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Subgraph Counting

Task: Given a large graph, count (estimate) number of triangles.

Can we do better than O(n3)? Why do we care?

e Basic statistical task.
e Can carry latent geometric information about embeddings.

e Maybe you like triangles...
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Subgraph Counting - Subsampling

Idea: Subsample the vertices and count monochromatic triangles.

Algorithm: color the vertices with ¢ colors.

e Count the number of number of blue triangles.
e |n expectation should be proportional to the total count.

e |s this consistent? How effective?
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Remarks About Consistency

Consistency: For a sequence of graphs G, and their (random)
monochromatic triangle counts T(G,), we say that T(G,) is a
consistent estimator if, for some deterministic sequence a,,

an T(G,) — Ftriangles(G,).

Theorem (Bhattacharya, Das, Mukherjee 20’)

Under fairly general conditions on G,, T(G,) is consistent.
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Efficiency

For the efficiency of T(G,) we also need to bound the error.

What is the asymptotic distribution of (a normalized) T(G,)?

Sum of independent triangles triangles = T(G,) is normal.
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e G, = (V,, E,) graphs with |V,| — oo, H fixed subgraph.
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Formal Setting

e G, = (V,, E,) graphs with |V,| — oo, H fixed subgraph.

e Randomly color V,, with ¢ colors and set

T(H, G,) = #Monochromatic copies of H.

e Normalize
H, Gp) —E[T(H, Gn)l
Var(T(H, G,)) '

Z(H, G,) = L

Find necessary and sufficient conditions on G, such that
Z(H, G,) — N(0,1).
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Previous Results - Edges

Theorem (Bhattacharya, Diaconis, Mukherjee 17’)

Z(Kz, G,) — N(0,1) iff G, does not have many 4-cycles.
Why 4-cycles?
E [T(Kz, G,,)4] = 3. #wedges + #four-cycles.
Not having many 4-cycles implies,

E [Z(K2, Ga)*] = 3=E[N(0,1)%].
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Previous Results - General

Theorem (Bhattacharya, Fang, Yan 20’)

Suppose that ¢ > 5, Z(K3, G,) — N(0,1) iff

E [Z(Ks, Gp)*] — 3.

Theorem (Das, Himwich, Mani 23’)

Suppose that ¢ > 32, then for any H, Z(H, G,) — N(0,1) iff

E [Z(H, G,)*] — 3.



Small Number of Colors

In fact, when ¢ = 2,3, 4 there exists graphs G, such that

E [Z(Ks, Gp)*] — 3 and Z(K3, G,) - N(0,1).
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Small Number of Colors

For the rest of the talk we focus on ¢ =2 and H = Ks.
Goal: Necessary and sufficient conditions for Z(K3, G,) — N(0,1).

A useful representation:
Let X := {X,}vev(q,) be iid. Radamacher(3), then

Z(Ks, G, Z Xy Xu + Xo X + XuXo-

{u,v,w}
triangle

Let P:RIVI 5 R bea (quadratic, homogeneous) polynomial.
When is P(X) close to N(0,1)?



Two Deep Results - Invariance Principle

Theorem (Invariance Principle — Mossel, O’Donnell,

Oleszkiewicz 10’)
Let P:R" — R be a low-degree multi-linear polynomial, with
low influences then for G ~ N(0,1,) and X ~ Rademacher®”,

P(X) ~ P(G).
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Two Deep Results - Invariance Principle

Theorem (Invariance Principle — Mossel, O’Donnell,

Oleszkiewicz 10’)
Let P:R" — R be a low-degree multi-linear polynomial, with
low influences then for G ~ N(0,1,) and X ~ Rademacher®”,

P(X) ~ P(G).

Influences: The ‘influence’ of variable i is
Influence;(P) := E [(9;P(X))?] .

In other words, “Influence;(P) = # of monomials containing x;".

11
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Theorem (Fourth Moment Theorem — Nualart and Peccati
05’)

Let P:R" — R be a low-degree, multi-linear, homogeneous,
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Two Deep Results - The Fourth Moment Theorem

Theorem (Fourth Moment Theorem — Nualart and Peccati
05’)

Let P:R" — R be a low-degree, multi-linear, homogeneous,
polynomial then for G ~ N(0,1,), with E [P(G)Z] =1.

E [P(G)*] ~3 = P(G) ~ N(0,1).

For a polynomial with Gaussian variables a necessary and
sufficient condition for normal approximation is convergence of
the 4th moment.
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Recall:
Z(K3, Gn) o< > XXy + XXy + XuXov-

{u,v,w}
triangle
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Monochromatic Triangles - A First Sufficient Condition

Recall:
Z(K3, Gn) o< > XXy + XXy + XuXov-

{u,v,w}
triangle

So, Influence, (Z(K3, G,)) ox # of triangles containing v.
Vertex v is ' influential’ if it appears in many triangles.

