The Brownian transport map

Dan Mikulincer

MIT

Joint work with Yair Shenfeld

Poincaré inequalities

Throughout, $G \sim \gamma_{d}$ will denote the standard Gaussian in \mathbb{R}^{d}.

Gaussian Poincaré inequality: For any test function f,

$$
\operatorname{Var}(f(G)) \leq \mathbb{E}\left[\|\nabla f(G)\|^{2}\right] .
$$

In general, $X \sim \mu$ satisfies a Poincaré inequality with constant $C_{\mathrm{p}}(\mu) \mathbb{E}\left[\|\nabla f(X)\|^{2}\right]$

Poincaré inequalities

Throughout, $G \sim \gamma_{d}$ will denote the standard Gaussian in \mathbb{R}^{d}.

Gaussian Poincaré inequality: For any test function f,

$$
\operatorname{Var}(f(G)) \leq \mathbb{E}\left[\|\nabla f(G)\|^{2}\right]
$$

In general, $X \sim \mu$ satisfies a Poincaré inequality with constant $C_{\mathrm{p}}(\mu)>0$, if,

$$
\operatorname{Var}(f(X)) \leq C_{\mathrm{p}}(\mu) \mathbb{E}\left[\|\nabla f(X)\|^{2}\right]
$$

An inequality of Brascamp and Lieb

If μ is a measure on \mathbb{R}^{d}, we say that μ is more log-concave than γ_{d}, if for almost every $x \in \mathbb{R}^{d}$,

$$
-\nabla^{2} \log \left(\frac{d \mu}{d x}(x)\right) \succeq \mathrm{Id}
$$

Theorem (Brascamp-Lieb 76')
If μ is more log-concave than γ_{d}, then $C_{p}(\mu) \leq 1$

An inequality of Brascamp and Lieb

If μ is a measure on \mathbb{R}^{d}, we say that μ is more log-concave than γ_{d}, if for almost every $x \in \mathbb{R}^{d}$,

$$
-\nabla^{2} \log \left(\frac{d \mu}{d x}(x)\right) \succeq \mathrm{Id}
$$

Theorem (Brascamp-Lieb 76')

If μ is more log-concave than γ_{d}, then $C_{\mathrm{p}}(\mu) \leq 1$.

Contractions

There are many proofs of the Brascamp-Lieb theorem:

- Brascamp-Lieb
- The Bakry-Emery criterion
- Prékopa-Leindeler inequality (Bobkov-Ledoux)
- Caffarelli's contraction theorem

The latter says that there exists a 1-Lipschitz map $\varphi, \varphi_{*} \gamma_{d}=\mu$. $\operatorname{Var}_{\mu}(f)=\operatorname{Var}_{\gamma_{d}}(f \circ \varphi) \leq \mathbb{E}_{\gamma_{d}}\left[\|\nabla(f \circ \varphi)\|^{2}\right]$

$$
\leq \mathbb{E}_{\gamma_{d}}\left[\|\nabla \varphi\|^{2}\|\nabla f(\varphi)\|^{2}\right]=\mathbb{E}_{\mu t}\left[\|\nabla f\|^{2}\right]
$$

Contractions

There are many proofs of the Brascamp-Lieb theorem:

- Brascamp-Lieb
- The Bakry-Emery criterion
- Prékopa-Leindeler inequality (Bobkov-Ledoux)
- Caffarelli's contraction theorem

The latter says that there exists a 1-Lipschitz map $\varphi, \varphi_{*} \gamma_{d}=\mu$.

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\operatorname{Var}_{\gamma_{d}}(f \circ \varphi) \leq \mathbb{E}_{\gamma_{d}}\left[\|\nabla(f \circ \varphi)\|^{2}\right] \\
& \leq \mathbb{E}_{\gamma_{d}}\left[\|\nabla \varphi\|^{2}\|\nabla f(\varphi)\|^{2}\right]=\mathbb{E}_{\mu}\left[\|\nabla f\|^{2}\right]
\end{aligned}
$$

Bounded log-concave

If μ is only log-concave, but compactly supported on a ball of diameter R, then $\mathrm{C}_{\mathrm{p}}(\mu) \lesssim R^{2}$. Again, several proofs:

- Localization (Payne-Weinberger)
- Refined Brascamp-Lieb (Kolesnikov-Milman)
- Moment Maps (Klartag)

[^0]
Bounded log-concave

If μ is only log-concave, but compactly supported on a ball of diameter R, then $\mathrm{C}_{\mathrm{p}}(\mu) \lesssim R^{2}$. Again, several proofs:

- Localization (Payne-Weinberger)
- Refined Brascamp-Lieb (Kolesnikov-Milman)
- Moment Maps (Klartag)

Question

For such μ is it necessarily true that there exists an R-Lipschitz φ with $\varphi_{*} \gamma_{d}=\mu$?

