The Brownian transport map

Dan Mikulincer

MIT

Joint work with Yair Shenfeld

Throughout, $G \sim \gamma_d$ will denote the standard Gaussian in \mathbb{R}^d .

Gaussian Poincaré inequality: For any test function f,

$\operatorname{Var}(f(G)) \leq \mathbb{E}\left[\|\nabla f(G)\|^2 \right].$

In general, $X\sim\mu$ satisfies a Poincaré inequality with constant ${\cal C}_{\rm p}(\mu)>$ 0, if,

 $\operatorname{Var}(f(X)) \leq C_{\operatorname{p}}(\mu) \mathbb{E}\left[\|
abla f(X) \|^2
ight].$

Throughout, $G \sim \gamma_d$ will denote the standard Gaussian in \mathbb{R}^d .

Gaussian Poincaré inequality: For any test function f,

 $\operatorname{Var}(f(G)) \leq \mathbb{E}\left[\|\nabla f(G)\|^2 \right].$

In general, X $\sim \mu$ satisfies a Poincaré inequality with constant $C_{
m p}(\mu)>$ 0, if,

 $\operatorname{Var}(f(X)) \leq C_{\operatorname{p}}(\mu) \mathbb{E}\left[\| \nabla f(X) \|^2
ight].$

If μ is a measure on \mathbb{R}^d , we say that μ is more log-concave than γ_d , if for almost every $x \in \mathbb{R}^d$,

$$-\nabla^2 \log\left(\frac{d\mu}{dx}(x)\right) \succeq \mathrm{Id}.$$

Theorem (Brascamp-Lieb 76')

If μ is more log-concave than γ_d , then $C_{
m p}(\mu) \leq 1$.

If μ is a measure on \mathbb{R}^d , we say that μ is more log-concave than γ_d , if for almost every $x \in \mathbb{R}^d$,

$$-\nabla^2 \log\left(\frac{d\mu}{dx}(x)\right) \succeq \mathrm{Id}.$$

Theorem (Brascamp-Lieb 76')

If μ is more log-concave than γ_d , then $C_p(\mu) \leq 1$.

There are many proofs of the Brascamp-Lieb theorem:

- Brascamp-Lieb
- The Bakry-Emery criterion
- Prékopa-Leindeler inequality (Bobkov-Ledoux)
- Caffarelli's contraction theorem

The latter says that there exists a 1-Lipschitz map φ , $\varphi_*\gamma_d = \mu$.

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \operatorname{Var}_{\gamma_{d}}(f \circ \varphi) \leq \mathbb{E}_{\gamma_{d}} \left[\|\nabla (f \circ \varphi)\|^{2} \right] \\ &\leq \mathbb{E}_{\gamma_{d}} \left[\|\nabla \varphi\|^{2} \|\nabla f(\varphi)\|^{2} \right] = \mathbb{E}_{\mu} \left[\|\nabla f\|^{2} \right] \end{aligned}$$

There are many proofs of the Brascamp-Lieb theorem:

- Brascamp-Lieb
- The Bakry-Emery criterion
- Prékopa-Leindeler inequality (Bobkov-Ledoux)
- Caffarelli's contraction theorem

The latter says that there exists a 1-Lipschitz map φ , $\varphi_*\gamma_d = \mu$.

$$\begin{aligned} \operatorname{Var}_{\mu}(f) &= \operatorname{Var}_{\gamma_{d}}(f \circ \varphi) \leq \mathbb{E}_{\gamma_{d}} \left[\|\nabla (f \circ \varphi)\|^{2} \right] \\ &\leq \mathbb{E}_{\gamma_{d}} \left[\|\nabla \varphi\|^{2} \|\nabla f(\varphi)\|^{2} \right] = \mathbb{E}_{\mu} \left[\|\nabla f\|^{2} \right]. \end{aligned}$$

If μ is only log-concave, but compactly supported on a ball of diameter R, then $C_p(\mu) \lesssim R^2$. Again, several proofs:

