Non-asymptotic approximations of neural networks by Gaussian processes

Ronen Eldan Weizmann Institute Dan Mikulincer Weizmann Institute Tselil Schramm Stanford University

$$N_k(x) := \frac{\pm 1}{\sqrt{k}} \sum_{i=1}^k \sigma(w_i \cdot x),$$

- In 1995, it was observed by Neal that as $k \to \infty$, the law of the random function N_k tends to a Gaussian process, on the sphere.
- A Gaussian process is a random function $\mathcal{G}(x)$, such that all of its finite-dimensional marginals are jointly Gaussian.

$$N_k(x) := \frac{\pm 1}{\sqrt{k}} \sum_{i=1}^k \sigma(w_i \cdot x),$$

- In 1995, it was observed by Neal that as k → ∞, the law of the random function N_k tends to a Gaussian process, on the sphere.
- A Gaussian process is a random function $\mathcal{G}(x)$, such that all of its finite-dimensional marginals are jointly Gaussian.

$$N_k(x) := \frac{\pm 1}{\sqrt{k}} \sum_{i=1}^k \sigma(w_i \cdot x),$$

- In 1995, it was observed by Neal that as $k \to \infty$, the law of the random function N_k tends to a Gaussian process, on the sphere.
- A Gaussian process is a random function $\mathcal{G}(x)$, such that all of its finite-dimensional marginals are jointly Gaussian.

$$N_k(x) := \frac{\pm 1}{\sqrt{k}} \sum_{i=1}^k \sigma(w_i \cdot x),$$

- In 1995, it was observed by Neal that as $k \to \infty$, the law of the random function N_k tends to a Gaussian process, on the sphere.
- A Gaussian process is a random function $\mathcal{G}(x)$, such that all of its finite-dimensional marginals are jointly Gaussian.

- There have been many works on this topic since Neal's original result.
- However, most previous results where either:
 - 1. Asymptotic dealt with the limit.
 - 2. Finite-dimensional If $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, then $\{N_k(x_i)\}_{i=1}^M$ is approximately Gaussian in \mathbb{R}^M
- We provide non-asymptotic convergence bounds in a functions space.

- There have been many works on this topic since Neal's original result.
- However, most previous results where either:
 - 1. Asymptotic dealt with the limit.
 - 2. Finite-dimensional If $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, then $\{N_k(x_i)\}_{i=1}^M$ is approximately Gaussian in \mathbb{R}^M
- We provide non-asymptotic convergence bounds in a functions space.

- There have been many works on this topic since Neal's original result.
- However, most previous results where either:
 - 1. Asymptotic dealt with the limit.
 - 2. Finite-dimensional If $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, then $\{N_k(x_i)\}_{i=1}^M$ is approximately Gaussian in \mathbb{R}^M
- We provide non-asymptotic convergence bounds in a functions space.

- There have been many works on this topic since Neal's original result.
- However, most previous results where either:
 - 1. Asymptotic dealt with the limit.
 - 2. Finite-dimensional If $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, then $\{N_k(x_i)\}_{i=1}^M$ is approximately Gaussian in \mathbb{R}^M
- We provide non-asymptotic convergence bounds in a functions space.

- There have been many works on this topic since Neal's original result.
- However, most previous results where either:
 - 1. Asymptotic dealt with the limit.
 - 2. Finite-dimensional If $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, then $\{N_k(x_i)\}_{i=1}^M$ is approximately Gaussian in \mathbb{R}^M
- We provide non-asymptotic convergence bounds in a functions space.

- There have been many works on this topic since Neal's original result.
- However, most previous results where either:
 - 1. Asymptotic dealt with the limit.
 - 2. Finite-dimensional If $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, then $\{N_k(x_i)\}_{i=1}^M$ is approximately Gaussian in \mathbb{R}^M
- We provide non-asymptotic convergence bounds in a functions space.

To state our results, we define the following transportation metrics between random elements of $L^2(\mathbb{S}^{n-1})$:

$$\mathcal{WF}_2(\mathcal{F},\mathcal{F}') = \inf_{(\mathcal{F},\mathcal{F}')} \left(\int_{\mathbb{S}^{n-1}} \mathbb{E}\left[|\mathcal{F}(x) - \mathcal{F}'(x)|^2 \right] dx \right)^{\frac{1}{2}},$$

and

$$\mathcal{WF}_{\infty}(\mathcal{F},\mathcal{F}') = \inf_{(\mathcal{F},\mathcal{F}')} \mathbb{E}\left[\sup_{x\in\mathbb{S}^{n-1}}|\mathcal{F}(x)-\mathcal{F}'(x)|
ight].$$

For any reasonable activation σ , we establish bounds on the rate of convergence, $\mathcal{WF}_2(N_k, \mathcal{G}) \xrightarrow{k \to \infty} 0.$

If σ is polynomial, then our bounds are typically better and hold for the stronger \mathcal{WF}_{∞} metric.

