A fourth moment theorem for estimating subgraph counts in large graphs

Dan Mikulincer

UW

Joint work with Nitya Mani

Task: Given a large graph, count (estimate) number of triangles.

- Basic statistical task.
- Can carry latent geometric information about embeddings.
- Maybe you like triangles...

Task: Given a large graph, count (estimate) number of triangles.

- Basic statistical task.
- Can carry latent geometric information about embeddings.
- Maybe you like triangles...

Task: Given a large graph, count (estimate) number of triangles.

- Basic statistical task.
- Can carry latent geometric information about embeddings.
- Maybe you like triangles...

Task: Given a large graph, count (estimate) number of triangles.

Basic statistical task

- Can carry latent geometric information about embeddings.
- Maybe you like triangles...

Subgraph Counting - Subsampling

Idea: Subsample the vertices and count monochromatic triangles.

- Count the number of number of blue triangles.
- In expectation should be proportional to the total count.
- Is this consistent? How effective?

Subgraph Counting - Subsampling

Idea: Subsample the vertices and count monochromatic triangles.

Algorithm: color the vertices with c colors.

- Count the number of number of blue triangles.
- In expectation should be proportional to the total count.
- Is this consistent? How effective?

Subgraph Counting - Subsampling

Idea: Subsample the vertices and count monochromatic triangles.

Algorithm: color the vertices with c colors.

- Count the number of number of blue triangles.
- In expectation should be proportional to the total count.
- Is this consistent? How effective?

Consistency: For a sequence of graphs G_n and their (random) monochromatic triangle counts $T(G_n)$, we say that $T(G_n)$ is a consistent estimator if, for some deterministic sequence a_n ,

 $a_n T(G_n) \rightarrow \# triangles(G_n).$

Theorem (Bhattacharya, Das, Mukherjee 20')

Under fairly general conditions on G_n , $T(G_n)$ is consistent.

Consistency: For a sequence of graphs G_n and their (random) monochromatic triangle counts $T(G_n)$, we say that $T(G_n)$ is a consistent estimator if, for some deterministic sequence a_n ,

 $a_n T(G_n) \rightarrow \# triangles(G_n).$

Theorem (Bhattacharya, Das, Mukherjee 20')

Under fairly general conditions on G_n , $T(G_n)$ is consistent.

Efficiency

For the efficiency of $T(G_n)$ we also need to bound the error.

Question

What is the asymptotic distribution of (a normalized) $T(G_n)$?

Sum of independent triangles triangles $\implies T(G_n)$ is normal.

Efficiency

For the efficiency of $T(G_n)$ we also need to bound the error.

Question

What is the asymptotic distribution of (a normalized) $T(G_n)$?

Sum of independent triangles triangles $\implies T(G_n)$ is normal.

Formal Setting

- $G_n = (V_n, E_n)$ graphs with $|V_n| \to \infty$, H fixed subgraph.
- Randomly color V_n with c colors and set

 $T(H, G_n) =$ #Monochromatic copies of H.

Normalize

$$Z(H, G_n) = \frac{T(H, G_n) - \mathbb{E}[T(H, G_n)]}{\sqrt{\operatorname{Var}(T(H, G_n))}}$$

Question

Find necessary and sufficient conditions on G_n such that $Z(H, G_n) \rightarrow N(0, 1)$.

Formal Setting

- $G_n = (V_n, E_n)$ graphs with $|V_n| \to \infty$, H fixed subgraph.
- Randomly color V_n with c colors and set

 $T(H, G_n) =$ #Monochromatic copies of H.

• Normalize

$$Z(H, G_n) = \frac{T(H, G_n) - \mathbb{E}[T(H, G_n)]}{\sqrt{\operatorname{Var}(T(H, G_n))}}$$

Question

Find necessary and sufficient conditions on G_n such that $Z(H, G_n) \rightarrow N(0, 1)$.

Why 4-cycles?

