Stability of Stein kernels, moment maps and invariant measures

Dan Mikulincer

Weizmann Institute of Science Joint work with Max Fathi Let X_t, Y_t be two diffusions in \mathbb{R}^d which satisfy

 $dX_t = a(X_t)dt + \tau(X_t)dB_t,$ $dY_t = b(Y_t)dt + \sigma(Y_t)dB_t.$

Assume ν, μ to be their respective (unique) invariant measures.

Question (Stability of invariant measures)

Suppose that $||a - b|| + ||\tau - \sigma||$ is small, is μ close to ν ?

Let X_t, Y_t be two diffusions in \mathbb{R}^d which satisfy

 $dX_t = a(X_t)dt + \tau(X_t)dB_t,$ $dY_t = b(Y_t)dt + \sigma(Y_t)dB_t.$

Assume ν, μ to be their respective (unique) invariant measures.

Question (Stability of invariant measures)

Suppose that $||a - b||_{\cdot} + ||\tau - \sigma||_{\cdot}$ is small, is μ close to ν ?

- A matrix valued map $\tau_{\mu} : \mathbb{R}^d \to M_d(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^d \to \mathbb{R}$, called the moment map.

Question (Stability of Stein kernels)

Suppose that $\|\tau_{\mu} - \tau_{\nu}\|$. is small, is μ close to ν ?

Question (Stability of moment maps)

- A matrix valued map $\tau_{\mu} : \mathbb{R}^d \to M_d(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu} : \mathbb{R}^d \to \mathbb{R}$, called the moment map.

Question (Stability of Stein kernels)

Suppose that $\|\tau_{\mu} - \tau_{\nu}\|$. is small, is μ close to ν ?

Question (Stability of moment maps)

- A matrix valued map $\tau_{\mu} : \mathbb{R}^d \to M_d(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^d \to \mathbb{R}$, called the moment map.

Question (Stability of Stein kernels)

Suppose that $\|\tau_{\mu} - \tau_{\nu}\|$. is small, is μ close to ν ?

Question (Stability of moment maps)

- A matrix valued map $\tau_{\mu} : \mathbb{R}^d \to M_d(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^d \to \mathbb{R}$, called the moment map.

Question (Stability of Stein kernels)

Suppose that $\|\tau_{\mu} - \tau_{\nu}\|$. is small, is μ close to ν ?

Question (Stability of moment maps)

- A matrix valued map $\tau_{\mu} : \mathbb{R}^d \to M_d(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^d \to \mathbb{R}$, called the moment map.

Question (Stability of Stein kernels)

Suppose that $\|\tau_{\mu} - \tau_{\nu}\|$. is small, is μ close to ν ?

Question (Stability of moment maps)

Basic observation: If $G \sim \gamma$ is the standard Gaussian on \mathbb{R}^d . Then,

 $\mathbb{E}\left[\langle G,\nabla f(G)\rangle\right]=\mathbb{E}\left[\Delta f(G)\right],$

for any test function $f : \mathbb{R}^d \to \mathbb{R}$. Moreover, the Gaussian is the only measure which satisfies this relation.

Stein's idea: This property is stable. If X is any other random vector in \mathbb{R}^d .

 $\mathbb{E}\left[\langle X,
abla f(X)
angle
ight] \simeq \mathbb{E}\left[\Delta f(X)
ight] \implies X \simeq G,$

Basic observation: If $G \sim \gamma$ is the standard Gaussian on \mathbb{R}^d . Then,

 $\mathbb{E}\left[\langle G,\nabla f(G)\rangle\right]=\mathbb{E}\left[\Delta f(G)\right],$

for any test function $f : \mathbb{R}^d \to \mathbb{R}$. Moreover, the Gaussian is the only measure which satisfies this relation. Stein's idea: This property is stable. If X is any other random

vector in \mathbb{R}^d .

 $\mathbb{E}\left[\langle X, \nabla f(X) \rangle\right] \simeq \mathbb{E}\left[\Delta f(X)\right] \implies X \simeq G,$

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau : \mathbb{R}^d \to M_d(\mathbb{R})$, such that

$\mathbb{E}\left[\langle X, \nabla f(X) \rangle\right] = \mathbb{E}\left[\langle \tau(X), \nabla^2 f(X) \rangle_{HS}\right].$

We have that $\tau \equiv Id$ iff $\mu = \gamma$. The discrepancy is then defined as

 $S^{2}(\mu || \gamma) = \mathbb{E}_{\mu} \left[|| \tau - \mathrm{Id} ||_{HS}^{2} \right].$

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau : \mathbb{R}^d \to M_d(\mathbb{R})$, such that

$$\mathbb{E}\left[\langle X, \nabla f(X) \rangle\right] = \mathbb{E}\left[\langle \tau(X), \nabla^2 f(X) \rangle_{HS}\right].$$