For example, if $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, we can conclude that $\{N_k(x_i)\}_{i=1}^M$ converges to a Gaussian in a rate which is independent from M.

For any reasonable activation σ , we establish bounds on the rate of convergence, $\mathcal{WF}_2(N_k, \mathcal{G}) \xrightarrow{k \to \infty} 0.$

If σ is polynomial, then our bounds are typically better and hold for the stronger \mathcal{WF}_{∞} metric.

For example, if $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, we can conclude that $\{N_k(x_i)\}_{i=1}^M$ converges to a Gaussian in a rate which is independent from M.

For any reasonable activation σ , we establish bounds on the rate of convergence, $\mathcal{WF}_2(N_k, \mathcal{G}) \xrightarrow{k \to \infty} 0.$

If σ is polynomial, then our bounds are typically better and hold for the stronger \mathcal{WF}_{∞} metric.

For example, if $\{x_i\}_{i=1}^M \subset \mathbb{R}^n$, we can conclude that $\{N_k(x_i)\}_{i=1}^M$ converges to a Gaussian in a rate which is independent from M.

- For polynomials, embed N_k in a finite dimensional Euclidean space and invoke known CLT results.
- For general σ, we approximate by a polynomial and reduce to the previous case.

- For polynomials, embed N_k in a finite dimensional Euclidean space and invoke known CLT results.
- For general σ, we approximate by a polynomial and reduce to the previous case.

- For polynomials, embed N_k in a finite dimensional Euclidean space and invoke known CLT results.
- For general σ , we approximate by a polynomial and reduce to the previous case.

- For polynomials, embed N_k in a finite dimensional Euclidean space and invoke known CLT results.
- For general σ , we approximate by a polynomial and reduce to the previous case.

For now, suppose that $\sigma(t) = t^d$, for some $d \in \mathbb{N}$. Now, recall the following identity of tensor products $\langle v, u \rangle^d = \langle v^{\otimes d}, u^{\otimes d} \rangle$. So,

$$N_k(x) = \frac{\pm 1}{\sqrt{k}} \sum_{\ell=1}^k (w_\ell \cdot x)^d$$
$$= \frac{\pm 1}{\sqrt{k}} \sum_{\ell=1}^k \langle w_\ell^{\otimes d}, x^{\otimes d} \rangle = \left\langle \frac{\pm 1}{\sqrt{k}} \sum_{\ell=1}^k w_\ell^{\otimes d}, x^{\otimes d} \right\rangle.$$

For now, suppose that $\sigma(t) = t^d$, for some $d \in \mathbb{N}$. Now, recall the following identity of tensor products $\langle v, u \rangle^d = \langle v^{\otimes d}, u^{\otimes d} \rangle$. So,

$$\begin{split} N_k(x) &= \frac{\pm 1}{\sqrt{k}} \sum_{\ell=1}^k (w_\ell \cdot x)^d \\ &= \frac{\pm 1}{\sqrt{k}} \sum_{\ell=1}^k \langle w_\ell^{\otimes d}, x^{\otimes d} \rangle = \left\langle \frac{\pm 1}{\sqrt{k}} \sum_{\ell=1}^k w_\ell^{\otimes d}, x^{\otimes d} \right\rangle. \end{split}$$

If G is any Gaussian vector in $(\mathbb{R}^n)^{\otimes d}$, we can define a Gaussian process $\mathcal{G}(x) = \langle G, x^{\otimes d} \rangle$. Now,

$$\begin{split} \mathcal{WF}_{\infty}(N_{k},\mathcal{G}) &\leq \mathbb{E}\left[\sup_{x\in\mathbb{S}^{n-1}}\left|N_{k}(x)-\mathcal{G}(x)\right|\right] \\ &= \mathbb{E}\left[\sup_{x\in\mathbb{S}^{n-1}}\left\langle\frac{\pm1}{\sqrt{k}}\sum_{\ell=1}^{k}w_{\ell}^{\otimes d}-G,x^{\otimes d}\right\rangle\right] \\ &\leq \mathbb{E}\left[\left\|\frac{\pm1}{\sqrt{k}}\sum_{\ell=1}^{k}w_{\ell}^{\otimes d}-G\right\|^{2}\right] \end{split}$$