- Localization (Payne-Weinberger)
- Refined Brascamp-Lieb (Kolesnikov-Milman)
- Moment Maps (Klartag)

Question

For such μ is it necessarily true that there exists an $R\text{-Lipschitz }\varphi$ with $\varphi_*\gamma_d=\mu?$

If μ is only log-concave, but compactly supported on a ball of diameter R, then $C_p(\mu) \lesssim R^2$. Again, several proofs:

- Localization (Payne-Weinberger)
- Refined Brascamp-Lieb (Kolesnikov-Milman)
- Moment Maps (Klartag)

Question

For such μ is it necessarily true that there exists an $R\text{-Lipschitz }\varphi$ with $\varphi_*\gamma_d=\mu?$

1. Dimension-free Φ -Sobolev inequalities,

 $\mathbb{E}[\Phi(f(X))] - \Phi\left(\mathbb{E}[f(X)]\right) \le R^2 \mathbb{E}\left[\Phi''(f(X)) \|\nabla f(X)\|^2\right],$

- 2. Bounds for higher eigenvalues of the weighted Laplacian.
- 3. Isoperimetric inequalities.
- 4. Improved rate of convergence for CLT.

1. Dimension-free Φ -Sobolev inequalities,

 $\mathbb{E}[\Phi(f(X))] - \Phi\left(\mathbb{E}[f(X)]\right) \le R^2 \mathbb{E}\left[\Phi''(f(X)) \|\nabla f(X)\|^2\right],$

- 2. Bounds for higher eigenvalues of the weighted Laplacian.
- 3. Isoperimetric inequalities.
- 4. Improved rate of convergence for CLT.

1. Dimension-free Φ -Sobolev inequalities,

 $\mathbb{E}[\Phi(f(X))] - \Phi\left(\mathbb{E}[f(X)]\right) \le R^2 \mathbb{E}\left[\Phi''(f(X)) \|\nabla f(X)\|^2\right],$

- 2. Bounds for higher eigenvalues of the weighted Laplacian.
- 3. Isoperimetric inequalities.
- 4. Improved rate of convergence for CLT.

1. Dimension-free Φ -Sobolev inequalities,

 $\mathbb{E}[\Phi(f(X))] - \Phi\left(\mathbb{E}[f(X)]\right) \le R^2 \mathbb{E}\left[\Phi''(f(X)) \|\nabla f(X)\|^2\right],$

- 2. Bounds for higher eigenvalues of the weighted Laplacian.
- 3. Isoperimetric inequalities.
- 4. Improved rate of convergence for CLT.

We call $\mu = \gamma_{\textit{d}} \star \nu$ a Gaussian mixture. It was recently proved by

Bardet, Gozlan, Malrieu and Zitt that if $diam(supp(\nu)) \leq R$, then

 $\mathrm{C_p}(\mu) \lesssim e^{R^2}.$

Later, Chen, Chewi and Niles-Weed extended the result to the log-Sobolev inequality.

Question

Suppose that $\mu = \gamma_d \star \nu$ and diam $(\operatorname{supp}(\nu)) \leq R$. Is there an e^{R^2} -Lipschitz φ with $\varphi_* \gamma_d = \mu$?

We call $\mu = \gamma_{\textit{d}} \star \nu$ a Gaussian mixture. It was recently proved by

Bardet, Gozlan, Malrieu and Zitt that if $diam(supp(\nu)) \leq R$, then

 $\mathrm{C_p}(\mu) \lesssim e^{R^2}.$

Later, Chen, Chewi and Niles-Weed extended the result to the log-Sobolev inequality.

Question

Suppose that $\mu = \gamma_d \star \nu$ and diam(supp(ν)) $\leq R$. Is there an e^{R^2} -Lipschitz φ with $\varphi_* \gamma_d = \mu$?

Let μ be log-concave and isotropic,

$$\int_{\mathbb{R}^d} x d\mu(x) = 0 \quad \int_{\mathbb{R}^d} x \otimes x d\mu(x) = \mathrm{Id}.$$

A famous conjecture of Kannan-Lovász-Simonovits postulates,

 $C_{\mathrm{p}}(\mu) \leq C.$

Current best bound, due to Chen: $C_{\rm p}(\mu) \leq d^{o(1)}$.