We have that $\tau \equiv Id$ iff $\mu = \gamma$. The discrepancy is then defined as

$$S^{2}(\mu||\gamma) = \mathbb{E}_{\mu} \left[\|\tau - \operatorname{Id}\|_{HS}^{2} \right].$$

Stein Kernels - Example

If $X \sim \mu$ is a 'nice' centered random variable on \mathbb{R} , with density ρ its unique Stein kernel is given by

$$\tau(x) := \frac{\int\limits_{x}^{\infty} y \rho(y) dy}{\rho(x)}.$$

Indeed, we can integrate by parts,

$$\mathbb{E}\left[Xf'(X)\right] = \int_{-\infty}^{\infty} f'(x)x\rho(x)dx = \int_{-\infty}^{\infty} f''(x)\left(\int_{x}^{\infty} y\rho(y)dy\right)dx$$
$$= \int_{-\infty}^{\infty} f''(x)\frac{\left(\int_{x}^{\infty} y\rho(y)dy\right)}{\rho(x)}\rho(x)dx = \mathbb{E}\left[\tau(X)f''(X)\right].$$

Stein Kernels - Example

If $X \sim \mu$ is a 'nice' centered random variable on \mathbb{R} , with density ρ its unique Stein kernel is given by

$$\tau(x) := \frac{\int\limits_{x}^{\infty} y \rho(y) dy}{\rho(x)}.$$

Indeed, we can integrate by parts,

$$\mathbb{E}\left[Xf'(X)\right] = \int_{-\infty}^{\infty} f'(x)x\rho(x)dx = \int_{-\infty}^{\infty} f''(x)\left(\int_{x}^{\infty} y\rho(y)dy\right)dx$$
$$= \int_{-\infty}^{\infty} f''(x)\frac{\left(\int_{x}^{\infty} y\rho(y)dy\right)}{\rho(x)}\rho(x)dx = \mathbb{E}\left[\tau(X)f''(X)\right].$$

Suppose now that $|\tau(x) - 1|$ is small. So, $\rho(x) \simeq \int_{x}^{\infty} y \rho(y) dy$. In this case, one can use Gronwall's inequality to show $\rho(x) \simeq e^{-x^2/2}$.

yo

In higher dimension, many different constructions for Stein kernels are known. The known constructions do not have explicit tractable expressions in general. Suppose now that $|\tau(x) - 1|$ is small. So, $\rho(x) \simeq \int_{x}^{\infty} y \rho(y) dy$. In this case, one can use Gronwall's inequality to show $\rho(x) \simeq e^{-x^2/2}$.

In higher dimension, many different constructions for Stein kernels are known. The known constructions do not have explicit tractable expressions in general. Recall that $S^2(\mu || \gamma) = \mathbb{E}_{\mu} \left[\| \tau - \mathrm{Id} \|_{HS}^2 \right]$. It's an exercise to show, $W_1(\mu, \gamma) \leq S(\mu || \gamma)$.

What is more impressive is that,

 $W_2(\mu, \gamma) \leq S(\mu || \gamma),$

as well, as shown in (Ledoux, Nourdin, Pecatti 14'). In fact,

$$\operatorname{Ent}(\mu||\gamma) \leq \frac{1}{2}S^{2}(\mu||\gamma)\ln\left(1 + \frac{\operatorname{I}(\mu||\gamma)}{S^{2}(\mu||\gamma)}\right)$$

Recall that $S^2(\mu || \gamma) = \mathbb{E}_{\mu} \left[\| \tau - \mathrm{Id} \|_{HS}^2 \right]$. It's an exercise to show, $W_1(\mu, \gamma) \leq S(\mu || \gamma)$.

What is more impressive is that,

 $W_2(\mu, \gamma) \leq S(\mu || \gamma),$

as well, as shown in (Ledoux, Nourdin, Pecatti 14'). In fact,

$$\operatorname{Ent}(\mu||\gamma) \leq \frac{1}{2}S^{2}(\mu||\gamma)\ln\left(1 + \frac{\operatorname{I}(\mu||\gamma)}{S^{2}(\mu||\gamma)}\right)$$

Recall that $S^2(\mu || \gamma) = \mathbb{E}_{\mu} \left[\| \tau - \mathrm{Id} \|_{HS}^2 \right]$. It's an exercise to show, $W_1(\mu, \gamma) \leq S(\mu || \gamma)$.

What is more impressive is that,

 $W_2(\mu, \gamma) \leq S(\mu || \gamma),$

as well, as shown in (Ledoux, Nourdin, Pecatti 14'). In fact,

$$\operatorname{Ent}(\mu||\gamma) \leq \frac{1}{2}S^2(\mu||\gamma)\ln\left(1 + \frac{\operatorname{I}(\mu||\gamma)}{S^2(\mu||\gamma)}\right)$$

Consider the OU process $dX_t = -X_t dt + \sqrt{2} dB_t$, with $X_0 \sim \mu$. γ is the unique invariant measure of the process and we wish to bound:

$$W_2(X_0,X_\infty)=\int_0^\infty \frac{d}{dt}W_2(X_0,X_t)dt.$$

A result of Otto-Villani allows to bound $\frac{d}{dt}W_2(X_0, X_t)$ by $I(X_t||\gamma)$.

