$$
\left\|\int_0^t M_s dW_s + \int_0^t v_s ds\right\| < \delta,
$$

almost surely, for t arbitrarily large.

Define now the SL process

 $\partial F_t(x) = \langle x \otimes x - v_t, M_t dW_t \rangle F_t(x), F_0(x) = 1.$

 M_t encodes constraints: mass preservation, variance martingale.

$$
\partial F_t(x) = \langle x \otimes x - v_t, M_t dW_t \rangle F_t(x), F_0(x) = 1.
$$

Define $T_t = T - \frac{1}{2} \int_0^t M_s^2 ds$ and $\tau := \min\{t | \text{rank}(T_t) = 2\}$. We have the expression,

$$
\mu_{\tau} \propto \exp\left(\langle x \otimes x, D_1 \otimes D_1 \rangle + \langle x \otimes x, D_2 \otimes D_2 \rangle\right) = \exp\left(\langle x, D_1 x \rangle^2 + \langle x, D_2 x \rangle^2\right).
$$

with $n \times n$ matrices. $||D_1||_{op}, ||D_2||_{op} \le ||T||_{inj}$.

No immediate results for measures $\exp\left(\langle x,D_1x\rangle^2\right)$.

$$
\partial F_t(x) = \langle x \otimes x - v_t, M_t dW_t \rangle F_t(x), F_0(x) = 1.
$$

Define $T_t = T - \frac{1}{2} \int_0^t M_s^2 ds$ and $\tau := \min\{t | \text{rank}(T_t) = 2\}$. We have the expression,

$$
\mu_{\tau} \propto \exp (\langle x \otimes x, D_1 \otimes D_1 \rangle + \langle x \otimes x, D_2 \otimes D_2 \rangle)
$$

=
$$
\exp (\langle x, D_1 x \rangle^2 + \langle x, D_2 x \rangle^2).
$$

with $n \times n$ matrices. $||D_1||_{\text{op}}, ||D_2||_{\text{op}} \le ||T||_{\text{inj}}.$

No immediate results for measures $\exp\left(\langle x,D_1x\rangle^2\right)$.

$$
\partial F_t(x) = \langle x \otimes x - v_t, M_t dW_t \rangle F_t(x), F_0(x) = 1.
$$

Define $T_t = T - \frac{1}{2} \int_0^t M_s^2 ds$ and $\tau := \min\{t | \text{rank}(T_t) = 2\}$. We have the expression,

$$
\mu_{\tau} \propto \exp (\langle x \otimes x, D_1 \otimes D_1 \rangle + \langle x \otimes x, D_2 \otimes D_2 \rangle)
$$

=
$$
\exp (\langle x, D_1 x \rangle^2 + \langle x, D_2 x \rangle^2).
$$

with $n \times n$ matrices. $||D_1||_{\text{op}}, ||D_2||_{\text{op}} \le ||T||_{\text{inj}}.$

No immediate results for measures $\exp\left(\langle x,D_1x\rangle^2\right)$.

 $\exp\big(\Sigma_{i,j=1}^2\langle v_i, x\rangle^2\langle u_i, x\rangle^2 + \Sigma_{i,j=3}^4\langle v_i, x\rangle^2\langle u_i, x\rangle^2\big)$

 $\exp\left(\langle x,D_1x\rangle^2+\langle x,D_2x\rangle^2\right) \Longrightarrow$ $\exp\big(\Sigma_{i,j=1}^2\langle v_i, x\rangle^2\langle u_i, x\rangle^2 + \Sigma_{i,j=3}^4\langle v_i, x\rangle^2\langle u_i, x\rangle^2\big)$

 $\exp\left(\langle x,D_1x\rangle^2+\langle x,D_2x\rangle^2\right) \Longrightarrow$ $\exp\left(\left(\langle\mathbf{v}_1,\mathbf{x}\rangle^2+\langle\mathbf{v}_2,\mathbf{x}\rangle^2\right)\langle\mathbf{x},D_1\mathbf{x}\rangle+\langle\mathbf{x},D_2\mathbf{x}\rangle^2\right)\Longrightarrow$ $\exp\big(\Sigma_{i,j=1}^2\langle v_i, x\rangle^2\langle u_i, x\rangle^2 + \Sigma_{i,j=3}^4\langle v_i, x\rangle^2\langle u_i, x\rangle^2\big)$