Invariance Principle 4+ Fourth Moment Theorem imply:

No influential vertices + E [Z(K3, G,)*] — 3
— Z(Ks, Gy) = N(0,1).

13



Monochromatic Triangles - A First Sufficient Condition

This condition is not necessary.
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Monochromatic Triangles - A First Sufficient Condition

This condition is not necessary.

v is clearly an influential vertex. Already seen CLT for this graph.
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Influential Edges

Recall the bad example.

INEY
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Influential Edges

Recall the bad example.

A o

{a, b} is an influential edge, appear together in many triangles.

Theorem (Mani, M. 24’)
Suppose that G, has no influential edges and that
E [Z(Ks, Gn)*] — 3. Then,

Z(Ks, Gp) — N(0,1).
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The no influential edge condition is in fact necessary.

Theorem (Mani, M. 24’)

Suppose that G, contains an influential edge. Then

Z(Ks, Gn) = N(0,1).



Influential Edges

The no influential edge condition is in fact necessary.

Theorem (Mani, M. 24’)

Suppose that G, contains an influential edge. Then

Z(Ks, Gn) = N(0,1).

Influential edges completely characterize the fourth moment
theorem for Z(K3, Gp).



Proof Sketch

Suppose that {a, b} is an influential edge.

In the above picture,
P(X)|X5 # Xp ~ constant.
A bit less immediate is that, by the LLN,

P(X)|Xs = Xp — constant.
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Proof Sketch

Suppose that {a, b} is an influential edge.

In the above picture,
P(X)|X5 # Xp ~ constant.
A bit less immediate is that, by the LLN,
P(X)|Xs = Xp — constant.
So, in general

P(X) ~ Bernoulli + P(X) #7* N(0, 1). "



Proof Sketch

Suppose {a, b} is the only influential edge and let
M := #{triangles containing {a, b}}.
By the Invariance Principle

> XXy XXy + XuXe = MXXp + P(X) =~ MX,X, + P(G).
{u,v,w}
triangle

and

MX,Xp + P(G -
Z(Ks, Gp) ~ = b;_ () = Bernoulli + P(G),

with P quadratic and Var(P(G)) < 1.
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Proof Sketch

Z(Ks, G,) = Bernoulli + P(G), P quadratic.
Only two possibilities for the tails of P(G).
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Proof Sketch

Z(Ks, G,) = Bernoulli + P(G), P quadratic.
Only two possibilities for the tails of P(G).

Case I: P(G) has strictly exponential tails. In that case,
Bernoulli + P(G) # N(0,1).

Case Il: P(G) has better than exponential tails. In that case,
P(G) is actually sub-Gaussian. Moreover,

P(6) 2 Y Ni(6? - 1),
with max; A; = o(1). So, by the CLT

Bernoulli + P(G) = Gaussian Mixture # N(0, 1).

19



Different Sub-Graphs

What about non-triangle monochromatic counts? Suppose
|H| =r.
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Different Sub-Graphs

What about non-triangle monochromatic counts? Suppose
|H| =r.

Upper Bounds:

e Z(H, G,) is a polynomial of degree at most r.

e Z(H, Gp) is not homogeneous and the fourth moment
theorem does not apply in general.

e Can still prove a a fourth moment theorem for polynomials of
the form Z(H, G,).
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Different Sub-Graphs

What about non-triangle monochromatic counts? Suppose
|H| =r.

Upper Bounds:

e Z(H, G,) is a polynomial of degree at most r.

e Z(H, Gp) is not homogeneous and the fourth moment
theorem does not apply in general.

e Can still prove a a fourth moment theorem for polynomials of
the form Z(H, G,).

e Same upper bounds involving influential edges hold.
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|H| =r.
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Different Sub-Graphs

What about non-triangle monochromatic counts? Suppose
|H| =r.

Lower Bounds:

e Can separate the influential vertices.

e Leads to a mixture with a degree r Gaussian form.

Z(H, G,) ~ BernoulliP, _»(G) + - - - + P,(G).

e There is a taxonomy of different tail behaviors for P,(G), as
et for 0 = 1,3,...,1.

e Could not find a dichotomy with the central limit theorem...
Lower bound only applies in certain special cases.
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Is it true that when G, contains an influential edge, then
Z(H, G,) is non-Gaussian?

In particular, if a polynomial in Gaussian variables has
approximately sub-Gaussian tails, is it approximately Gaussian?



Further Questions

Is it true that when G, contains an influential edge, then
Z(H, G,) is non-Gaussian?

In particular, if a polynomial in Gaussian variables has

approximately sub-Gaussian tails, is it approximately Gaussian?

Let ¢ < ¢’. Suppose that a CLT holds for Z.(H, G,). Does this
imply that a CLT holds for Z(H, Gp,) as well?



Thank You