Integration by parts is then used to bound $\mathrm{I}(X_t||\gamma)$ by $S^2(\mu||\gamma).$

Consider the OU process $dX_t = -X_t dt + \sqrt{2} dB_t$, with $X_0 \sim \mu$. γ is the unique invariant measure of the process and we wish to bound:

$$W_2(X_0, X_\infty) = \int_0^\infty \frac{d}{dt} W_2(X_0, X_t) dt.$$

A result of Otto-Villani allows to bound $\frac{d}{dt}W_2(X_0, X_t)$ by $I(X_t||\gamma)$.

Integration by parts is then used to bound $\mathrm{I}(X_t||\gamma)$ by $S^2(\mu||\gamma).$

Consider the OU process $dX_t = -X_t dt + \sqrt{2} dB_t$, with $X_0 \sim \mu$. γ is the unique invariant measure of the process and we wish to bound:

$$W_2(X_0,X_\infty)=\int_0^\infty \frac{d}{dt}W_2(X_0,X_t)dt.$$

A result of Otto-Villani allows to bound $\frac{d}{dt}W_2(X_0, X_t)$ by $I(X_t||\gamma)$.

Integration by parts is then used to bound $I(X_t||\gamma)$ by $S^2(\mu||\gamma)$.

Stein kernels and discrepancy have found numerous applications for normal approximations:

- Central limit theorems.
- Stability of functional inequalities.
- Second order Poincaré inequalities.

Can we extend the theory by bounding ${
m dist}(\mu,
u)$ with $\| au_\mu- au_
u\|$?

Stein kernels and discrepancy have found numerous applications for normal approximations:

- Central limit theorems.
- Stability of functional inequalities.
- Second order Poincaré inequalities.

Can we extend the theory by bounding dist (μ, ν) with $\|\tau_{\mu} - \tau_{\nu}\|$?

For a measure $\mu = e^{-\psi(x)} dx$ on \mathbb{R}^d we define its moment map by:

Definition (Moment map)

A moment map of μ , is a convex function $\varphi_{\mu} : \mathbb{R}^{d} \to \mathbb{R}$ such that $e^{-\varphi_{\mu}}$ is a centered probability density whose push-forward by $\nabla \varphi_{\mu}$ is μ . The measure $e^{-\varphi_{\mu}} dx$ is called the moment measure.

Remark: convexity of φ_{μ} implies that $\nabla \varphi_{\mu}$ is the optimal transport map between $e^{-\varphi_{\mu}} dx$ and μ and in particular it satisfies the following Monge–Ampère equation:

$$e^{-arphi_{\mu}(x)}=e^{-\psi(
abla arphi_{\mu}(x))}\mathrm{det}(
abla^2 arphi_{\mu}(x)).$$

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x) = \frac{||x||^2}{2}$.
- For $\mu \sim \text{Uniform}(\mathbb{S}^{d-1}), \ \varphi_{\mu}(x) = \|x\|.$

• For
$$\mu \sim \text{Uniform}([-1,1]^d)$$
, $\varphi_{\mu}(x) = \sum_{i=1}^d 2\log \cosh\left(\frac{x_i}{2}\right) + C$.

$$(\psi^{-1})'\left(-\log\left|\int\limits_{x}^{1}td\mu(t)\right|
ight)=rac{1}{x}.$$

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x) = \frac{\|x\|^2}{2}$.
- For $\mu \sim \text{Uniform}(\mathbb{S}^{d-1}), \varphi_{\mu}(x) = \|x\|.$

• For
$$\mu \sim \text{Uniform}([-1,1]^d)$$
, $\varphi_{\mu}(x) = \sum_{i=1}^d 2\log \cosh\left(\frac{x_i}{2}\right) + C$.

$$(\psi^{-1})'\left(-\log\left|\int\limits_{x}^{1}td\mu(t)\right|
ight)=rac{1}{x}.$$

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x) = \frac{\|x\|^2}{2}$.
- For $\mu \sim \text{Uniform}(\mathbb{S}^{d-1})$, $\varphi_{\mu}(x) = \|x\|$.

• For
$$\mu \sim \text{Uniform}([-1,1]^d)$$
, $\varphi_{\mu}(x) = \sum_{i=1}^d 2\log \cosh\left(\frac{x_i}{2}\right) + C$.

$$(\psi^{-1})'\left(-\log\left|\int\limits_{x}^{1}td\mu(t)\right|
ight)=rac{1}{x}.$$

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x) = \frac{\|x\|^2}{2}$.
- For $\mu \sim \text{Uniform}(\mathbb{S}^{d-1})$, $\varphi_{\mu}(x) = \|x\|$.

