
Non-asymptotic approximations of neural

networks by Gaussian processes

Ronen Eldan

Weizmann Institute

Dan Mikulincer

Weizmann Institute

Tselil Schramm

Stanford University



Setting

� We consider a randomly initialized two-layered neural network,

Nk(x) :=
±1√
k

k∑
i=1

σ (wi · x) ,

where x ∈ Rn, σ is non-linear and {wi}ki=1 are i.i.d. N (0, In).

� In 1995, it was observed by Neal that as k →∞, the law of

the random function Nk tends to a Gaussian process, on the

sphere.

� A Gaussian process is a random function G(x), such that all

of its finite-dimensional marginals are jointly Gaussian.
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Background

� There have been many works on this topic since Neal’s

original result.

� However, most previous results where either:

1. Asymptotic - dealt with the limit.

2. Finite-dimensional - If {xi}Mi=1 ⊂ Rn, then {Nk(xi )}Mi=1 is

approximately Gaussian in RM

� We provide non-asymptotic convergence bounds in a functions

space.
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A Metric on L2(Sn−1)

To state our results, we define the following transportation metrics

between random elements of L2(Sn−1):

WF2(F ,F ′) = inf
(F ,F ′)

 ∫
Sn−1

E
[
|F(x)−F ′(x)|2

]
dx

 1
2

,

and

WF∞(F ,F ′) = inf
(F ,F ′)

E
[

sup
x∈Sn−1

|F(x)−F ′(x)|
]
.



Results

For any reasonable activation σ, we establish bounds on the rate of

convergence, WF2(Nk ,G)
k→∞−−−→ 0.

If σ is polynomial, then our bounds are typically better and hold

for the stronger WF∞ metric.

For example, if {xi}Mi=1 ⊂ Rn, we can conclude that {Nk(xi )}Mi=1

converges to a Gaussian in a rate which is independent from M.
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Plan

Main challenge: Known convergence rates of the high-dimensional

CLT tend to deteriorate with the dimension.

Crucial observation: If σ is a polynomial, the same is also true Nk .

Hence, it is supported on a finite dimensional space of L2(Sn−1).

Our plan:

� For polynomials, embed Nk in a finite dimensional Euclidean

space and invoke known CLT results.

� For general σ, we approximate by a polynomial and reduce to

the previous case.
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The Embedding

For now, suppose that σ(t) = td , for some d ∈ N. Now, recall the

following identity of tensor products 〈v , u〉d = 〈v⊗d , u⊗d〉.
So,

Nk(x) =
±1√
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The Embedding

If G is any Gaussian vector in (Rn)⊗d , we can define a Gaussian

process G(x) =
〈
G , x⊗d

〉
.

Now,

WF∞(Nk ,G) ≤ E
[

sup
x∈Sn−1

|Nk(x)− G(x)|
]

= E

[
sup

x∈Sn−1

〈
±1√
k

k∑
`=1

w⊗d` − G , x⊗d

〉]

≤ E

∥∥∥∥∥±1√
k

k∑
`=1

w⊗d` − G

∥∥∥∥∥
2

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A Central Limit Theorem for Neural Networks

So, to control WF∞(Nk ,G), it is enough to understand

E

∥∥∥∥∥±1√
k

k∑
`=1

w⊗d` − G

∥∥∥∥∥
2
 .

By using a tailored CLT for tensor powers, we then prove:

Theorem

Suppose that σ(t) = td . Then, there exists a Gaussian process

G, such that

WF∞(Nk ,G) ≤
√

n2.5d−1.5

k
.
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A Central Limit Theorem for Neural Networks

Theorem

Suppose that σ(t) = td . Then, there exists a Gaussian process

G, such that

WF∞(Nk ,G) ≤
√

n2.5d−1.5

k
.

Remarks:

� The proof requires to bound the eigenvalues of Cov
(
w⊗d

)
.

� The result is tight when d = 2.

� A similar proof applies for general polynomials σ(t) =
d∑

i=0
aix

i .



General Activations

For general σ, we may still write, for pd a degree d polynomial,

σ = pd + (σ − pd).

It makes sense to minimize ‖pd − σ‖L2(γ) and we take pd to be

the Hermite approximation of σ.

Thus, the following quantity Rσ(d) := ‖pd − σ‖L2(γ) is

fundamental.
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General Activations

By optimizing over the value of Rσ(d) and the bound for

polynomial activations we prove:

Theorem

Suppose that ‖σ‖L2(γ) <∞. Then,

WF2(Nk ,G) .

√
1

k
1
6

+ Rσ

(
log(k)

log(n)

)
.



General Activations - Specific Examples

Theorem

Suppose that σ = ReLU. Then,

WF2(Nk ,G) .
log(n)

log(k)
.

Theorem

Suppose that σ = tanh. Then,

WF2(Nk ,G) . e
−
√

log(k)
log(n) .
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