It seems natural to ask whether we can find a Lipschitz map φ with $\varphi_* \gamma_d = \mu ?$

Let μ be log-concave and isotropic,

$$\int_{\mathbb{R}^d} x d\mu(x) = 0 \quad \int_{\mathbb{R}^d} x \otimes x d\mu(x) = \mathrm{Id}.$$

A famous conjecture of Kannan-Lovász-Simonovits postulates,

 $C_{\mathrm{p}}(\mu) \leq C.$

Current best bound, due to Chen: $C_{\rm p}(\mu) \leq d^{o(1)}$.

It seems natural to ask whether we can find a Lipschitz map φ with $\varphi_*\gamma_d=\mu?$

Let μ be log-concave and isotropic,

$$\int_{\mathbb{R}^d} x d\mu(x) = 0 \quad \int_{\mathbb{R}^d} x \otimes x d\mu(x) = \mathrm{Id}.$$

A famous conjecture of Kannan-Lovász-Simonovits postulates,

 $C_{\mathrm{p}}(\mu) \leq C.$

Current best bound, due to Chen: $C_{\rm p}(\mu) \leq d^{o(1)}$.

It seems natural to ask whether we can find a Lipschitz map φ with $\varphi_*\gamma_d = \mu$?

- In general, one cannot find a Lipschitz transport map from γ_d to μ .
- The existence of such map implies sub-Gaussian tails of μ , which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'.

$$\mathbb{E}_{\gamma_d}\left[\|D\varphi\|^2
ight] \leq d^{o(1)}?$$

- In general, one cannot find a Lipschitz transport map from γ_d to $\mu.$
- The existence of such map implies sub-Gaussian tails of μ, which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'.

$$\mathbb{E}_{\gamma_d}\left[\|D\varphi\|^2
ight] \leq d^{o(1)}?$$

- In general, one cannot find a Lipschitz transport map from γ_d to $\mu.$
- The existence of such map implies sub-Gaussian tails of μ , which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'.

$$\mathbb{E}_{\gamma_d}\left[\|D\varphi\|^2
ight] \leq d^{o(1)}?$$

- In general, one cannot find a Lipschitz transport map from γ_d to $\mu.$
- The existence of such map implies sub-Gaussian tails of μ , which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'.

$$\mathbb{E}_{\gamma_d}\left[\|D\varphi\|^2
ight] \leq d^{o(1)}?$$

- In general, one cannot find a Lipschitz transport map from γ_d to $\mu.$
- The existence of such map implies sub-Gaussian tails of μ , which is not true for all isotropic log-concave measures.
- However, E. Milman showed that for KLS, it is enough to have map which is 'Lipschitz on average'.

$$\mathbb{E}_{\gamma_d}\left[\|D\varphi\|^2\right] \le d^{o(1)}?$$

By slightly altering our perspective, we give a positive answer to the previous questions.

Let $\Omega := C([0,1], \mathbb{R}^d)$ stand for the Wiener space with the Wiener measure γ . We will let $(B_t)_{t \in [0,1]}$ denote a Brownian motion.

We consider Lipschitz mappings $\Phi:\Omega o \mathbb{R}^d$ with $D\Phi$ bounded almost surely.

Derivatives are taken in the Malliavin sense.

By slightly altering our perspective, we give a positive answer to the previous questions.

Let $\Omega := C([0,1], \mathbb{R}^d)$ stand for the Wiener space with the Wiener measure γ . We will let $(B_t)_{t \in [0,1]}$ denote a Brownian motion.

We consider Lipschitz mappings $\Phi : \Omega \to \mathbb{R}^d$ with $D\Phi$ bounded almost surely.

Derivatives are taken in the Malliavin sense.