• For
$$\mu \sim \text{Uniform}([-1,1]^d)$$
, $\varphi_{\mu}(x) = \sum_{i=1}^d 2\log \cosh\left(\frac{x_i}{2}\right) + C$.

$$(\psi^{-1})'\left(-\log\left|\int\limits_{x}^{1}td\mu(t)\right|
ight)=rac{1}{x}.$$

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x) = \frac{\|x\|^2}{2}$.
- For $\mu \sim \text{Uniform}(\mathbb{S}^{d-1})$, $\varphi_{\mu}(x) = \|x\|$.

• For
$$\mu \sim \text{Uniform}([-1,1]^d)$$
, $\varphi_{\mu}(x) = \sum_{i=1}^d 2\log \cosh\left(\frac{x_i}{2}\right) + C$.

$$(\psi^{-1})'\left(-\log\left|\int\limits_x^1 td\mu(t)
ight|
ight)=rac{1}{x}.$$

In general, it is hard to give explicit expressions for φ_{μ} .

Theorem (Cordero-Erausquin, Klartag '15)

Under some regularity assumptions, if μ is a centered measure on \mathbb{R}^d . Then, the moment map exists and is unique.

It is somewhat suggestive that if $\varphi_{\mu}(x) \simeq \frac{x^{2}}{2}$, then $\mu \simeq \gamma$. As before, if ν and μ are not Gaussians , what can we say when $\|\varphi_{\mu} - \varphi_{\nu}\|$ is small?

It turns out that this is very much related to the previous question about Stein kernels.

In general, it is hard to give explicit expressions for φ_{μ} .

Theorem (Cordero-Erausquin, Klartag '15)

Under some regularity assumptions, if μ is a centered measure on \mathbb{R}^d . Then, the moment map exists and is unique.

It is somewhat suggestive that if $\varphi_{\mu}(x) \simeq \frac{x^2}{2}$, then $\mu \simeq \gamma$. As before, if ν and μ are not Gaussians, what can we say when $\|\varphi_{\mu} - \varphi_{\nu}\|$ is small?

It turns out that this is very much related to the previous question about Stein kernels.

In general, it is hard to give explicit expressions for φ_{μ} .

Theorem (Cordero-Erausquin, Klartag '15)

Under some regularity assumptions, if μ is a centered measure on \mathbb{R}^d . Then, the moment map exists and is unique.

It is somewhat suggestive that if $\varphi_{\mu}(x) \simeq \frac{x^2}{2}$, then $\mu \simeq \gamma$. As before, if ν and μ are not Gaussians, what can we say when $\|\varphi_{\mu} - \varphi_{\nu}\|$ is small?

It turns out that this is very much related to the previous question about Stein kernels.

Theorem (Fathi 18')

Let μ be a measure on \mathbb{R}^d with moment map $\varphi := \varphi_{\mu}$. Then, the matrix valued map

$$\tau_{\mu}(x) = \nabla^2 \varphi(\nabla \varphi^{-1}(x)),$$

is a Stein kernel for μ .

Proof.

$$\begin{split} \int \langle \nabla f(x), x \rangle d\mu(x) &= \int \langle \nabla f(\nabla \varphi(y)), \nabla \varphi(y) \rangle e^{-\varphi(y)} dy \\ &= \int \langle \nabla^2 f(\nabla \varphi(y)), \nabla^2 \varphi(y) \rangle_{HS} e^{-\varphi(y)} dy \\ &= \int \langle \nabla^2 f(x), \nabla^2 \varphi(\nabla \varphi^{-1}(x)) \rangle_{HS} d\mu(x) \end{split}$$

Theorem (Fathi 18')

Let μ be a measure on \mathbb{R}^d with moment map $\varphi := \varphi_{\mu}$. Then, the matrix valued map

$$\tau_{\mu}(x) = \nabla^2 \varphi(\nabla \varphi^{-1}(x)),$$

is a Stein kernel for μ .

Proof.

$$\int \langle \nabla f(x), x \rangle d\mu(x) = \int \langle \nabla f(\nabla \varphi(y)), \nabla \varphi(y) \rangle e^{-\varphi(y)} dy$$
$$= \int \langle \nabla^2 f(\nabla \varphi(y)), \nabla^2 \varphi(y) \rangle_{HS} e^{-\varphi(y)} dy$$
$$= \int \langle \nabla^2 f(x), \nabla^2 \varphi(\nabla \varphi^{-1}(x)) \rangle_{HS} d\mu(x)$$

We can now use the Stein discrepancy to deduce some stability bounds on the moment map.

$$egin{aligned} & W_2^2(\mu||\gamma) \leq S^2(\mu||\gamma) = \int \|
abla^2 arphi(
abla arphi^{-1}(x)) - \mathrm{Id}\|_{HS} d\mu(x) \ &= \int \|
abla^2 arphi(y) - \mathrm{Id}\|_{HS} e^{-arphi(y)} dy. \end{aligned}$$

Now, let μ be a measure and τ_{μ} its (moment) Stein kernel. We define a stochastic process

$$dX_t = -X_t dt + \sqrt{2\tau_\mu(X_t)} dB_t.$$

Remark: compare this to the OU process:

 $dY_t = -Y_t dt + \sqrt{2} \mathrm{Id} dB_t.$

Lemma

 μ is an invariant measure of X_t .