 $\mathbb{E}\left[\mathcal{T}(K_2, G_n)^4\right] = 3 \cdot \# wedges + \# four-cycles.$

Not having many 4-cycles implies,

 $\mathbb{E}\left[Z(K_2, G_n)^4\right] \to 3 = \mathbb{E}\left[N(0, 1)^4\right].$

Why 4-cycles?

 $\mathbb{E}\left[\mathcal{T}(K_2, G_n)^4\right] = 3 \cdot \# \text{wedges} + \# \text{four-cycles}.$

Not having many 4-cycles implies,

 $\mathbb{E}\left[Z(K_2, G_n)^4\right] \to 3 = \mathbb{E}\left[N(0, 1)^4\right].$

Why 4-cycles?

 $\mathbb{E}\left[T(K_2, G_n)^4\right] = 3 \cdot \# wedges + \# four-cycles.$

Not having many 4-cycles implies,

 $\mathbb{E}\left[Z(K_2, G_n)^4\right] \to 3 = \mathbb{E}\left[N(0, 1)^4\right].$

Why 4-cycles?

 $\mathbb{E}\left[T(\mathcal{K}_2, \mathcal{G}_n)^4\right] = 3 \cdot \#$ wedges + #four-cycles.

Not having many 4-cycles implies,

 $\mathbb{E}\left[Z(K_2,G_n)^4\right] \to 3 = \mathbb{E}\left[N(0,1)^4\right].$

Theorem (Bhattacharya, Fang, Yan 20')

Suppose that $c \geq 5$, $Z(K_3, G_n) \rightarrow N(0, 1)$ iff

$$\mathbb{E}\left[Z(K_3, G_n)^4\right] \to 3.$$

Theorem (Das, Himwich, Mani 23')

Suppose that $c \ge 32$, then for any $H, Z(H, G_n) \rightarrow N(0, 1)$ iff

 $\mathbb{E}\left[Z(H,G_n)^4\right] \to 3.$

Theorem (Bhattacharya, Fang, Yan 20')

Suppose that $c \geq 5$, $Z(K_3, G_n) \rightarrow N(0, 1)$ iff

$$\mathbb{E}\left[Z(K_3, G_n)^4\right] \to 3.$$

Theorem (Das, Himwich, Mani 23')

Suppose that $c \ge 32$, then for any $H, Z(H, G_n) \rightarrow N(0, 1)$ iff

 $\mathbb{E}\left[Z(H,G_n)^4\right] \to 3.$

In fact, when c = 2, 3, 4 there exists graphs G_n such that

 $\mathbb{E}\left[Z(\mathcal{K}_3, \mathcal{G}_n)^4\right] \to 3 \text{ and } Z(\mathcal{K}_3, \mathcal{G}_n) \nrightarrow N(0, 1).$

For the rest of the talk we focus on c = 2 and $H = K_3$. **Goal:** Necessary and sufficient conditions for $Z(K_3, G_n) \rightarrow N(0, 1)$.

A useful representation: Let $X := \{X_v\}_{v \in V(G_n)}$ be *i.i.d.* Radamacher $(\frac{1}{2})$, then

$$Z(K_3, G_n) \propto \sum_{\substack{\{u, v, w\} \ ext{triangle}}} X_v X_u + X_v X_w + X_u X_w.$$

Question

Let $P : \mathbb{R}^{|V|} \to \mathbb{R}$ be a (quadratic, homogeneous) polynomial. When is P(X) close to N(0, 1)? For the rest of the talk we focus on c = 2 and $H = K_3$. **Goal:** Necessary and sufficient conditions for $Z(K_3, G_n) \rightarrow N(0, 1)$.