Theorem (M.-Shenfeld)

Let μ be a measure on \mathbb{R}^d . There exists map $\Phi: \Omega \to \mathbb{R}^d$, with $\Phi_*\gamma = \mu$ and

1. If μ is log-concave with diam $(\operatorname{supp}(\mu)) \leq R$,

 $\|D\Phi\|\leq R.$

2. If $\mu = \gamma_d \star \nu$ and diam $(\operatorname{supp}(\nu)) \leq R$, $\|D\Phi\| \leq e^{R^2}.$

3. If μ is log-concave and isotropic,

 $\mathbb{E}_{\gamma}\left[\|D\Phi\|^2
ight] \leq d^{o(1)}.$

Recall the Cameron-Martin space

$$H:=\{h\in\Omega|h_t=\int\limits_0^t\dot{h}_sds\}.$$

It is also characterized by the fact that $B_t + g$ is absolutely continuous with respect to γ , iff $g \in H$.

Heuristically, for a a random variable F we define the Malliavin derivative DF, as the Gateaux derivative in the H directions.

Recall the Cameron-Martin space

$$H:=\{h\in\Omega|h_t=\int\limits_0^t\dot{h}_sds\}.$$

It is also characterized by the fact that $B_t + g$ is absolutely continuous with respect to γ , iff $g \in H$.

Heuristically, for a a random variable F we define the Malliavin derivative DF, as the Gateaux derivative in the H directions.

H has a natural inner product, $\langle h, h' \rangle_H := \int_0^1 \dot{h_t} \dot{h'_t} dt$. Observe that $DF : \Omega \to H$ and we denote by DF_t , by D_tF .

We say that a map F is R-Lipschitz (in the H directions), if $||DF||_H \leq R$ almost surely. This definition is justified, since

 $\operatorname{Var}_{\gamma}(F) \leq \mathbb{E}_{\gamma}\left[\|DF\|_{H}^{2}\right].$

H has a natural inner product, $\langle h, h' \rangle_H := \int_0^1 \dot{h_t} \dot{h'_t} dt$. Observe that $DF : \Omega \to H$ and we denote by DF_t , by D_tF .

We say that a map F is R-Lipschitz (in the H directions), if $||DF||_H \le R$ almost surely. This definition is justified, since

 $\operatorname{Var}_{\gamma}(F) \leq \mathbb{E}_{\gamma}\left[\|DF\|_{H}^{2}\right].$

Definition (Wasserstein distance between μ and γ)

$$\mathcal{W}_2(\mu,\gamma) := \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[||x-y||^2 \right] \right\}^{1/2}$$

where π ranges over all possible couplings of μ and $\gamma.$

Caffarelli's theorem concerns the optimal transport map $\psi^{\mathrm{opt}},$ for which

$$\mathbb{E}\left[\|\psi^{\text{opt}}(\boldsymbol{G}) - \boldsymbol{G}\|^2\right] = \mathcal{W}_2^2(\mu, \gamma).$$

One can study a similar construction in the Wiener space with respect to the metric

$$d_H(\omega,\omega') = egin{cases} \|\omega-\omega'\|_H & ext{if } \omega-\omega'\in H \ \infty & ext{otherwise} \end{cases}$$

Definition (Wasserstein distance between μ and γ)

$$\mathcal{W}_2(\mu,\gamma) := \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[||x-y||^2 \right] \right\}^{1/2}$$

where π ranges over all possible couplings of μ and $\gamma.$

Caffarelli's theorem concerns the optimal transport map $\psi^{\rm opt},$ for which

$$\mathbb{E}\left[\|\psi^{\text{opt}}(\boldsymbol{G}) - \boldsymbol{G}\|^2\right] = \mathcal{W}_2^2(\mu, \gamma).$$

One can study a similar construction in the Wiener space with respect to the metric

$$d_H(\omega,\omega') = egin{cases} \|\omega-\omega'\|_H & ext{if } \omega-\omega'\in H \ \infty & ext{otherwise} \end{cases}$$