Now, let μ be a measure and τ_{μ} its (moment) Stein kernel. We define a stochastic process

$$dX_t = -X_t dt + \sqrt{2 au_\mu(X_t)} dB_t.$$

Remark: compare this to the OU process:

 $dY_t = -Y_t dt + \sqrt{2} \mathrm{Id} dB_t.$

Lemma

 μ is an invariant measure of X_t .

Now, let μ be a measure and τ_{μ} its (moment) Stein kernel. We define a stochastic process

$$dX_t = -X_t dt + \sqrt{2 au_\mu(X_t)} dB_t.$$

Remark: compare this to the OU process:

 $dY_t = -Y_t dt + \sqrt{2} \mathrm{Id} dB_t.$

Lemma

 μ is an invariant measure of X_t .

Invariant Measures

Proof.

The infinitesimal generator of X_t is given by:

$$\mathbb{L}f(x) = -\langle x,
abla f(x)
angle + \langle au_{\mu}(x),
abla^2 f(x)
angle_{HS}.$$

 μ is an invariant measure of X_t , if and only if,

 $\mathbb{E}_{\mu}\left[Lf(x)\right]=0.$

Or, in other words,

 $\mathbb{E}_{\mu}\left[\langle x, \nabla f(x) \rangle\right] = \mathbb{E}_{\mu}\left[\langle \tau_{\mu}(x), \nabla^{2} f(x) \rangle_{HS}\right],$

which is the Stein relation.

Invariant Measures

Proof.

The infinitesimal generator of X_t is given by:

$$Lf(x) = -\langle x,
abla f(x)
angle + \langle au_{\mu}(x),
abla^2 f(x)
angle_{HS}.$$

 μ is an invariant measure of X_t , if and only if,

 $\mathbb{E}_{\mu}\left[Lf(x)\right]=0.$

Or, in other words,

 $\mathbb{E}_{\mu}\left[\langle x, \nabla f(x) \rangle\right] = \mathbb{E}_{\mu}\left[\langle \tau_{\mu}(x), \nabla^{2} f(x) \rangle_{HS}\right],$

which is the Stein relation.

Proof.

The infinitesimal generator of X_t is given by:

$$Lf(x) = -\langle x,
abla f(x)
angle + \langle au_{\mu}(x),
abla^2 f(x)
angle_{HS}.$$

 μ is an invariant measure of X_t , if and only if,

$$\mathbb{E}_{\mu}\left[Lf(x)\right]=0.$$

Or, in other words,

$$\mathbb{E}_{\mu}\left[\langle x, \nabla f(x)\rangle\right] = \mathbb{E}_{\mu}\left[\langle \tau_{\mu}(x), \nabla^{2}f(x)\rangle_{HS}\right],$$

which is the Stein relation.

• The Dirichlet form is $\mathbb{E}_{\mu}[fLf] = \mathbb{E}_{\mu}[\nabla f^{T}\tau_{\mu}\nabla f]$. Moreover

$$\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f \right].$$

• It has an exponential convergence to equilibrium. If $X_t \sim \mu_t$, $W_{\cdot}(\mu_t, \mu) \leq e^{-\frac{t}{2}} W_{\cdot}(\mu_0, \mu).$

• The Dirichlet form is $\mathbb{E}_{\mu}[fLf] = \mathbb{E}_{\mu}[\nabla f^{T}\tau_{\mu}\nabla f]$. Moreover

$$\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right].$$

• It has an exponential convergence to equilibrium. If $X_t \sim \mu_t$,

 $W_{\cdot}(\mu_t,\mu) \leq e^{-\frac{t}{2}}W_{\cdot}(\mu_0,\mu).$

• The Dirichlet form is $\mathbb{E}_{\mu}[fLf] = \mathbb{E}_{\mu}[\nabla f^{T}\tau_{\mu}\nabla f]$. Moreover

$$\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right].$$

• It has an exponential convergence to equilibrium. If $X_t \sim \mu_t$,

$$W_{\cdot}(\mu_t,\mu) \leq e^{-\frac{t}{2}}W_{\cdot}(\mu_0,\mu).$$

• The Dirichlet form is $\mathbb{E}_{\mu}[fLf] = \mathbb{E}_{\mu}[\nabla f^{T}\tau_{\mu}\nabla f]$. Moreover

$$\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right].$$

• It has an exponential convergence to equilibrium. If $X_t \sim \mu_t$,

$$W_{\cdot}(\mu_t,\mu) \leq e^{-\frac{t}{2}}W_{\cdot}(\mu_0,\mu).$$

Summary Up to Now

We have a nice measure $\mu = e^{-\psi(x)} dx$ on \mathbb{R}^d . To this measure we associate the moment map φ_{μ} ,

$$e^{-\varphi_{\mu}(x)} = e^{-\psi(\nabla \varphi_{\mu}(x))} \det(\nabla^2 \varphi_{\mu}(x)).$$