A useful representation:

Let $X := \{X_v\}_{v \in V(G_n)}$ be *i.i.d.* Radamacher $(\frac{1}{2})$, then

$$Z(K_3, G_n) \propto \sum_{\substack{\{u,v,w\} \ ext{triangle}}} X_v X_u + X_v X_w + X_u X_w.$$

Question

Let $P : \mathbb{R}^{|V|} \to \mathbb{R}$ be a (quadratic, homogeneous) polynomial. When is P(X) close to N(0, 1)? For the rest of the talk we focus on c = 2 and $H = K_3$. **Goal:** Necessary and sufficient conditions for $Z(K_3, G_n) \rightarrow N(0, 1)$.

A useful representation:

Let $X := \{X_v\}_{v \in V(G_n)}$ be *i.i.d.* Radamacher $(\frac{1}{2})$, then

$$Z(K_3, G_n) \propto \sum_{\substack{\{u,v,w\} \ ext{triangle}}} X_v X_u + X_v X_w + X_u X_w.$$

Question

Let $P : \mathbb{R}^{|V|} \to \mathbb{R}$ be a (quadratic, homogeneous) polynomial. When is P(X) close to N(0, 1)?

Theorem (Invariance Principle – Mossel, O'Donnell, Oleszkiewicz 10')

Let $P : \mathbb{R}^n \to \mathbb{R}$ be a low-degree multi-linear polynomial, with low influences then for $G \sim N(0, I_n)$ and $X \sim \text{Rademacher}^{\otimes n}$,

 $P(X) \simeq P(G).$

Influences: The 'influence' of variable i is

Influence_i(P) := $\mathbb{E}\left[(\partial_i P(X))^2\right]$.

In other words, "Influence_i(P) = # of monomials containing x_i ".

Theorem (Invariance Principle – Mossel, O'Donnell, Oleszkiewicz 10')

Let $P : \mathbb{R}^n \to \mathbb{R}$ be a low-degree multi-linear polynomial, with low influences then for $G \sim N(0, I_n)$ and $X \sim \text{Rademacher}^{\otimes n}$,

 $P(X) \simeq P(G).$

Influences: The 'influence' of variable *i* is

Influence_i(P) := $\mathbb{E}\left[(\partial_i P(X))^2\right]$.

In other words, "Influence_i(P) = # of monomials containing x_i ".

Theorem (Fourth Moment Theorem – Nualart and Peccati 05')

Let $P : \mathbb{R}^n \to \mathbb{R}$ be a low-degree, multi-linear, homogeneous, polynomial then for $G \sim N(0, I_n)$, with $\mathbb{E} \left[P(G)^2 \right] = 1$.

$$\mathbb{E}\left[P(G)^4\right] \simeq 3 \implies P(G) \simeq N(0,1).$$

For a polynomial with Gaussian variables a **necessary and sufficient** condition for normal approximation is convergence of the 4th moment. Theorem (Fourth Moment Theorem – Nualart and Peccati 05')

Let $P : \mathbb{R}^n \to \mathbb{R}$ be a low-degree, multi-linear, homogeneous, polynomial then for $G \sim N(0, I_n)$, with $\mathbb{E} \left[P(G)^2 \right] = 1$.

$$\mathbb{E}\left[P(G)^4\right] \simeq 3 \implies P(G) \simeq N(0,1).$$

For a polynomial with Gaussian variables a **necessary and sufficient** condition for normal approximation is convergence of the 4th moment. Recall:

$$Z(K_3, G_n) \propto \sum_{\substack{\{u,v,w\} \ ext{triangle}}} X_v X_u + X_v X_w + X_u X_w.$$

So, $\text{Influence}_{\nu}(Z(K_3, G_n)) \propto \# \text{ of triangles containing } \nu$.

Vertex v is 'influential' if it appears in many triangles.

Invariance Principle + Fourth Moment Theorem imply:

No influential vertices $+ \mathbb{E} \left[Z(K_3, G_n)^4 \right] \rightarrow 3$ $\implies Z(K_3, G_n) \rightarrow N(0, 1)$ Recall:

$$Z(K_3, G_n) \propto \sum_{\substack{\{u, v, w\} \ ext{triangle}}} X_v X_u + X_v X_w + X_u X_w.$$

So, $\operatorname{Influence}_{\nu}(Z(K_3, G_n)) \propto \#$ of triangles containing ν .