Definition (Wasserstein distance between μ and γ)

$$\mathcal{W}_2(\mu,\gamma) := \inf_{\pi} \left\{ \mathbb{E}_{\pi} \left[||x-y||^2 \right] \right\}^{1/2}$$

where π ranges over all possible couplings of μ and $\gamma.$

Caffarelli's theorem concerns the optimal transport map $\psi^{\rm opt},$ for which

$$\mathbb{E}\left[\|\psi^{\mathrm{opt}}(\boldsymbol{G}) - \boldsymbol{G}\|^2\right] = \mathcal{W}_2^2(\mu, \gamma).$$

One can study a similar construction in the Wiener space with respect to the metric

$$d_H(\omega,\omega') = egin{cases} \|\omega-\omega'\|_H & ext{if } \omega-\omega'\in H \ \infty & ext{otherwise} \end{cases}$$

Define a measure $\tilde{\mu}$ on Ω by

$$rac{d ilde{\mu}}{d\gamma}(\omega) = rac{d\mu}{d\gamma_d}(\omega_1),$$

and consider,

$$\min_{\Psi_*\gamma=\tilde{\mu}}\mathbb{E}\left[d_H\left(\Psi(B_{\cdot}),B_{\cdot}\right)^2\right].$$

Equivalently,

$$\min_{u_t} \mathbb{E}\left[\int_{0}^{1} \|u_t\|^2 dt\right],$$

where
$$B_1 + \int_0^1 u_t dt \sim \mu$$

Define a measure $\tilde{\mu}$ on Ω by

$$rac{d ilde{\mu}}{d\gamma}(\omega) = rac{d\mu}{d\gamma_d}(\omega_1),$$

and consider,

$$\min_{\Psi_*\gamma=\tilde{\mu}}\mathbb{E}\left[d_H\left(\Psi(B_{\cdot}),B_{\cdot}\right)^2\right].$$

Equivalently,

$$\min_{u_t} \mathbb{E}\left[\int_{0}^{1} \|u_t\|^2 dt\right],$$

where
$$B_1 + \int\limits_0^1 u_t dt \sim \mu$$

Define a measure $\tilde{\mu}$ on Ω by

$$rac{d ilde{\mu}}{d\gamma}(\omega) = rac{d\mu}{d\gamma_d}(\omega_1),$$

and consider,

$$\min_{\Psi_*\gamma=\tilde{\mu}}\mathbb{E}\left[d_H\left(\Psi(B_{\cdot}),B_{\cdot}\right)^2\right].$$

Equivalently,

$$\min_{u_t} \mathbb{E}\left[\int_0^1 \|u_t\|^2 dt\right],\,$$

where
$$B_1 + \int_0^1 u_t dt \sim \mu$$

Define
$$v_t^{\text{opt}} := \arg \min_{u_t} \mathbb{E} \begin{bmatrix} 1 \\ \int_0^1 \|u_t\|^2 dt \end{bmatrix}$$
.
Then, $v_t^{\text{opt}}(\omega) = \psi^{\text{opt}}(\omega_1) - \omega_1$, and $\Phi^{\text{opt}}(\omega) = \omega + \int v_t dt$ satisfies,

- $\Phi^{\mathrm{opt}}_* \gamma = \tilde{\mu}.$
- $(\Phi_1^{\text{opt}})_* \gamma = \mu.$

This is unsatisfactory.

Define
$$v_t^{\text{opt}} := \arg\min_{u_t} \mathbb{E} \begin{bmatrix} 1 \\ \int_0^1 \|u_t\|^2 dt \end{bmatrix}$$
.
Then, $v_t^{\text{opt}}(\omega) = \psi^{\text{opt}}(\omega_1) - \omega_1$, and $\Phi^{\text{opt}}(\omega) = \omega + \int v_t dt$ satisfies,

- $\Phi^{\text{opt}}_* \gamma = \tilde{\mu}.$
- $(\Phi_1^{\text{opt}})_* \gamma = \mu.$

This is unsatisfactory.