Motivation

A positive answer will not only recover known result but will also imply:

1. Dimension-free Φ-Sobolev inequalities,

$$
\mathbb{E}[\Phi(f(X))]-\Phi(\mathbb{E}[f(X)]) \leq R^{2} \mathbb{E}\left[\Phi^{\prime \prime}(f(X))\|\nabla f(X)\|^{2}\right]
$$

where Φ is an appropriate convex function (generalizes both the Poicnaré and log-Sobolev inequalities).
2. Bounds for higher eigenvalues of the weighted Laplacian.
3. Isoperimetric inequalities
4. Imnroved rate of convergence for CLT

Motivation

A positive answer will not only recover known result but will also imply:

1. Dimension-free Φ-Sobolev inequalities,

$$
\mathbb{E}[\Phi(f(X))]-\Phi(\mathbb{E}[f(X)]) \leq R^{2} \mathbb{E}\left[\Phi^{\prime \prime}(f(X))\|\nabla f(X)\|^{2}\right]
$$

where Φ is an appropriate convex function (generalizes both the Poicnaré and log-Sobolev inequalities).
2. Bounds for higher eigenvalues of the weighted Laplacian.
3. Isoperimetric inequalities.
4. Improved rate of convergence for CLT

Motivation

A positive answer will not only recover known result but will also imply:

1. Dimension-free Φ-Sobolev inequalities,

$$
\mathbb{E}[\Phi(f(X))]-\Phi(\mathbb{E}[f(X)]) \leq R^{2} \mathbb{E}\left[\Phi^{\prime \prime}(f(X))\|\nabla f(X)\|^{2}\right]
$$

where Φ is an appropriate convex function (generalizes both the Poicnaré and log-Sobolev inequalities).
2. Bounds for higher eigenvalues of the weighted Laplacian.
3. Isoperimetric inequalities.
4. Improved rate of convergence for CLT

Motivation

A positive answer will not only recover known result but will also imply:

1. Dimension-free Φ-Sobolev inequalities,

$$
\mathbb{E}[\Phi(f(X))]-\Phi(\mathbb{E}[f(X)]) \leq R^{2} \mathbb{E}\left[\Phi^{\prime \prime}(f(X))\|\nabla f(X)\|^{2}\right]
$$

where Φ is an appropriate convex function (generalizes both the Poicnaré and log-Sobolev inequalities).
2. Bounds for higher eigenvalues of the weighted Laplacian.
3. Isoperimetric inequalities.
4. Improved rate of convergence for CLT.

Gaussian mixtures

We call $\mu=\gamma_{d} \star \nu$ a Gaussian mixture. It was recently proved by
Bardet, Gozlan, Malrieu and Zitt that if $\operatorname{diam}(\operatorname{supp}(\nu)) \leq R$, then

$$
\mathrm{C}_{\mathrm{p}}(\mu) \lesssim e^{R^{2}}
$$

Later, Chen, Chewi and Niles-Weed extended the result to the log-Sobolev inequality.

Suppose that $\mu=\gamma_{d} \star \nu$ and $\operatorname{diam}(\operatorname{supp}(\nu)) \leq R$. Is there an $e^{R^{2}}$-Lipschitz φ with $\varphi_{*} \gamma_{d}=\mu$?

Gaussian mixtures

We call $\mu=\gamma_{d} \star \nu$ a Gaussian mixture. It was recently proved by
Bardet, Gozlan, Malrieu and Zitt that if $\operatorname{diam}(\operatorname{supp}(\nu)) \leq R$, then

$$
\mathrm{C}_{\mathrm{p}}(\mu) \lesssim e^{R^{2}}
$$

Later, Chen, Chewi and Niles-Weed extended the result to the log-Sobolev inequality.