 $\exp\left(\langle x,D_1x\rangle^2+\langle x,D_2x\rangle^2\right) \Longrightarrow$ $\exp\left(\left(\langle\mathbf{v}_1,\mathbf{x}\rangle^2+\langle\mathbf{v}_2,\mathbf{x}\rangle^2\right)\langle\mathbf{x},D_1\mathbf{x}\rangle+\langle\mathbf{x},D_2\mathbf{x}\rangle^2\right)\Longrightarrow$ $\exp\left(\left(\langle v_1,x\rangle^2+\langle v_2,x\rangle^2\right)\left(\langle u_1,x\rangle^2+\langle u_2,x\rangle^2\right)+\langle x,D_2x\rangle^2\right)\Longrightarrow$ $\exp\big(\Sigma_{i,j=1}^2\langle v_i, x\rangle^2\langle u_i, x\rangle^2 + \Sigma_{i,j=3}^4\langle v_i, x\rangle^2\langle u_i, x\rangle^2\big)$

$$
\exp\left(\langle x, D_1x \rangle^2 + \langle x, D_2x \rangle^2\right) \Longrightarrow
$$

\n
$$
\exp\left(\left(\langle v_1, x \rangle^2 + \langle v_2, x \rangle^2\right) \langle x, D_1x \rangle + \langle x, D_2x \rangle^2\right) \Longrightarrow
$$

\n
$$
\exp\left(\left(\langle v_1, x \rangle^2 + \langle v_2, x \rangle^2\right) \left(\langle u_1, x \rangle^2 + \langle u_2, x \rangle^2\right) + \langle x, D_2x \rangle^2\right) \Longrightarrow
$$

\n
$$
\exp\left(\sum_{i,j=1}^2 \langle v_i, x \rangle^2 \langle u_i, x \rangle^2 + \sum_{i,j=3}^4 \langle v_i, x \rangle^2 \langle u_i, x \rangle^2\right)
$$

$$
\exp\left(\sum_{i,j=1}^2\langle v_i,x\rangle^2\langle u_i,x\rangle^2+\sum_{i,j=3}^4\langle v_i,x\rangle^2\langle u_i,x\rangle^2\right)
$$

Enough to bound spectral gap of rank 8 tensors.

If T is PSD 4-tensor with $||T||_{\text{inj}} < \frac{1}{8.12n}$ and $\mu(x) \propto \exp(T(x))$,

$$
C(\mu) \lesssim \frac{1}{1-8\cdot 12n\|\,\mathcal{T}\|_{\text{inj}}}
$$

1. Not tight, by about a factor of 8.

2. Also applies to spin glass models, lose another constant factor.

3. Can be extended to higher order degrees or mixed spins.

$$
\exp\left(\sum_{i,j=1}^2\langle v_i,x\rangle^2\langle u_i,x\rangle^2+\sum_{i,j=3}^4\langle v_i,x\rangle^2\langle u_i,x\rangle^2\right)
$$

Enough to bound spectral gap of rank 8 tensors.

Theorem

If T is PSD 4-tensor with $||T||_{\text{inj}} < \frac{1}{8.12n}$ and $\mu(x) \propto \exp(T(x))$,

$$
\mathcal{C}(\mu) \lesssim \frac{1}{1-8\cdot 12n\|\mathcal{T}\|_{\text{inj}}}.
$$

1. Not tight, by about a factor of 8.

2. Also applies to spin glass models, lose another constant factor.

3. Can be extended to higher order degrees or mixed spins.

$$
\exp\left(\sum_{i,j=1}^2\langle v_i,x\rangle^2\langle u_i,x\rangle^2+\sum_{i,j=3}^4\langle v_i,x\rangle^2\langle u_i,x\rangle^2\right)
$$

Enough to bound spectral gap of rank 8 tensors.

Theorem

If T is PSD 4-tensor with $||T||_{\text{inj}} < \frac{1}{8.12n}$ and $\mu(x) \propto \exp(T(x))$,

$$
\mathcal{C}(\mu) \lesssim \frac{1}{1-8\cdot 12n\|\mathcal{T}\|_{\text{inj}}}.
$$

- 1. Not tight, by about a factor of 8.
- 2. Also applies to spin glass models, lose another constant factor.
- 3. Can be extended to higher order degrees or mixed spins.

Thank You