Vertex v is 'influential' if it appears in many triangles.

Invariance Principle + Fourth Moment Theorem imply:

No influential vertices $+ \mathbb{E} \left[Z(K_3, G_n)^4 \right] \rightarrow 3$ $\implies Z(K_3, G_n) \rightarrow N(0, 1)$ Recall:

$$Z(K_3, G_n) \propto \sum_{\substack{\{u, v, w\} \ ext{triangle}}} X_v X_u + X_v X_w + X_u X_w.$$

So, $\text{Influence}_{\nu}(Z(K_3, G_n)) \propto \# \text{ of triangles containing } \nu$.

Vertex v is 'influential' if it appears in many triangles.

Invariance Principle + Fourth Moment Theorem imply:

No influential vertices $+ \mathbb{E} \left[Z(K_3, G_n)^4 \right] \to 3$ $\implies Z(K_3, G_n) \to N(0, 1).$ This condition is not necessary.

v is clearly an influential vertex. Already seen CLT for this graph.

This condition is not necessary.

v is clearly an influential vertex. Already seen CLT for this graph.

Influential Edges

Recall the bad example.

 $\{a,b\}$ is an **influential edge**, appear together in many triangles.

Theorem (Mani, M. 24')

Suppose that G_n has no influential edges and that $\mathbb{E}\left[Z(K_3, G_n)^4\right] \to 3$. Then,

 $Z(K_3, G_n) \rightarrow N(0, 1).$

Influential Edges

Recall the bad example.

 $\{a, b\}$ is an **influential edge**, appear together in many triangles.

Theorem (Mani, M. 24')

Suppose that G_n has no influential edges and that $\mathbb{E}\left[Z(K_3, G_n)^4\right] \rightarrow 3$. Then,

 $Z(K_3, G_n) \rightarrow N(0, 1).$

The no influential edge condition is in fact necessary.

Theorem (Mani, M. 24')

Suppose that G_n contains an influential edge. Then

 $Z(K_3,G_n) \nrightarrow N(0,1).$

Influential edges completely characterize the fourth moment theorem for $Z(K_3, G_n)$.

The no influential edge condition is in fact necessary.

Theorem (Mani, M. 24')

Suppose that G_n contains an influential edge. Then

 $Z(K_3,G_n) \nrightarrow N(0,1).$

Influential edges completely characterize the fourth moment theorem for $Z(K_3, G_n)$.

Proof Sketch

Suppose that $\{a, b\}$ is an influential edge.

In the above picture,

 $P(X)|X_a \neq X_b \sim \text{constant.}$

A bit less immediate is that, by the LLN,

 $P(X)|X_a = X_b \rightarrow \text{constant.}$

So, in general

 ${\sf P}(X)\simeq {
m Bernoulli}+ ilde{{\sf P}}(X)
eq^{???}{\sf N}(0,1).$

Proof Sketch

Suppose that $\{a, b\}$ is an influential edge.

In the above picture,

 $P(X)|X_a \neq X_b \sim \text{constant.}$

A bit less immediate is that, by the LLN,

 $P(X)|X_a = X_b \rightarrow \text{constant.}$

So, in general

 $P(X) \simeq \text{Bernoulli} + \tilde{P}(X) \neq^{???} N(0,1).$

Suppose $\{a, b\}$ is the only influential edge and let

 $M := #\{ \text{triangles containing } \{a, b\} \}.$

By the Invariance Principle

 $\sum_{\substack{\{u,v,w\}\\\text{triangle}}} X_v X_u + X_v X_w + X_u X_w = M X_a X_b + P(X) \simeq M X_a X_b + P(G).$

and

$$Z(K_3, G_n) \simeq \frac{MX_aX_b + P(G)}{\sigma} = \text{Bernoulli} + \tilde{P}(G),$$

with \tilde{P} quadratic and $\operatorname{Var}(\tilde{P}(G)) \leq 1$.