Question

Suppose that $\mu=\gamma_{d} \star \nu$ and $\operatorname{diam}(\operatorname{supp}(\nu)) \leq R$. Is there an $e^{R^{2}}$-Lipschitz φ with $\varphi_{*} \gamma_{d}=\mu$?

Let μ be log-concave and isotropic,

$$
\int_{\mathbb{R}^{d}} x d \mu(x)=0 \quad \int_{\mathbb{R}^{d}} x \otimes x d \mu(x)=\mathrm{Id}
$$

A famous conjecture of Kannan-Lovász-Simonovits postulates,

$$
C_{\mathrm{p}}(\mu) \leq C
$$

Current best bound, due to Chen: $C_{p}(\mu) \leq d^{\circ(1)}$.
It seems natural to ask whether we can find a Lipschitz map φ
with $\varphi_{*} \gamma_{d}=\mu$?

Let μ be log-concave and isotropic,

$$
\int_{\mathbb{R}^{d}} x d \mu(x)=0 \quad \int_{\mathbb{R}^{d}} x \otimes x d \mu(x)=\mathrm{Id}
$$

A famous conjecture of Kannan-Lovász-Simonovits postulates,

$$
C_{\mathrm{p}}(\mu) \leq C
$$

Current best bound, due to Chen: $C_{\mathrm{p}}(\mu) \leq d^{o(1)}$.
It seems natural to ask whether we can find a Lipschitz map φ
with $\varphi_{*} \gamma_{d}=\mu$?

KLS

Let μ be log-concave and isotropic,

$$
\int_{\mathbb{R}^{d}} x d \mu(x)=0 \quad \int_{\mathbb{R}^{d}} x \otimes x d \mu(x)=\mathrm{Id} .
$$

A famous conjecture of Kannan-Lovász-Simonovits postulates,

$$
C_{\mathrm{p}}(\mu) \leq C
$$

Current best bound, due to Chen: $C_{\mathrm{p}}(\mu) \leq d^{o(1)}$.
It seems natural to ask whether we can find a Lipschitz map φ with $\varphi_{*} \gamma_{d}=\mu$?

KLS

- In general, one cannot find a Lipschitz transport map from γ_{d} to μ.
- The existence of such map implies sub-Gaussian tails of μ, which is not true for all isotropic log-concave measures.
- However E Milman showed that for KIS, it is enough to have map which is 'Lipschitz on average'.

Question

If $\boldsymbol{\prime}$ is lng concave and isotropic, does there exists a map φ with $\varphi_{*} \gamma=\mu$, such that

$$
\mathbb{E}_{\gamma_{d}}\left[\|D \varphi\|^{2}\right] \leq d^{o(1)} ?
$$

- In general, one cannot find a Lipschitz transport map from γ_{d} to μ.
- The existence of such map implies sub-Gaussian tails of μ, which is not true for all isotropic log-concave measures.
- Homever F Milman shomed that for KIS it is enough to have map which is 'Lipschitz on average'

Question
If μ is log concave and isotropic, does there exists a map φ with $\varphi_{*} \gamma=\mu$, such that

$$
\mathbb{E}_{\gamma_{d}}\left[\|D \varphi\|^{2}\right] \leq d^{o(1)} ?
$$

- In general, one cannot find a Lipschitz transport map from γ_{d} to μ.
- The existence of such map implies sub-Gaussian tails of μ, which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'

Qurestion
If μ is \log concave and isotropic, does there exists a map φ with $=\mu$, such that

$$
\mathbb{E}_{\gamma_{d}}\left[\|D \varphi\|^{2}\right] \leq d^{o(1)} ?
$$

- In general, one cannot find a Lipschitz transport map from γ_{d} to μ.
- The existence of such map implies sub-Gaussian tails of μ, which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'.

If μ is \log concave and isotropic, does there exists a map φ with $=\mu$, such that
$\mathbb{E}_{\gamma_{d}}\left[\|D \varphi\|^{2}\right] \leq d^{o(1)} ?$

- In general, one cannot find a Lipschitz transport map from γ_{d} to μ.
- The existence of such map implies sub-Gaussian tails of μ, which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'.

Question

If μ is \log concave and isotropic, does there exists a map φ with $\varphi_{*} \gamma=\mu$, such that

$$
\mathbb{E}_{\gamma_{d}}\left[\|D \varphi\|^{2}\right] \leq d^{o(1)} ?
$$

Infinite-dimensions

By slightly altering our perspective, we give a positive answer to the previous questions.

