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Ising Models

For a matrix J, consider p(x) o< exp ((x, Jx)), for {—1,1}".
Assigns state to particle system with pairwise interactions.

J13 <0 J12>0
spins misalign spinsalign
Tl =1 Tl

No interaction

How to sample from u?
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Ising Models - Glauber Dynamics

How to sample from p?

Markov chain — construct (X;)¢>0 such that Law(X;) RmiNyy

Glauber Dynamics — to go from X; to X;11

1. Choose a random coordinate i = 1,...n.

2. Update X;; according to u|thl.

How efficient?

1,0
X = (X17"'7XI-*17XI'+17"'7X’7)
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Glauber Dynamics - Curie Weiss

Take J = %Il ® 1, so u(x) o exp (% (Ex,-)2).
Assume Xy = 1 and consider the magnetization chain
St = %<Xta ]l),

o St E [—1, 1]

i 5t+1 - St € {_%707% o

p = p(B,m) =P (St11 = 5t +2|5: = m),
qg:=q(B,m) =P (St41 =St — 2|5t = m).

E;Zggi;i:ﬂggzg; measures the positive drift.
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Glauber Dynamics - Curie Weiss
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Theorem (Griffiths, Weng, Langer 66’)
Glauber dynamics for the Curie Weiss model mixes rapidly if and

only if B < %
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Stochastic Localization 101

One approach to handling general interaction matrices goes
through Eldan’s stochastic localization (SL)

e Sl is a set of techniques, useful in the study of
high-dimensional probability.

e Decomposes a measure into a mixture of simple measures in a
tractable way.

e Simple: u(x) — e~ 9™ y(x), with @ PSD quadratic.

e Tractable: amenable to stochastic analysis.
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Stochastic Localization - Technical Details

Formally, define a measure-valued martingale via the SDE,

OF:(x) = (x — at, CdB;) F+(x), Fo(x) = 1.

o Ly = Fepuis a martingale so = E [

C; is a matrix process and a; := [ xF¢(x)u(x).

a/ut(x) - a/ = o) = </th(X),,L(x) s CtdBt> ~o.

) = exp ([0 = a0 CedB) = 4 [11Culox = an)Pes ) o)

o) o oxp (30 (] €208) 0+ (L)) )
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Stochastic Localization - Ising Model

Consider p(x) = exp ({x,Jx)),x € {—1,1}" and its Glauber dynamics.

Want: control the spectral gap, Var,(¢) < C(u)E.(v).

(Possible) Solution: choose C; in SL to satisfy:

e Var,,(¢) is a martingale.
e For y=J—3 fo C2ds, J; is strictly decreasing when rank(J;) > 2.
If 7 := min{t|rank(J;) = 1}, then
Var,(¢) = E[Var, (¢)] < CE[E,, (#)] < C&L(p).
with C the maximal Poincaré constant ranging over measures

exp ((x, Rx) + (£, x)), R < J,rank(R) = 1.
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Stochastic Localization - Ising Model

If v(x) o exp ((v,x)? + (¢, x)) then C(v) < ﬁ

Theorem (Eldan, Koehler, Zeitouni 20’)

If J is PSD with ||J||op < 3 and p(x) o< exp ((x, Jx)),

1

Cp) < ———.
W< 1319,

1. Essentially sharp for the Curie-Weiss model J = %]1 ® 1.
2. Meaningful bounds for the Sherrington-Kirkpatrick model.

3. Crucially relies on J being quadratic.
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Stochastic Localization - Tensor Models?

Crucially relies on J being quadratic. Why?

1. Waiting for J; = J — fot C2ds to collapse.
2. Came from a ‘Gaussian tilt’,

f1(x) ~ exp <—;<x,/0t c3d5x>> 1(x) = exp <<X,J - % /Ot c_fdsx>> .

3. Induced by the quadratic variation of C;dB;.

Can a similar technique work for interactions of higher degrees?
Can we induce non-Gaussian tilts?
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Tensor Models - Possible Approaches

Let T € (R")®4, equivalently T : Hom(R"”,R") — Hom(R", R").

2 2

Pedestrian view: T is an n“ X n“ matrix.

For u(x) = exp(T(x))?, define the SL process,

OF:(x) = (x @ x — ag, MedW,) Fe(x), Fo(x) = 1.

1. a; - Barycenter, W; - Dyson Brownian motion, M; - 4 tensor.