We use the moment map to construct a positive-definite Stein kernel τ_{μ} :

$$\tau_{\mu}(x) := \nabla^2 \varphi(\nabla \varphi^{-1}(x)).$$

From the kernel we build a stochastic process which has μ as an invariant measure.

$$dX_t = -X_t dt + \sqrt{2\tau_\mu(X_t)} dB_t$$

Summary Up to Now

We have a nice measure $\mu = e^{-\psi(x)} dx$ on \mathbb{R}^d . To this measure we associate the moment map φ_{μ} ,

$$e^{-\varphi_{\mu}(x)} = e^{-\psi(\nabla \varphi_{\mu}(x))} \det(\nabla^2 \varphi_{\mu}(x)).$$

We use the moment map to construct a positive-definite Stein kernel $\tau_{\mu}:$

$$\tau_{\mu}(x) := \nabla^2 \varphi(\nabla \varphi^{-1}(x)).$$

From the kernel we build a stochastic process which has μ as an invariant measure.

$$dX_t = -X_t dt + \sqrt{2\tau_\mu(X_t)} dB_t$$

We have a nice measure $\mu = e^{-\psi(x)} dx$ on \mathbb{R}^d . To this measure we associate the moment map φ_{μ} ,

$$e^{-\varphi_{\mu}(x)} = e^{-\psi(\nabla \varphi_{\mu}(x))} \det(\nabla^2 \varphi_{\mu}(x)).$$

We use the moment map to construct a positive-definite Stein kernel $\tau_{\mu}:$

$$au_{\mu}(x) :=
abla^2 \varphi(
abla \varphi^{-1}(x)).$$

From the kernel we build a stochastic process which has μ as an invariant measure.

$$dX_t = -X_t dt + \sqrt{2 au_\mu(X_t)} dB_t.$$

Let X_t, Y_t be two diffusions in \mathbb{R}^d which satisfy

 $dX_t = a(X_t)dt + \tau(X_t)dB_t,$ $dY_t = b(Y_t)dt + \sigma(Y_t)dB_t.$

Assume ν, μ to be their respective (unique) invariant measures.

Question (Stability of invariant measures)

Suppose that $||a - b||_{\cdot} + ||\tau - \sigma||_{\cdot}$ is small, is μ close to ν ?

Suppose that,

 $dX_t = a(X_t)dt + dB_t,$ $dY_t = b(Y_t)dt + dB_t.$

Then, the processes are equivalent in the Wiener space, and one can use Girsanov's theorem to write their relative densities.

This allows a bound of the form

$$\operatorname{Ent}\left(X_t||Y_t\right) \leq \int_0^t \mathbb{E}\left[\|m{a}(X_t) - m{b}(X_t)\|^2
ight] dt.$$

Suppose that $||a(x) - a(y)||, ||\tau(x) - \tau(y)||_{HS} \le ||x - y||.$ Fix $X_0 = Y_0 \sim \mu$ and apply Itô's formula to $||X_t - Y_t||^2$ and obtain

 $\frac{d}{dt}\mathbb{E}\left[\|X_t - Y_t\|^2\right] = 2\mathbb{E}\left[\langle X_t - Y_t, a(X_t) - b(Y_t)\rangle\right] + \mathbb{E}\left[\|\sigma(X_t) - \tau(Y_t)\|_{HS}^2\right]$ $\leq 2\mathbb{E}\left[\|X_t - Y_t\|^2\right] + 2\left[\|a(X_t) - b(Y_t)\|^2\right] + \mathbb{E}\left[\|\sigma(X_t) - \tau(Y_t)\|_{HS}^2\right].$

Then,

 $[\|a(X_t) - b(Y_t)\|^2] \le 2\mathbb{E} [\|a(X_t) - a(Y_t)\|^2] + 2[\|a(Y_t) - b(Y_t)\|^2]$ $\le 2\mathbb{E} [\|X_t - Y_t\|^2] + 2\mathbb{E}_{\mu} [\|a - b\|^2].$ Suppose that $||a(x) - a(y)||, ||\tau(x) - \tau(y)||_{HS} \le ||x - y||.$ Fix $X_0 = Y_0 \sim \mu$ and apply Itô's formula to $||X_t - Y_t||^2$ and obtain

$$\begin{aligned} \frac{d}{dt} \mathbb{E}\left[\|X_t - Y_t\|^2\right] &= 2\mathbb{E}\left[\langle X_t - Y_t, a(X_t) - b(Y_t)\rangle\right] + \mathbb{E}\left[\|\sigma(X_t) - \tau(Y_t)\|_{HS}^2\right] \\ &\leq 2\mathbb{E}\left[\|X_t - Y_t\|^2\right] + 2\left[\|a(X_t) - b(Y_t)\|^2\right] + \mathbb{E}\left[\|\sigma(X_t) - \tau(Y_t)\|_{HS}^2\right].\end{aligned}$$