Let $\Omega:=C\left([0,1], \mathbb{R}^{d}\right)$ stand for the Wiener space with the Wiener measure γ. We will let $\left(B_{t}\right)_{t \in[0,1]}$ denote a Brownian motion.

We consider Lipschitz mappings $\Phi: \Omega \rightarrow \mathbb{R}^{d}$ with $D \Phi$ bounded
almost surely.
Derivatives are taken in the Malliavin sense.

Infinite-dimensions

By slightly altering our perspective, we give a positive answer to the previous questions.

Let $\Omega:=C\left([0,1], \mathbb{R}^{d}\right)$ stand for the Wiener space with the Wiener measure γ. We will let $\left(B_{t}\right)_{t \in[0,1]}$ denote a Brownian motion.

We consider Lipschitz mappings $\Phi: \Omega \rightarrow \mathbb{R}^{d}$ with $D \Phi$ bounded almost surely.
Derivatives are taken in the Malliavin sense.

Infinite-dimensions

Theorem (M.-Shenfeld)

Let μ be a measure on \mathbb{R}^{d}. There exists map $\Phi: \Omega \rightarrow \mathbb{R}^{d}$, with $\Phi_{*} \gamma=\mu$ and

1. If μ is \log-concave with $\operatorname{diam}(\operatorname{supp}(\mu)) \leq R$,

$$
\|D \Phi\| \leq R
$$

2. If $\mu=\gamma_{d} \star \nu$ and $\operatorname{diam}(\operatorname{supp}(\nu)) \leq R$,

$$
\|D \Phi\| \leq e^{R^{2}}
$$

3. If μ is log-concave and isotropic,

$$
\mathbb{E}_{\gamma}\left[\|D \Phi\|^{2}\right] \leq d^{o(1)}
$$

Malliavin calculus 101

Recall the Cameron-Martin space

$$
H:=\left\{h \in \Omega \mid h_{t}=\int_{0}^{t} \dot{h}_{s} d s\right\} .
$$

It is also characterized by the fact that $B_{t}+g$ is absolutely continuous with respect to γ, iff $g \in H$.

Heuristically, for a a random variable F we define the Malliavin derivative $D F$, as the Gateaux derivative in the H directions.

Malliavin calculus 101

Recall the Cameron-Martin space

$$
H:=\left\{h \in \Omega \mid h_{t}=\int_{0}^{t} \dot{h}_{s} d s\right\} .
$$

It is also characterized by the fact that $B_{t}+g$ is absolutely continuous with respect to γ, iff $g \in H$.

Heuristically, for a a random variable F we define the Malliavin derivative $D F$, as the Gateaux derivative in the H directions.

Malliavin calculus 101

H has a natural inner product, $\left\langle h, h^{\prime}\right\rangle_{H}:=\int_{0}^{1} \dot{h_{t}} \dot{h_{t}^{\prime}} d t$. Observe that $D F: \Omega \rightarrow H$ and we denote by $D F_{t}$, by $D_{t} F$.

We say that a map F is R-Lipschitz (in the H directions), if $D F \|_{H} \leq R$ almost surely. This definition is justified, since

Malliavin calculus 101

H has a natural inner product, $\left\langle h, h^{\prime}\right\rangle_{H}:=\int_{0}^{1} \dot{h_{t}} \dot{h_{t}^{\prime}} d t$. Observe that $D F: \Omega \rightarrow H$ and we denote by $D F_{t}$, by $D_{t} F$.

We say that a map F is R-Lipschitz (in the H directions), if $\|D F\|_{H} \leq R$ almost surely. This definition is justified, since

$$
\operatorname{Var}_{\gamma}(F) \leq \mathbb{E}_{\gamma}\left[\|D F\|_{H}^{2}\right]
$$

First attempt

Definition (Wasserstein distance between μ and γ)

$$
\mathcal{W}_{2}(\mu, \gamma):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|x-y\|^{2}\right]\right\}^{1 / 2}
$$

where π ranges over all possible couplings of μ and γ.