Define
$$v_t^{\text{opt}} := \arg\min_{u_t} \mathbb{E} \begin{bmatrix} 1 \\ \int_0^1 \|u_t\|^2 dt \end{bmatrix}$$
.
Then, $v_t^{\text{opt}}(\omega) = \psi^{\text{opt}}(\omega_1) - \omega_1$, and $\Phi^{\text{opt}}(\omega) = \omega + \int v_t dt$ satisfies,

- $\Phi^{\text{opt}}_* \gamma = \tilde{\mu}.$
- $(\Phi_1^{\text{opt}})_* \gamma = \mu.$

This is unsatisfactory.

We consider an optimization problem adapted to the filtration of B_t .

Define
$$v_t := \arg \min_{u_t \text{ adapated}} \mathbb{E} \begin{bmatrix} \int_0^1 ||u_t||^2 dt \end{bmatrix}$$
 and $dX_t = dB_t + v_t dt$.
Facts:

•
$$X_1 \sim \mu$$
 (this is the transport map).

• Ent $(\mu||\gamma) = \frac{1}{2} \int_{0}^{1} \mathbb{E}[||v_t||^2] dt.$

• v_t is a martingale, with $v_t(X_t) = \nabla \ln \left(P_{1-t} \left(\frac{d\mu}{d\gamma_d}(X_t) \right) \right)$.

We consider an optimization problem adapted to the filtration of B_t .

Define
$$v_t := \arg \min_{u_t \text{ adapated}} \mathbb{E} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} ||u_t||^2 dt \end{bmatrix}$$
 and $dX_t = dB_t + v_t dt$.
Facts:

•
$$X_1 \sim \mu$$
 (this is the transport map).

• Ent $(\mu||\gamma) = \frac{1}{2} \int_0^1 \mathbb{E}[||v_t||^2] dt.$

• v_t is a martingale, with $v_t(X_t) = \nabla \ln \left(P_{1-t} \left(\frac{d\mu}{d\gamma_d}(X_t) \right) \right)$.

We consider an optimization problem adapted to the filtration of B_t .

Define
$$v_t := \arg \min_{u_t \text{ adapated}} \mathbb{E} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} ||u_t||^2 dt \end{bmatrix}$$
 and $dX_t = dB_t + v_t dt$.
Facts:

- $X_1 \sim \mu$ (this is the transport map).
- Ent $(\mu||\gamma) = \frac{1}{2} \int_{0}^{1} \mathbb{E}[||\mathbf{v}_t||^2] dt.$
- v_t is a martingale, with $v_t(X_t) = \nabla \ln \left(P_{1-t} \left(\frac{d\mu}{d\gamma_d}(X_t) \right) \right)$.

The Föllmer Drift - (Some) History

- Analogous problems were already considered by in the 30's, by Schrödinger.
- The process itself was first studied by Föllmer, in 85', who used it to derive a variational expression for entropy.
- It appeared implicitly in the works of Feyel and Üstünel, from 2004, in their study of infinite dimensional transportation problems.
- In the context of functional inequalities, the use of the Föllmer process was pioneered by Lehec in 2012.
- Lassalle identified the process as the solution to a causal transportation problem in 2013.

The Brownian transport map

Recall that $X_1 = B_1 + \int_0^1 \nabla \ln \left(P_{1-t} \frac{d\mu}{d\gamma_d}(X_t) \right) dt$. It can be shown

$$DX_t = I_d + \int_0^t \nabla^2 \ln\left(P_{1-s} \frac{d\mu}{d\gamma_d}(X_s)\right) DX_s ds.$$

We write $abla v_t :=
abla^2 \ln \left(P_{1-t} rac{d\mu}{d\gamma_d}(X_t) \right)$ and for $h \in H$, we calculate,

$$f_h(t) := \langle DX_t, h \rangle_H = \int_0^t \dot{h}_s ds + \int_0^t \nabla v_t \langle DX_s, h \rangle_H ds.$$

