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Subgraph Counting

Task: Given a large graph, count (estimate) number of triangles.

Can we do better than O(n3)? Why do we care?

• Basic statistical task.

• Can carry latent geometric information about embeddings.

• Maybe you like triangles...
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Subgraph Counting - Subsampling

Idea: Subsample the vertices and count monochromatic triangles.

Algorithm: color the vertices with c colors.

• Count the number of number of blue triangles.

• In expectation should be proportional to the total count.

• Is this consistent? How effective?
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Remarks About Consistency

Consistency: For a sequence of graphs Gn and their (random)

monochromatic triangle counts T (Gn), we say that T (Gn) is a

consistent estimator if, for some deterministic sequence an,

anT (Gn) → #triangles(Gn).

Theorem (Bhattacharya, Das, Mukherjee 20’)

Under fairly general conditions on Gn, T (Gn) is consistent.
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Efficiency

For the efficiency of T (Gn) we also need to bound the error.

Question

What is the asymptotic distribution of (a normalized) T (Gn)?

Sum of independent triangles triangles =⇒ T (Gn) is normal.
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Formal Setting

• Gn = (Vn,En) graphs with |Vn| → ∞, H fixed subgraph.

• Randomly color Vn with c colors and set

T (H,Gn) = #Monochromatic copies of H.

• Normalize

Z (H,Gn) =
T (H,Gn)− E [T (H,Gn)]√

Var(T (H,Gn))
.

Question

Find necessary and sufficient conditions on Gn such that

Z (H,Gn) → N(0, 1).
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Previous Results - Edges

Theorem (Bhattacharya, Diaconis, Mukherjee 17’)

Z (K2,Gn) → N(0, 1) iff Gn does not have many 4-cycles.

Why 4-cycles?

E
[
T (K2,Gn)

4
]
= 3 ·#wedges + #four-cycles.

Not having many 4-cycles implies,

E
[
Z (K2,Gn)

4
]
→ 3 = E

[
N(0, 1)4

]
.
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Previous Results - General

Theorem (Bhattacharya, Fang, Yan 20’)

Suppose that c ≥ 5, Z (K3,Gn) → N(0, 1) iff

E
[
Z (K3,Gn)

4
]
→ 3.

Theorem (Das, Himwich, Mani 23’)

Suppose that c ≥ 32, then for any H, Z (H,Gn) → N(0, 1) iff

E
[
Z (H,Gn)

4
]
→ 3.
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Small Number of Colors

In fact, when c = 2, 3, 4 there exists graphs Gn such that

E
[
Z (K3,Gn)

4
]
→ 3 and Z (K3,Gn) ↛ N(0, 1).
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Small Number of Colors

For the rest of the talk we focus on c = 2 and H = K3.

Goal: Necessary and sufficient conditions for Z (K3,Gn) → N(0, 1).

’

A useful representation:

Let X := {Xv}v∈V (Gn) be i.i.d. Radamacher(12), then

Z (K3,Gn) ∝
∑

{u,v ,w}
triangle

XvXu + XvXw + XuXw .

Question

Let P : R|V | → R be a (quadratic, homogeneous) polynomial.

When is P(X ) close to N(0, 1)?
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Two Deep Results - Invariance Principle

Theorem (Invariance Principle – Mossel, O’Donnell,

Oleszkiewicz 10’)

Let P : Rn → R be a low-degree multi-linear polynomial, with

low influences then for G ∼ N(0, In) and X ∼ Rademacher⊗n,

P(X ) ≃ P(G ).

Influences: The ‘influence’ of variable i is

Influencei (P) := E
[
(∂iP(X ))2

]
.

In other words, “Influencei (P) = # of monomials containing xi”.
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Two Deep Results - The Fourth Moment Theorem

Theorem (Fourth Moment Theorem – Nualart and Peccati

05’)

Let P : Rn → R be a low-degree, multi-linear, homogeneous,

polynomial then for G ∼ N(0, In), with E
[
P(G )2

]
= 1.

E
[
P(G )4

]
≃ 3 =⇒ P(G ) ≃ N(0, 1).

For a polynomial with Gaussian variables a necessary and

sufficient condition for normal approximation is convergence of

the 4th moment.
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Monochromatic Triangles - A First Sufficient Condition

Recall:

Z (K3,Gn) ∝
∑

{u,v ,w}
triangle

XvXu + XvXw + XuXw .