Caffarelli's theorem concerns the optimal transport map $\psi^{\text {opt }}$, for which

$$
\mathbb{E}\left[\left\|\psi^{\mathrm{opt}}(G)-G\right\|^{2}\right]=\mathcal{W}_{2}^{2}(\mu, \gamma)
$$

One can study a similar construction in the Wiener space with respect to the metric

First attempt

Definition (Wasserstein distance between μ and γ)

$$
\mathcal{W}_{2}(\mu, \gamma):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|x-y\|^{2}\right]\right\}^{1 / 2}
$$

where π ranges over all possible couplings of μ and γ.
Caffarelli's theorem concerns the optimal transport map $\psi^{\text {opt }}$, for which

$$
\mathbb{E}\left[\left\|\psi^{\mathrm{opt}}(G)-G\right\|^{2}\right]=\mathcal{W}_{2}^{2}(\mu, \gamma)
$$

One can study a similar construction in the Wiener space with respect to the metric

First attempt

Definition (Wasserstein distance between μ and γ)

$$
\mathcal{W}_{2}(\mu, \gamma):=\inf _{\pi}\left\{\mathbb{E}_{\pi}\left[\|x-y\|^{2}\right]\right\}^{1 / 2}
$$

where π ranges over all possible couplings of μ and γ.
Caffarelli's theorem concerns the optimal transport map $\psi^{\text {opt }}$, for which

$$
\mathbb{E}\left[\left\|\psi^{\mathrm{opt}}(G)-G\right\|^{2}\right]=\mathcal{W}_{2}^{2}(\mu, \gamma)
$$

One can study a similar construction in the Wiener space with respect to the metric

$$
d_{H}\left(\omega, \omega^{\prime}\right)= \begin{cases}\left\|\omega-\omega^{\prime}\right\|_{H} & \text { if } \omega-\omega^{\prime} \in H \\ \infty & \text { otherwise }\end{cases}
$$

First attempt

Define a measure $\tilde{\mu}$ on Ω by

$$
\frac{d \tilde{\mu}}{d \gamma}(\omega)=\frac{d \mu}{d \gamma_{d}}\left(\omega_{1}\right)
$$

and consider,

 $\min _{\Psi_{*}(\gamma=\tilde{\mu}} \mathbb{E}\left[d_{H}(\Psi(B .), B)^{2}\right]$
Equivalently,

where $B_{1}+\int_{0}^{1} u_{t} d t$

First attempt

Define a measure $\tilde{\mu}$ on Ω by

$$
\frac{d \tilde{\mu}}{d \gamma}(\omega)=\frac{d \mu}{d \gamma_{d}}\left(\omega_{1}\right)
$$

and consider,

$$
\min _{\Psi_{* \gamma=\tilde{\mu}}} \mathbb{E}\left[d_{H}(\Psi(B .), B .)^{2}\right] .
$$

Equivalently,

where $B_{1}+\int_{0}^{1} u_{t} d t \sim \mu$.

First attempt

Define a measure $\tilde{\mu}$ on Ω by

$$
\frac{d \tilde{\mu}}{d \gamma}(\omega)=\frac{d \mu}{d \gamma_{d}}\left(\omega_{1}\right)
$$

and consider,

$$
\min _{\Psi_{*} \gamma=\tilde{\mu}} \mathbb{E}\left[d_{H}(\Psi(B .), B .)^{2}\right]
$$

Equivalently,

$$
\min _{u_{t}} \mathbb{E}\left[\int_{0}^{1}\left\|u_{t}\right\|^{2} d t\right]
$$

where $B_{1}+\int_{0}^{1} u_{t} d t \sim \mu$.

First attempt

Define $v_{t}^{\mathrm{opt}}:=\arg \min _{u_{t}} \mathbb{E}\left[\int_{0}^{1}\left\|u_{t}\right\|^{2} d t\right]$.
Then, $v_{t}^{\text {opt }}(\omega)=\psi^{\text {opt }}\left(\omega_{1}\right)-\omega_{1}$, and $\phi^{\text {opt }}(\omega)=\omega+\int v_{t} d t$

satisfies,

This is unsatisfactory.