$Z(K_3, G_n) = \text{Bernoulli} + \tilde{P}(G), \tilde{P} \text{ quadratic.}$ Only two possibilities for the tails of $\tilde{P}(G)$.

Case I: $\tilde{P}(G)$ has strictly exponential tails. In that case, Bernoulli + $\tilde{P}(G) \neq N(0, 1)$.

Case II: $\tilde{P}(G)$ has better than exponential tails. In that case, $\tilde{P}(G)$ is actually sub-Gaussian. Moreover,

 $\tilde{P}(G) \stackrel{\text{law}}{=} \sum \lambda_i (G_i^2 - 1),$

with max_i $\lambda_i = o(1)$. So, by the CLT

 $\operatorname{Bernoulli}+\widetilde{P}(G)=\mathsf{G}$ aussian Mixture $eq \mathsf{N}(0,1).$

$Z(K_3, G_n) = \text{Bernoulli} + \tilde{P}(G), \tilde{P}$ quadratic.

Only two possibilities for the tails of $\tilde{P}(G)$.

Case I: $\tilde{P}(G)$ has strictly exponential tails. In that case, Bernoulli + $\tilde{P}(G) \neq N(0, 1)$.

Case II: $\tilde{P}(G)$ has better than exponential tails. In that case, $\tilde{P}(G)$ is actually sub-Gaussian. Moreover,

 $\tilde{P}(G) \stackrel{\text{law}}{=} \sum \lambda_i (G_i^2 - 1),$

with max_i $\lambda_i = o(1)$. So, by the CLT

 $\operatorname{Bernoulli}+\widetilde{P}(G)=\mathsf{G}$ aussian Mixture $eq \mathsf{N}(0,1).$

$Z(K_3, G_n) = \text{Bernoulli} + \tilde{P}(G), \tilde{P}$ quadratic.

Only two possibilities for the tails of $\tilde{P}(G)$.

Case I: $\tilde{P}(G)$ has strictly exponential tails. In that case, Bernoulli + $\tilde{P}(G) \neq N(0, 1)$.

Case II: $\tilde{P}(G)$ has better than exponential tails. In that case, $\tilde{P}(G)$ is actually sub-Gaussian. Moreover,

 $\tilde{P}(G) \stackrel{\text{law}}{=} \sum \lambda_i (G_i^2 - 1),$

with $\max_i \lambda_i = o(1)$. So, by the CLT

Bernoulli + $\tilde{P}(G)$ = Gaussian Mixture $\neq N(0, 1)$.

- $Z(H, G_n)$ is a polynomial of degree at most r.
- *Z*(*H*, *G_n*) is not homogeneous and the fourth moment theorem does not apply in general.
- Can still prove a a fourth moment theorem for polynomials of the form $Z(H, G_n)$.
- Same upper bounds involving influential edges hold.

- $Z(H, G_n)$ is a polynomial of degree at most r.
- *Z*(*H*, *G_n*) is not homogeneous and the fourth moment theorem does not apply in general.
- Can still prove a a fourth moment theorem for polynomials of the form $Z(H, G_n)$.
- Same upper bounds involving influential edges hold.

- $Z(H, G_n)$ is a polynomial of degree at most r.
- *Z*(*H*, *G_n*) is not homogeneous and the fourth moment theorem does not apply in general.
- Can still prove a a fourth moment theorem for polynomials of the form $Z(H, G_n)$.
- Same upper bounds involving influential edges hold.

- $Z(H, G_n)$ is a polynomial of degree at most r.
- *Z*(*H*, *G_n*) is not homogeneous and the fourth moment theorem does not apply in general.
- Can still prove a a fourth moment theorem for polynomials of the form $Z(H, G_n)$.
- Same upper bounds involving influential edges hold.