Then,

 $[\|a(X_t) - b(Y_t)\|^2] \le 2\mathbb{E} [\|a(X_t) - a(Y_t)\|^2] + 2 [\|a(Y_t) - b(Y_t)\|^2]$ $\le 2\mathbb{E} [\|X_t - Y_t\|^2] + 2\mathbb{E}_{\mu} [\|a - b\|^2].$ Suppose that $||a(x) - a(y)||, ||\tau(x) - \tau(y)||_{HS} \le ||x - y||.$ Fix $X_0 = Y_0 \sim \mu$ and apply Itô's formula to $||X_t - Y_t||^2$ and obtain

$$\begin{aligned} \frac{d}{dt} \mathbb{E}\left[\|X_t - Y_t\|^2\right] &= 2\mathbb{E}\left[\langle X_t - Y_t, a(X_t) - b(Y_t)\rangle\right] + \mathbb{E}\left[\|\sigma(X_t) - \tau(Y_t)\|_{HS}^2\right] \\ &\leq 2\mathbb{E}\left[\|X_t - Y_t\|^2\right] + 2\left[\|a(X_t) - b(Y_t)\|^2\right] + \mathbb{E}\left[\|\sigma(X_t) - \tau(Y_t)\|_{HS}^2\right].\end{aligned}$$

Then,

$$\begin{split} \left[\|a(X_t) - b(Y_t)\|^2 \right] &\leq 2\mathbb{E} \left[\|a(X_t) - a(Y_t)\|^2 \right] + 2 \left[\|a(Y_t) - b(Y_t)\|^2 \right] \\ &\leq 2\mathbb{E} \left[\|X_t - Y_t\|^2 \right] + 2\mathbb{E}_{\mu} \left[\|a - b\|^2 \right]. \end{split}$$

We conclude:

$$\begin{split} \frac{d}{dt} \mathbb{E}\left[\|X_t - Y_t\|^2 \right] &\leq 8\mathbb{E}\left[\|X_t - Y_t\|^2 \right] + 4\mathbb{E}_{\mu}\left[\|a - b\|^2 \right] + 2\mathbb{E}_{\mu}\left[\|\tau - \sigma\|^2 \right]. \\ \text{Gronwall's inequality yields} \\ W_2^2(\mu, \nu_t) &= W_2^2(Y_t, X_t) \leq \mathbb{E}\left[\|X_t - Y_t\|_2^2 \right] \\ &\leq \left(4\mathbb{E}_{\mu}\left[\|a - b\|^2 \right] + 2\mathbb{E}_{\mu}\left[\|\tau - \sigma\|^2 \right] \right) \frac{e^{8t} - 1}{8}. \end{split}$$

We conclude:

 $\frac{d}{dt}\mathbb{E}\left[\|X_t - Y_t\|^2\right] \le 8\mathbb{E}\left[\|X_t - Y_t\|^2\right] + 4\mathbb{E}_{\mu}\left[\|a - b\|^2\right] + 2\mathbb{E}_{\mu}\left[\|\tau - \sigma\|^2\right].$

Gronwall's inequality yields

$$egin{aligned} &\mathcal{W}_2^2(\mu,
u_t) = \mathcal{W}_2^2(Y_t,X_t) \leq \mathbb{E}\left[\|X_t - Y_t\|_2^2
ight] \ &\leq (4\mathbb{E}_{\mu}\left[\|a - b\|^2
ight] + 2\mathbb{E}_{\mu}\left[\| au - \sigma\|^2
ight])rac{e^{8t} - 1}{8}. \end{aligned}$$

Assume that X_t converges to equilibrium exponentially fast.

$$W_2(\nu_t, \nu) \leq e^{-t} W_2(\nu_0, \nu).$$

By optimizing over t, we have proven

Theorem

Suppose that a, τ are Lipschitz and that X_t has exponential convergence to equilibrium. Then

$$W_2^2(\mu,\nu) \le C(\mathbb{E}_{\mu}[\|a-b\|^2] + \mathbb{E}_{\mu}[\|\tau-\sigma\|^2]).$$

Assume that X_t converges to equilibrium exponentially fast.

$$W_2(\nu_t, \nu) \leq e^{-t} W_2(\nu_0, \nu).$$

By optimizing over t, we have proven

Theorem

Suppose that a, τ are Lipschitz and that X_t has exponential convergence to equilibrium. Then

$$W_2^2(\mu,
u) \leq \mathcal{C}(\mathbb{E}_{\mu}\left[\|m{a}-m{b}\|^2
ight] + \mathbb{E}_{\mu}\left[\| au-\sigma\|^2
ight]).$$

The General Case

In general, there is no reason to assume that the coefficients will be Lipschitz. In particular, the Stein kernel τ_{μ} is typically not Globally Lipschitz.