First attempt

Define $v_{t}^{\mathrm{opt}}:=\arg \min _{u_{t}} \mathbb{E}\left[\int_{0}^{1}\left\|u_{t}\right\|^{2} d t\right]$.
Then, $v_{t}^{\mathrm{opt}}(\omega)=\psi^{\mathrm{opt}}\left(\omega_{1}\right)-\omega_{1}$, and $\Phi^{\mathrm{opt}}(\omega)=\omega+\int v_{t} d t$ satisfies,

- $\Phi_{*}^{\mathrm{opt}} \gamma=\tilde{\mu}$.
- $\left(\Phi_{1}^{\mathrm{opt}}\right)_{*} \gamma=\mu$.

This is unsatisfactory.

First attempt

Define $v_{t}^{\mathrm{opt}}:=\arg \min _{u_{t}} \mathbb{E}\left[\int_{0}^{1}\left\|u_{t}\right\|^{2} d t\right]$.
Then, $v_{t}^{\mathrm{opt}}(\omega)=\psi^{\mathrm{opt}}\left(\omega_{1}\right)-\omega_{1}$, and $\Phi^{\mathrm{opt}}(\omega)=\omega+\int v_{t} d t$ satisfies,

- $\Phi_{*}^{\mathrm{opt}} \gamma=\tilde{\mu}$.
- $\left(\Phi_{1}^{\mathrm{opt}}\right)_{*} \gamma=\mu$.

This is unsatisfactory.

Second attempt

We consider an optimization problem adapted to the filtration of B_{t}.
Define $v_{t}:=\arg \underset{u_{t} \text { adapated }}{\min } \mathbb{E}\left[\int_{0}^{1}\left\|u_{t}\right\|^{2} d t\right]$ and $d X_{t}=d B_{t}+v_{t} d t$.

- $X_{1} \sim \mu$ (this is the transport map).

- v_{t} is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right)\right)$

Second attempt

We consider an optimization problem adapted to the filtration of B_{t}.
Define $v_{t}:=\arg \min _{u_{t} \text { adapated }} \mathbb{E}\left[\int_{0}^{1}\left\|u_{t}\right\|^{2} d t\right]$ and $d X_{t}=d B_{t}+v_{t} d t$.

- $X_{1} \sim \mu$ (this is the transport map).
- $\operatorname{Ent}(\mu \mid \gamma)=\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\mid v_{t} \|^{2}\right] d t$.
- v_{t} is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right)\right)$

Second attempt

We consider an optimization problem adapted to the filtration of B_{t}.
Define $v_{t}:=\arg \min _{u_{t} \text { adapated }} \mathbb{E}\left[\int_{0}^{1}\left\|u_{t}\right\|^{2} d t\right]$ and $d X_{t}=d B_{t}+v_{t} d t$. Facts:

- $X_{1} \sim \mu$ (this is the transport map).
- $\operatorname{Ent}(\mu \| \gamma)=\frac{1}{2} \int_{0}^{1} \mathbb{E}\left[\left\|v_{t}\right\|^{2}\right] d t$.
- v_{t} is a martingale, with $v_{t}\left(X_{t}\right)=\nabla \ln \left(P_{1-t}\left(\frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right)\right)$.

The Föllmer Drift - (Some) History

- Analogous problems were already considered by in the 30 's, by Schrödinger.
- The process itself was first studied by Föllmer, in 85 ', who used it to derive a variational expression for entropy.
- It appeared implicitly in the works of Feyel and Üstünel, from 2004, in their study of infinite dimensional transportation problems.
- In the context of functional inequalities, the use of the Föllmer process was pioneered by Lehec in 2012.
- Lassalle identified the process as the solution to a causal transportation problem in 2013.

The Brownian transport map

Recall that $X_{1}=B_{1}+\int_{0}^{1} \nabla \ln \left(P_{1-t} \frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right) d t$. It can be shown that

$$
D X_{t}=I_{d}+\int_{0}^{t} \nabla^{2} \ln \left(P_{1-s} \frac{d \mu}{d \gamma_{d}}\left(X_{s}\right)\right) D X_{s} d s
$$

We write $\nabla v_{t}:=\nabla^{2} \ln \left(P_{1-t} \frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right)$ and for $h \in H$, we

 calculate,In particular,

The Brownian transport map

Recall that $X_{1}=B_{1}+\int_{0}^{1} \nabla \ln \left(P_{1-t} \frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right) d t$. It can be shown that

$$
D X_{t}=\mathrm{I}_{d}+\int_{0}^{t} \nabla^{2} \ln \left(P_{1-s} \frac{d \mu}{d \gamma_{d}}\left(X_{s}\right)\right) D X_{s} d s
$$