In particular,

$$\frac{d}{dt}f_h(t)=\dot{h}_t-\nabla v_tf_h(t).$$

The Brownian transport map

Recall that $X_1 = B_1 + \int_0^1 \nabla \ln \left(P_{1-t} \frac{d\mu}{d\gamma_d}(X_t) \right) dt$. It can be shown

$$DX_t = I_d + \int_0^t \nabla^2 \ln\left(P_{1-s}\frac{d\mu}{d\gamma_d}(X_s)\right) DX_s ds.$$

We write $\nabla v_t := \nabla^2 \ln \left(P_{1-t} \frac{d\mu}{d\gamma_d}(X_t) \right)$ and for $h \in H$, we calculate,

$$f_h(t) := \langle DX_t, h \rangle_H = \int_0^t \dot{h}_s ds + \int_0^t \nabla v_t \langle DX_s, h \rangle_H ds.$$

In particular,

$$\frac{d}{dt}f_h(t)=\dot{h}_t-\nabla v_tf_h(t).$$

The Brownian transport map

Recall that $X_1 = B_1 + \int_0^1 \nabla \ln \left(P_{1-t} \frac{d\mu}{d\gamma_d}(X_t) \right) dt$. It can be shown

that

$$DX_t = I_d + \int_0^t \nabla^2 \ln\left(P_{1-s}\frac{d\mu}{d\gamma_d}(X_s)\right) DX_s ds.$$

We write $\nabla v_t := \nabla^2 \ln \left(P_{1-t} \frac{d\mu}{d\gamma_d}(X_t) \right)$ and for $h \in H$, we calculate,

$$f_h(t) := \langle DX_t, h \rangle_H = \int_0^t \dot{h}_s ds + \int_0^t \nabla v_t \langle DX_s, h \rangle_H ds.$$

In particular,

$$\frac{d}{dt}f_h(t)=\dot{h}_t-\nabla v_tf_h(t).$$

Solving this differential equation, we get, for every $h \in H$,

$$f_h(1) = \int_0^1 e^{\int_t^1 \nabla v_s ds} \cdot \dot{h}(t) dt.$$

So,

$$D_t X_1 = e^{\int\limits_t^1 \nabla v_s ds},$$

 and

$$||DX_1||_H^2 = \int_0^1 e^{2\int_t^1 \nabla v_s ds} dt.$$

The Brownian transport Map

Direct calculations show,

$$\nabla v_t := \nabla^2 \ln \left(P_{1-t} \frac{d\mu}{d\gamma}(X_t) \right) = \frac{\operatorname{Cov}(\mu_t)}{(1-t)^2} - \frac{1}{1-t} \mathrm{I}_d,$$

where

$$rac{d\mu_t}{dx} \propto rac{d\mu}{d\gamma_d}(x) e^{rac{-(x-X_t)^2}{2(1-t)}}.$$

If diam $(\operatorname{supp}(\mu)) \leq R$, clearly,

$$abla v_t \le rac{R^2}{(1-t)^2} - rac{1}{1-t}.$$

Moreover, by Brascamp-Lieb, if μ is log-concave,

$$abla v_t \leq rac{1}{t}$$

The Brownian transport Map

Direct calculations show,

$$\nabla v_t := \nabla^2 \ln \left(P_{1-t} \frac{d\mu}{d\gamma}(X_t) \right) = \frac{\operatorname{Cov}(\mu_t)}{(1-t)^2} - \frac{1}{1-t} \mathrm{I}_d,$$

where

$$rac{d\mu_t}{dx} \propto rac{d\mu}{d\gamma_d}(x) e^{rac{-(x-X_t)^2}{2(1-t)}}.$$

If $\operatorname{diam}(\operatorname{supp}(\mu)) \leq R$, clearly,

$$\nabla v_t \leq \frac{R^2}{(1-t)^2} - \frac{1}{1-t}.$$

Moreover, by Brascamp-Lieb, if μ is log-concave

$$abla v_t \leq rac{1}{t}$$

The Brownian transport Map

Direct calculations show,

$$\nabla v_t := \nabla^2 \ln \left(P_{1-t} \frac{d\mu}{d\gamma}(X_t) \right) = \frac{\operatorname{Cov}(\mu_t)}{(1-t)^2} - \frac{1}{1-t} \mathrm{I}_d,$$