- $Z(H, G_n)$ is a polynomial of degree at most r.
- *Z*(*H*, *G_n*) is not homogeneous and the fourth moment theorem does not apply in general.
- Can still prove a a fourth moment theorem for polynomials of the form $Z(H, G_n)$.
- Same upper bounds involving influential edges hold.

Different Sub-Graphs

What about *non-triangle* monochromatic counts? Suppose |H| = r.

Lower Bounds:

- Can separate the influential vertices.
- Leads to a mixture with a degree r Gaussian form.

 $Z(H, G_n) \simeq \operatorname{Bernoulli} P_{r-2}(G) + \cdots + P_r(G).$

- There is a taxonomy of different tail behaviors for $P_r(G)$, as $e^{-t^{2\ell}}$ for $\ell = 1, \frac{1}{2}, \dots, \frac{1}{r}$.
- Could not find a dichotomy with the central limit theorem... Lower bound only applies in certain special cases.

Lower Bounds:

- Can separate the influential vertices.
- Leads to a mixture with a degree r Gaussian form.

 $Z(H, G_n) \simeq \text{Bernoulli} P_{r-2}(G) + \cdots + P_r(G).$

- There is a taxonomy of different tail behaviors for $P_r(G)$, as $e^{-t^{2\ell}}$ for $\ell = 1, \frac{1}{2}, \dots, \frac{1}{r}$.
- Could not find a dichotomy with the central limit theorem... Lower bound only applies in certain special cases.

Lower Bounds:

- Can separate the influential vertices.
- Leads to a mixture with a degree r Gaussian form.

 $Z(H, G_n) \simeq \operatorname{Bernoulli} P_{r-2}(G) + \cdots + P_r(G).$

- There is a taxonomy of different tail behaviors for $P_r(G)$, as $e^{-t^{2\ell}}$ for $\ell = 1, \frac{1}{2}, \dots, \frac{1}{r}$.
- Could not find a dichotomy with the central limit theorem... Lower bound only applies in certain special cases.

Lower Bounds:

- Can separate the influential vertices.
- Leads to a mixture with a degree r Gaussian form.

 $Z(H, G_n) \simeq \operatorname{Bernoulli} P_{r-2}(G) + \cdots + P_r(G).$

- There is a taxonomy of different tail behaviors for $P_r(G)$, as $e^{-t^{2\ell}}$ for $\ell = 1, \frac{1}{2}, \dots, \frac{1}{r}$.
- Could not find a dichotomy with the central limit theorem... Lower bound only applies in certain special cases.

Lower Bounds:

- Can separate the influential vertices.
- Leads to a mixture with a degree r Gaussian form.

 $Z(H, G_n) \simeq \text{Bernoulli} P_{r-2}(G) + \cdots + P_r(G).$

- There is a taxonomy of different tail behaviors for $P_r(G)$, as $e^{-t^{2\ell}}$ for $\ell = 1, \frac{1}{2}, \dots, \frac{1}{r}$.
- Could not find a dichotomy with the central limit theorem... Lower bound only applies in certain special cases.

Question

Is it true that when G_n contains an influential edge, then $Z(H, G_n)$ is non-Gaussian?

In particular, if a polynomial in Gaussian variables has approximately sub-Gaussian tails, is it approximately Gaussian?

Question

Let c < c'. Suppose that a CLT holds for $Z_c(H, G_n)$. Does this imply that a CLT holds for $Z_{c'}(H, G_n)$ as well?

Question

Is it true that when G_n contains an influential edge, then $Z(H, G_n)$ is non-Gaussian?

In particular, if a polynomial in Gaussian variables has approximately sub-Gaussian tails, is it approximately Gaussian?

Question

Let c < c'. Suppose that a CLT holds for $Z_c(H, G_n)$. Does this imply that a CLT holds for $Z_{c'}(H, G_n)$ as well?

Thank You