We write $\nabla v_{t}:=\nabla^{2} \ln \left(P_{1-t} \frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right)$ and for $h \in H$, we calculate,

$$
f_{h}(t):=\left\langle D X_{t}, h\right\rangle_{H}=\int_{0}^{t} \dot{h}_{s} d s+\int_{0}^{t} \nabla v_{t}\left\langle D X_{s}, h\right\rangle_{H} d s .
$$

In particular,

The Brownian transport map

Recall that $X_{1}=B_{1}+\int_{0}^{1} \nabla \ln \left(P_{1-t} \frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right) d t$. It can be shown that

$$
D X_{t}=\mathrm{I}_{d}+\int_{0}^{t} \nabla^{2} \ln \left(P_{1-s} \frac{d \mu}{d \gamma_{d}}\left(X_{s}\right)\right) D X_{s} d s
$$

We write $\nabla v_{t}:=\nabla^{2} \ln \left(P_{1-t} \frac{d \mu}{d \gamma_{d}}\left(X_{t}\right)\right)$ and for $h \in H$, we calculate,

$$
f_{h}(t):=\left\langle D X_{t}, h\right\rangle_{H}=\int_{0}^{t} \dot{h}_{s} d s+\int_{0}^{t} \nabla v_{t}\left\langle D X_{s}, h\right\rangle_{H} d s .
$$

In particular,

$$
\frac{d}{d t} f_{h}(t)=\dot{h}_{t}-\nabla v_{t} f_{h}(t)
$$

The Brownian transport Map

Solving this differential equation, we get, for every $h \in H$,

$$
f_{h}(1)=\int_{0}^{1} e^{\int_{t}^{1} \nabla v_{s} d s} \cdot \dot{h}(t) d t .
$$

So,

$$
D_{t} X_{1}=e^{\int_{t}^{1} \nabla v_{s} d s}
$$

and

$$
\left\|D X_{1}\right\|_{H}^{2}=\int_{0}^{1} e^{2 \int_{t}^{1} \nabla v_{s} d s} d t
$$

The Brownian transport Map

Direct calculations show,

$$
\nabla v_{t}:=\nabla^{2} \ln \left(P_{1-t} \frac{d \mu}{d \gamma}\left(X_{t}\right)\right)=\frac{\operatorname{Cov}\left(\mu_{t}\right)}{(1-t)^{2}}-\frac{1}{1-t} \mathrm{I}_{d}
$$

where

$$
\frac{d \mu_{t}}{d x} \propto \frac{d \mu}{d \gamma_{d}}(x) e^{\frac{-\left(x-x_{t}\right)^{2}}{2(1-t)}}
$$

If diam $(\operatorname{supp}(\mu)) \leq R$, clearly,

Moreover, by Brascamp-Lieb, if μ is log-concave,

The Brownian transport Map

Direct calculations show,

$$
\nabla v_{t}:=\nabla^{2} \ln \left(P_{1-t} \frac{d \mu}{d \gamma}\left(X_{t}\right)\right)=\frac{\operatorname{Cov}\left(\mu_{t}\right)}{(1-t)^{2}}-\frac{1}{1-t} \mathrm{I}_{d}
$$

where

$$
\frac{d \mu_{t}}{d x} \propto \frac{d \mu}{d \gamma_{d}}(x) e^{\frac{-\left(x-x_{t}\right)^{2}}{2(1-t)}}
$$

If $\operatorname{diam}(\operatorname{supp}(\mu)) \leq R$, clearly,

$$
\nabla v_{t} \leq \frac{R^{2}}{(1-t)^{2}}-\frac{1}{1-t}
$$

Moreover, by Brascamp-Lieb, if μ is log-concave,

The Brownian transport Map

Direct calculations show,

$$
\nabla v_{t}:=\nabla^{2} \ln \left(P_{1-t} \frac{d \mu}{d \gamma}\left(X_{t}\right)\right)=\frac{\operatorname{Cov}\left(\mu_{t}\right)}{(1-t)^{2}}-\frac{1}{1-t} \mathrm{I}_{d}
$$

where

$$
\frac{d \mu_{t}}{d x} \propto \frac{d \mu}{d \gamma_{d}}(x) e^{\frac{-\left(x-x_{t}\right)^{2}}{2(1-t)}}
$$