2. Set pur = Fip, a probability measure, because of a;.
3. pe(x) = exp (f; (x ® x — as, MedWe) — 1 [0/ [|[Ms(x ® x — a5)|Pds) pu(x).

2T(x) = T(x,%,%x,x) = (T(xx"), xx" s

11
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Tensor Models - Possible Approaches

{00 = o (/Ot<x @ x — a5, My dW,) — % /Ot IMs(x ® x — as)Hst) )

Or, equivalently

we(x) o< exp (T(X) - % /Ot MZ(x)ds + (Le, x @ X>)

Problem 1: (L;,x ® x) is not linear in x. Spectral gap can be bad.

Problem 2: We treat T as a matrix, so T(x) — % Ot M2 (x)ds
collapses to D ® D, rather than v®%,
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About Problem 1

Problem 1: (L;, x ® x) is not linear in x. Need to eliminate

t t
e = / MsdWs +/ asds.
Jo 0
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About Problem 1

Problem 1: (L;, x ® x) is not linear in x. Need to eliminate
t t
e = / MsdWs +/ asds.
Jo 0

e Remove a;. Add a constraint to M; to fix [ 1u¢(x).

e Introduce a new drift v+ to ensure that fot MsdWs + fot vsds is
arbitrarily small.

13



About Problem 1

Lemma

For any ‘reasonable’ adapted matrix-process My and 6 > 0, there

exists an adapted drift v, such that

t t
‘/ MdeS—i-/ vsds
0 0

almost surely, for t arbitrarily large.

<0,




About Problem 1

Lemma

For any ‘reasonable’ adapted matrix-process My and 6 > 0, there

exists an adapted drift v, such that

t t
‘/ MdeS—i-/ vsds
0 0

almost surely, for t arbitrarily large.

<0,

Define now the SL process
OF:(x) = (x ® x — v¢, MedW,) Fi(x), Fo(x) = 1.

M; encodes constraints: mass preservation, variance martingale.



About Problem 2

OF:(x) = (x ® x — v¢, MedW,) Fe(x), Fo(x) = 1.

t
Define T =T — % i M?2ds and 7 := min{t|rank(T;) = 2}.
0
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OF:(x) = (x ® x — v¢, MedW,) Fe(x), Fo(x) = 1.

t
Define T, = T — % [ M2ds and 7 := min{t|rank(T;) = 2}. We
0

have the expression,
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About Problem 2

OF:(x) = (x ® x — v¢, MedW,) Fe(x), Fo(x) = 1.

t
Define T, = T — % [ M2ds and 7 := min{t|rank(T;) = 2}. We
0

have the expression,

Hr X exp((x@x, Dl & D1> + <X®X7 D2 ® D2>)
= exp ((x, D1x)? + (x, Dax)?) .

with n x n matrices. ||D1llop, [|D2]lop < || T lin;-

No immediate results for measures exp (<X, D1x>2) .
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About Problem 2

Iterate!!

exp ((x, D1x)? + (x, D2x>2) —
exp (((vl,x>2 + <v2,x>2) (x, D1x) + (x, D2X>2) —
exp (v, )2 + (v2,%)%) ((u1, %) + (w2, X)) + (x, Dox)?) =
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About Problem 2

Iterate!!
exp ((x, Dlx (x, Dax)? ) =
exp(( Vi (va, X>2) (x, D1x) + {x, D2X>2) =
exp (({v1,x)° + (v, x>2) ((ul,x>2 + (2, x)?) + (x, D2x>2) —
exp( = 1< , x)? +Zf},j:3<V/ x)?(uj, x) )
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Spectral Gaps of Tensor Models

exp (Z?,j:1<vi,x>2<ui7><>2 + Zij:3<‘/f>x>2<“"’x>2>

Enough to bound spectral gap of rank 8 tensors.
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Spectral Gaps of Tensor Models

oxp (X270 (vio X)2 (0, 30 4 g (vio X)2 (i, %)2)

Enough to bound spectral gap of rank 8 tensors.

If T is PSD 4-tensor with || T |linj < g5 and p(x) o exp (T(x)),

1
Cp) S '
(1) S 1—8-12n| T ||inj

1. Not tight, by about a factor of 8.
2. Also applies to spin glass models, lose another constant factor.

3. Can be extended to higher order degrees or mixed spins.
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