If G is any Gaussian vector in $(\mathbb{R}^n)^{\otimes d}$, we can define a Gaussian process $\mathcal{G}(x) = \langle G, x^{\otimes d} \rangle$. Now,

$$\mathcal{WF}_{\infty}(N_{k},\mathcal{G}) \leq \mathbb{E}\left[\sup_{x\in\mathbb{S}^{n-1}}|N_{k}(x)-\mathcal{G}(x)|\right]$$
$$= \mathbb{E}\left[\sup_{x\in\mathbb{S}^{n-1}}\left\langle\frac{\pm 1}{\sqrt{k}}\sum_{\ell=1}^{k}w_{\ell}^{\otimes d}-G,x^{\otimes d}\right\rangle\right]$$
$$\leq \mathbb{E}\left[\left\|\frac{\pm 1}{\sqrt{k}}\sum_{\ell=1}^{k}w_{\ell}^{\otimes d}-G\right\|^{2}\right]$$

So, to control $\mathcal{WF}_{\infty}(N_k, \mathcal{G})$, it is enough to understand $\mathbb{E}\left[\left\|\frac{\pm 1}{\sqrt{k}}\sum_{\ell=1}^k w_\ell^{\otimes d} - \mathcal{G}\right\|^2\right].$

By using a tailored CLT for tensor powers, we then prove:

Theorem

Suppose that $\sigma(t) = t^d$. Then, there exists a Gaussian process \mathcal{G} , such that

$$\mathcal{WF}_{\infty}(N_k,\mathcal{G}) \leq \sqrt{rac{n^{2.5d-1.5}}{k}}$$

So, to control $\mathcal{WF}_{\infty}(N_k, \mathcal{G})$, it is enough to understand $\mathbb{E}\left[\left\|\frac{\pm 1}{\sqrt{k}}\sum_{\ell=1}^k w_\ell^{\otimes d} - G\right\|^2\right].$

By using a tailored CLT for tensor powers, we then prove:

Theorem

Suppose that $\sigma(t) = t^d$. Then, there exists a Gaussian process \mathcal{G} , such that

$$\mathcal{WF}_{\infty}(N_k,\mathcal{G}) \leq \sqrt{rac{n^{2.5d-1.5}}{k}}.$$

Theorem

Suppose that $\sigma(t) = t^d$. Then, there exists a Gaussian process \mathcal{G} , such that

$$\mathcal{WF}_{\infty}(N_k,\mathcal{G}) \leq \sqrt{rac{n^{2.5d-1.5}}{k}}.$$

Remarks:

- The proof requires to bound the eigenvalues of $Cov(w^{\otimes d})$.
- The result is tight when d = 2.
- A similar proof applies for general polynomials $\sigma(t) = \sum_{i=0}^{d} a_i x^i$.

For general σ , we may still write, for p_d a degree d polynomial,

 $\sigma = p_d + (\sigma - p_d).$

It makes sense to minimize $||p_d - \sigma||_{L^2(\gamma)}$ and we take p_d to be the Hermite approximation of σ .

Thus, the following quantity $R_{\sigma}(d) := \|p_d - \sigma\|_{L^2(\gamma)}$ is fundamental.

For general σ , we may still write, for p_d a degree d polynomial,

 $\sigma = p_d + (\sigma - p_d).$

It makes sense to minimize $||p_d - \sigma||_{L^2(\gamma)}$ and we take p_d to be the Hermite approximation of σ .

Thus, the following quantity $R_{\sigma}(d) := \|p_d - \sigma\|_{L^2(\gamma)}$ is fundamental.

For general σ , we may still write, for p_d a degree d polynomial,

 $\sigma = p_d + (\sigma - p_d).$

It makes sense to minimize $||p_d - \sigma||_{L^2(\gamma)}$ and we take p_d to be the Hermite approximation of σ .

Thus, the following quantity $R_{\sigma}(d) := \|p_d - \sigma\|_{L^2(\gamma)}$ is fundamental.

By optimizing over the value of $R_{\sigma}(d)$ and the bound for polynomial activations we prove:

Theorem

Suppose that $\|\sigma\|_{L^2(\gamma)} < \infty$. Then,

$$\mathcal{WF}_2(N_k,\mathcal{G}) \lesssim \sqrt{rac{1}{k^{rac{1}{6}}} + R_\sigma\left(rac{\log(k)}{\log(n)}
ight)}.$$

Theorem

Suppose that $\sigma = \text{ReLU}$. Then,

$$\mathcal{WF}_2(N_k,\mathcal{G}) \lesssim rac{\log(n)}{\log(k)}.$$

Theorem

Suppose that $\sigma = \tanh$. Then,

$$\mathcal{WF}_2(N_k,\mathcal{G}) \lesssim e^{-\sqrt{rac{\log(k)}{\log(n)}}}.$$

Theorem

Suppose that $\sigma = \text{ReLU}$. Then,

$$\mathcal{WF}_2(N_k,\mathcal{G})\lesssim rac{\log(n)}{\log(k)}.$$

Theorem

Suppose that $\sigma = tanh$. Then,

$$\mathcal{WF}_2(N_k,\mathcal{G}) \lesssim e^{-\sqrt{rac{\log(k)}{\log(n)}}}.$$