If $\operatorname{diam}(\operatorname{supp}(\mu)) \leq R$, clearly,

$$
\nabla v_{t} \leq \frac{R^{2}}{(1-t)^{2}}-\frac{1}{1-t}
$$

Moreover, by Brascamp-Lieb, if μ is log-concave,

$$
\nabla v_{t} \leq \frac{1}{t}
$$

We apply the two inequalities to $\left\|D X_{1}\right\|_{H}^{2}=\int_{0}^{1} e^{2 \int_{t}^{1} \nabla v_{s} d s} d t$

Theorem (M.- Shenfeld)

Consider X_{1} as a map from $\Omega=C\left([0,1], \mathbb{R}^{d}\right)$ to \mathbb{R}^{d}.

1. If μ is log-concave with $\operatorname{diam}(\operatorname{supp}(\mu)) \leq R$,

$$
\left\|D X_{1}\right\| \leq R
$$

2. If $\mu=\gamma_{d} \star \nu$ and $\operatorname{diam}(\operatorname{supp}(\nu)) \leq R$,

$$
\left\|D X_{1}\right\| \leq e^{R^{2}}
$$

- The second result follows by showing $\nabla v_{t} \leq R^{2}$
- Can be extended to semi-log concave measures.

We apply the two inequalities to $\left\|D X_{1}\right\|_{H}^{2}=\int_{0}^{1} e^{2 \int_{t}^{1} \nabla v_{s} d s} d t$

Theorem (M.- Shenfeld)

Consider X_{1} as a map from $\Omega=C\left([0,1], \mathbb{R}^{d}\right)$ to \mathbb{R}^{d}.

1. If μ is log-concave with $\operatorname{diam}(\operatorname{supp}(\mu)) \leq R$,

$$
\left\|D X_{1}\right\| \leq R
$$

2. If $\mu=\gamma_{d} \star \nu$ and $\operatorname{diam}(\operatorname{supp}(\nu)) \leq R$,

$$
\left\|D X_{1}\right\| \leq e^{R^{2}}
$$

- The second result follows by showing $\nabla v_{t} \leq R^{2}$.
- Can be extended to semi-log concave measures.

The KLS connection

Instead of applying point-wise bounds, we could estimate
$\mathbb{E}\left[\left\|D X_{1}\right\|_{H}^{2}\right]=\mathbb{E}\left[\int_{0}^{1} e^{2 \int_{t}^{1} \nabla v_{s}\left(X_{s}\right) d s}\right]$.
For isotropic μ, define $\tau=\frac{1}{2} \wedge \inf \left\{t \mid \nabla v_{t}\left(X_{t}\right) \geq 2\right\}$

The KLS connection

Instead of applying point-wise bounds, we could estimate
$\mathbb{E}\left[\left\|D X_{1}\right\|_{H}^{2}\right]=\mathbb{E}\left[\int_{0}^{1} e^{2 \int_{t}^{1} \nabla v_{s}\left(X_{s}\right) d s}\right]$.
For isotropic μ, define $\tau=\frac{1}{2} \wedge \inf \left\{t \mid \nabla v_{t}\left(X_{t}\right) \geq 2\right\}$.

$$
\int_{0}^{1} \nabla v_{t}\left(X_{t}\right) \leq 2+\int_{\tau}^{1} \frac{1}{t} d t=2+\log (\tau) .
$$

So,

$$
\mathbb{E}\left[\left\|D X_{1}\right\|_{H}^{2}\right] \leq e^{4} \mathbb{E}\left[\frac{1}{\tau^{2}}\right]
$$

The KLS connection

With the recent result of Yuansi Chen about the KLS constant, we prove:

Theorem

Let μ be an isotropic log-concave vector in \mathbb{R}^{d}. Then,

$$
\mathbb{E}\left[\left\|D X_{1}\right\|_{H}^{2}\right]=d^{o(1)}
$$

Future directions

- Can the results be extended to larger classes of measures?
- What about similar, but different, constructions on the Wiener space?
- Can similar results be proved for maps between finite dimensional spaces?
- In particular, can the results be recovered for the Brenier map?

Thank You

[^0]: Question
 For such ", is it necessarily true that there exists an R-Lipschitz
 with $\varphi_{*} \gamma_{d}=\mu$?

