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e A Gaussian process is a random function G(x), such that all
of its finite-dimensional marginals are jointly Gaussian.
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Background

e There have been many works on this topic since Neal's
original result.
o However, most previous results where either:
1. Asymptotic - dealt with the limit.
2. Finite-dimensional - If {x;}M, C R”, then {Nk(x;)}M, is
approximately Gaussian in RM
e We provide non-asymptotic convergence bounds in a functions

space.



A Metric on [3(S"1)

To state our results, we define the following transportation metrics
between random elements of L2(S"~1):

N[

(F.F")

n—1

WFa(F,F') = inf / E [|F(x) — F/(x)?] dx)

and

WFooF,F') = inf E[sup F(x) — F'(x }
(F.F)= jnf, B| swp ()~ F()
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k
convergence, WF (N, G) ——= 0.

If o is polynomial, then our bounds are typically better and hold
for the stronger W, metric.

For example, if {x;}M, C R", we can conclude that {N(x;)}M,
converges to a Gaussian in a rate which is independent from M.
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Main challenge: Known convergence rates of the high-dimensional
CLT tend to deteriorate with the dimension.

Crucial observation: If ¢ is a polynomial, the same is also true Nj.
Hence, it is supported on a finite dimensional space of L?(S"~1).

Our plan:

e For polynomials, embed Ny in a finite dimensional Euclidean
space and invoke known CLT results.

e For general o, we approximate by a polynomial and reduce to
the previous case.
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If G is any Gaussian vector in (R")®“, we can define a Gaussian

process G(x) = (G, x¥9) .
Now,

WZFoo(Ni,G) <E - sup | Nk(x) —Q(X)}

LxeSn—1
[ +1 &

=E| sup { — w®d — G, x®d
_XES"71 <\/E ; ‘
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So, to control WF (N, G), it is enough to understand
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+1
®d
=2 w=6
vk
By using a tailored CLT for tensor powers, we then prove:

Suppose that o(t) = td. Then, there exists a Gaussian process

G, such that
2-5d—15
WFoo(Nk,G) < —

E




A Central Limit Theorem for Neural Networks

Suppose that o(t) = t9. Then, there exists a Gaussian process

G, such that

2.5d—1.5
WF oo(Ni, G) < ‘/HT'

Remarks:

e The proof requires to bound the eigenvalues of Cov (W®d).

e The result is tight when d = 2.

d .
e A similar proof applies for general polynomials o(t) = > a;x’.
i=0
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General Activations

For general o, we may still write, for py a degree d polynomial,
0= p4 + (0 — pdg).

It makes sense to minimize |[py — o||12(,) and we take py to be
the Hermite approximation of o.

Thus, the following quantity R,(d) := |[pg — o 12() is
fundamental.



General Activations

By optimizing over the value of R,(d) and the bound for
polynomial activations we prove:

Suppose that ||o||2(,) < 0o. Then,

WF»(Nk, G \/ '°g g)
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Suppose that o = tanh. Then,

log(k)
WFa(Ni,G) < e Vst

~