So, Influencev (Z (K3,Gn)) ∝ # of triangles containing v .

Vertex v is ‘ influential’ if it appears in many triangles.

’

Invariance Principle + Fourth Moment Theorem imply:

No influential vertices + E
[
Z (K3,Gn)

4
]
→ 3

=⇒ Z (K3,Gn) → N(0, 1).
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Monochromatic Triangles - A First Sufficient Condition

This condition is not necessary.

v is clearly an influential vertex. Already seen CLT for this graph.
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Influential Edges

Recall the bad example.

{a, b} is an influential edge, appear together in many triangles.

Theorem (Mani, M. 24’)

Suppose that Gn has no influential edges and that

E
[
Z (K3,Gn)

4
]
→ 3. Then,

Z (K3,Gn) → N(0, 1).
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Influential Edges

The no influential edge condition is in fact necessary.

Theorem (Mani, M. 24’)

Suppose that Gn contains an influential edge. Then

Z (K3,Gn) ↛ N(0, 1).

Influential edges completely characterize the fourth moment

theorem for Z (K3,Gn).
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Proof Sketch

Suppose that {a, b} is an influential edge.

In the above picture,

P(X )|Xa ̸= Xb ∼ constant.

A bit less immediate is that, by the LLN,

P(X )|Xa = Xb → constant.

So, in general

P(X ) ≃ Bernoulli+ P̃(X ) ̸=??? N(0, 1). 17



Proof Sketch

Suppose that {a, b} is an influential edge.

In the above picture,

P(X )|Xa ̸= Xb ∼ constant.

A bit less immediate is that, by the LLN,

P(X )|Xa = Xb → constant.

So, in general

P(X ) ≃ Bernoulli+ P̃(X ) ̸=??? N(0, 1). 17



Proof Sketch

Suppose {a, b} is the only influential edge and let

M := #{triangles containing {a, b}}.

By the Invariance Principle∑
{u,v ,w}
triangle

XvXu + XvXw + XuXw = MXaXb + P(X ) ≃ MXaXb + P(G ).

and

Z (K3,Gn) ≃
MXaXb + P(G )

σ
= Bernoulli+ P̃(G ),

with P̃ quadratic and Var(P̃(G )) ≤ 1.
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Proof Sketch

Z (K3,Gn) = Bernoulli+ P̃(G ), P̃ quadratic.

Only two possibilities for the tails of P̃(G ).

Case I: P̃(G ) has strictly exponential tails. In that case,

Bernoulli+ P̃(G ) ̸= N(0, 1).

Case II: P̃(G ) has better than exponential tails. In that case,

P̃(G ) is actually sub-Gaussian. Moreover,

P̃(G )
law
=

∑
λi (G

2
i − 1),

with maxi λi = o(1). So, by the CLT

Bernoulli+ P̃(G ) = Gaussian Mixture ̸= N(0, 1).
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Different Sub-Graphs

What about non-triangle monochromatic counts? Suppose

|H| = r .

Upper Bounds:

• Z (H,Gn) is a polynomial of degree at most r .

• Z (H,Gn) is not homogeneous and the fourth moment

theorem does not apply in general.

• Can still prove a a fourth moment theorem for polynomials of

the form Z (H,Gn).

• Same upper bounds involving influential edges hold.
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Different Sub-Graphs

What about non-triangle monochromatic counts? Suppose

|H| = r .

Lower Bounds:

• Can separate the influential vertices.

• Leads to a mixture with a degree r Gaussian form.

Z (H,Gn) ≃ BernoulliPr−2(G ) + · · ·+ Pr (G ).

• There is a taxonomy of different tail behaviors for Pr (G ), as

e−t2ℓ for ℓ = 1, 12 , . . . ,
1
r .

• Could not find a dichotomy with the central limit theorem...

Lower bound only applies in certain special cases.

21
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Further Questions

Question

Is it true that when Gn contains an influential edge, then

Z (H,Gn) is non-Gaussian?

In particular, if a polynomial in Gaussian variables has

approximately sub-Gaussian tails, is it approximately Gaussian?

Question

Let c < c ′. Suppose that a CLT holds for Zc(H,Gn). Does this

imply that a CLT holds for Zc ′(H,Gn) as well?
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Thank You
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