However, in many interesting cases, we can find a proxy for the Lipschitz condition.

Theorem (Ambrosio, Brué, Trevisan - 2017)

If μ is log-concave and $f \in W^{1,p}(\mu)$. Then, there exists a function g, such that

$$||f(x) - f(y)|| \le (g(x) + g(y)) ||x - y||,$$

and

$$\mathbb{E}_{\mu}\left[\|g\|^{p}\right] \leq \mathbb{E}_{\mu}\left[\|\nabla f\|^{p}\right].$$

In general, there is no reason to assume that the coefficients will be Lipschitz. In particular, the Stein kernel τ_{μ} is typically not Globally Lipschitz.

However, in many interesting cases, we can find a proxy for the Lipschitz condition.

Theorem (Ambrosio, Brué, Trevisan - 2017)

If μ is log-concave and $f \in W^{1,p}(\mu)$. Then, there exists a function g, such that

$$||f(x) - f(y)|| \le (g(x) + g(y)) ||x - y||,$$

and

$$\mathbb{E}_{\mu}\left[\|g\|^{p}\right] \leq \mathbb{E}_{\mu}\left[\|\nabla f\|^{p}\right].$$

In general, there is no reason to assume that the coefficients will be Lipschitz. In particular, the Stein kernel τ_{μ} is typically not Globally Lipschitz.

However, in many interesting cases, we can find a proxy for the Lipschitz condition.

Theorem (Ambrosio, Brué, Trevisan - 2017)

If μ is log-concave and $f \in W^{1,p}(\mu)$. Then, there exists a function g, such that

$$||f(x) - f(y)|| \le (g(x) + g(y)) ||x - y||,$$

and

$$\mathbb{E}_{\mu}\left[\|g\|^{p}\right] \leq \mathbb{E}_{\mu}\left[\|\nabla f\|^{p}\right].$$

In the Lipschitz case, we had

$$\mathbb{E}\left[\|\boldsymbol{a}(X_t) - \boldsymbol{b}(Y_t)\|^2\right] \leq \mathbb{E}\left[\|X_t - Y_t\|^2\right].$$

Now, we will get

$$\mathbb{E}\left[\|a(X_t) - b(Y_t)\|^2\right] \le \mathbb{E}\left[(g(X_t) + g(Y_t))^2 \|X_t - Y_t\|^2\right],$$

which isn't comparable to $\mathbb{E}\left[\|X_t - Y_t\|^2\right].$

Idea: use another distance which will be more tractable with Itô's formula:

$$D_{\delta}(X,Y) = \inf_{(X,Y)} \mathbb{E}\left[\ln\left(1 + \frac{\|X-Y\|^2}{\delta^2}\right)\right]$$

In the Lipschitz case, we had

$$\mathbb{E}\left[\|\boldsymbol{a}(X_t) - \boldsymbol{b}(Y_t)\|^2\right] \leq \mathbb{E}\left[\|X_t - Y_t\|^2\right].$$

Now, we will get

$$\mathbb{E}\left[\|a(X_t)-b(Y_t)\|^2\right] \leq \mathbb{E}\left[\left(g(X_t)+g(Y_t)\right)^2 \|X_t-Y_t\|^2\right],$$

which isn't comparable to $\mathbb{E}\left[\|X_t - Y_t\|^2\right]$.

Idea: use another distance which will be more tractable with Itô's formula:

$$D_{\delta}(X,Y) = \inf_{(X,Y)} \mathbb{E}\left[\ln\left(1 + \frac{\|X-Y\|^2}{\delta^2}\right)
ight].$$

We now make the following assumptions:

- $\|\tau(x) \tau(y)\|_{HS}, \|a(x) a(y)\| \le (g(x) + g(y))\|x y\|.$
- $\frac{d\mu}{d\nu}$ is in $L^p(\nu)$ for some p.
- X_t has an exponential convergence to equilibrium.

Theorem

Set
$$r := \mathbb{E}_{\mu}[\|a - b\|] + \mathbb{E}_{\mu}[\|\tau - \sigma\|^2]$$
. With the above

assumptions,

$$W^2_{\cdot}(\mu,
u) \lesssim \ln\left(1+rac{1}{r}
ight)^{-1}$$

If ν is a well-conditioned log-concave measure, and φ is its moment map, then we can show $\nabla^2 \varphi \in W^{1,2}(e^{-\varphi}dx)$. Which yields

Theorem

Suppose ν is a well-conditioned log-concave measure and let μ be a measure with $\frac{d\mu}{d\nu}$ bounded. Then, τ_{ν} , τ_{μ} are their respective (moment) Stein kernels.

$$W_2^2(\mu,
u) \lesssim \ln\left(1 + rac{1}{\mathbb{E}_{\mu}\left[\| au_{\mu} - au_{
u}\|^2
ight]}
ight)^{-1}$$

Thank you!