where

$$rac{d\mu_t}{dx} \propto rac{d\mu}{d\gamma_d}(x) e^{rac{-(x-X_t)^2}{2(1-t)}}.$$

If $\operatorname{diam}(\operatorname{supp}(\mu)) \leq R$, clearly,

$$\nabla v_t \leq \frac{R^2}{(1-t)^2} - \frac{1}{1-t}.$$

Moreover, by Brascamp-Lieb, if μ is log-concave,

$$abla v_t \leq rac{1}{t}$$

We apply the two inequalities to $||DX_1||_H^2 = \int_0^1 e^{2\int_t^1 \nabla v_s ds} dt$

Theorem (M.- Shenfeld)

Consider X_1 as a map from $\Omega = C([0,1], \mathbb{R}^d)$ to \mathbb{R}^d .

1. If μ is log-concave with diam $(\operatorname{supp}(\mu)) \leq R$,

 $\|DX_1\| \leq R.$

2. If $\mu = \gamma_d \star \nu$ and diam $(\operatorname{supp}(\nu)) \leq R$, $\|DX_1\| \leq e^{R^2}$.

- The second result follows by showing $\nabla v_t \leq R^2$.
- Can be extended to semi-log concave measures.

We apply the two inequalities to $||DX_1||_H^2 = \int_0^1 e^{2\int_t^1 \nabla v_s ds} dt$

Theorem (M.- Shenfeld)

Consider X_1 as a map from $\Omega = C([0,1], \mathbb{R}^d)$ to \mathbb{R}^d .

1. If μ is log-concave with diam $(\operatorname{supp}(\mu)) \leq R$,

 $\|DX_1\| \leq R.$

- 2. If $\mu = \gamma_d \star \nu$ and diam $(\operatorname{supp}(\nu)) \leq R$, $\|DX_1\| \leq e^{R^2}$.
 - The second result follows by showing $\nabla v_t \leq R^2$.
 - Can be extended to semi-log concave measures.

Instead of applying point-wise bounds, we could estimate $\mathbb{E}\left[\|DX_1\|_{H}^{2}\right] = \mathbb{E}\left[\int_{0}^{1} e^{2\int_{t}^{1} \nabla v_s(X_s)ds}\right].$ For isotropic μ , define $\tau = \frac{1}{2} \wedge \inf\{t | \nabla v_t(X_t) \ge 2\}.$

$$\int_0^1 \nabla v_t(X_t) \leq 2 + \int_{\tau}^1 \frac{1}{t} dt = 2 + \log(\tau).$$

So

$$\mathbb{E}\left[\|DX_1\|_{H}^{2}\right] \leq e^{4}\mathbb{E}\left[\frac{1}{\tau^{2}}\right].$$

Instead of applying point-wise bounds, we could estimate $\mathbb{E}\left[\|DX_1\|_{H}^{2}\right] = \mathbb{E}\left[\int_{0}^{1} e^{2\int_{t}^{1} \nabla v_s(X_s)ds}\right].$ For isotropic μ , define $\tau = \frac{1}{2} \wedge \inf\{t | \nabla v_t(X_t) \ge 2\}.$

$$\int\limits_0^1 \nabla v_t(X_t) \leq 2 + \int\limits_\tau^1 \frac{1}{t} dt = 2 + \log(\tau).$$

So,

$$\mathbb{E}\left[\|DX_1\|_H^2
ight] \leq e^4 \mathbb{E}\left[rac{1}{ au^2}
ight].$$

With the recent result of Yuansi Chen about the KLS constant, we prove:

Theorem

Let μ be an isotropic log-concave vector in \mathbb{R}^d . Then,

 $\mathbb{E}\left[\|DX_1\|_H^2\right] = d^{o(1)}.$

- Can the results be extended to larger classes of measures?
- What about similar, but different, constructions on the Wiener space?
- Can similar results be proved for maps between finite dimensional spaces?
- In particular, can the results be recovered for the Brenier map?

Thank You