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What This Talk Is About

Let Xt ,Yt be two diffusions in Rd which satisfy

dXt = a(Xt)dt + τ(Xt)dBt ,

dYt = b(Yt)dt + σ(Yt)dBt .

Assume ν, µ to be their respective (unique) invariant measures.

Question (Stability of invariant measures)

Suppose that ‖a− b‖· + ‖τ − σ‖· is small, is µ close to ν?
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The Motivation (What This Talk is Really About)

If µ is a measure on Rd we will associate to it the following

objects:

� A matrix valued map τµ : Rd → Md(R), called a Stein kernel.

� A convex function ϕµ : Rd → R, called the moment map.

Question (Stability of Stein kernels)

Suppose that ‖τµ − τν‖· is small, is µ close to ν?

Question (Stability of moment maps)

Suppose that ‖ϕµ − ϕν‖· is small, is µ close to ν?
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Stein’s method

Basic observation: If G ∼ γ is the standard Gaussian on Rd . Then,

E [〈G ,∇f (G )〉] = E [∆f (G )] ,

for any test function f : Rd → R. Moreover, the Gaussian is the

only measure which satisfies this relation.

Stein’s idea: This property is stable. If X is any other random

vector in Rd .

E [〈X ,∇f (X )〉] ' E [∆f (X )] =⇒ X ' G ,
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Stein Kernels

A Stein kernel of X ∼ µ is a matrix valued map τ : Rd → Md(R),

such that

E [〈X ,∇f (X )〉] = E
[
〈τ(X ),∇2f (X )〉HS

]
.

We have that τ ≡ Id iff µ = γ. The discrepancy is then defined as

S2(µ||γ) = Eµ
[
‖τ − Id‖2HS

]
.
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Stein Kernels - Example

If X ∼ µ is a ’nice’ centered random variable on R, with density ρ

its unique Stein kernel is given by

τ(x) :=

∞∫
x
yρ(y)dy

ρ(x)
.

Indeed, we can integrate by parts,

E
[
Xf ′(X )

]
=

∞∫
−∞

f ′(x)xρ(x)dx =

∞∫
−∞

f ′′(x)

 ∞∫
x

yρ(y)dy

 dx

=

∞∫
−∞

f ′′(x)

(∞∫
x
yρ(y)dy

)
ρ(x)

ρ(x)dx = E
[
τ(X )f ′′(X )

]
.
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Stein Kernels

Suppose now that |τ(x)− 1| is small. So, ρ(x) '
∞∫
x
yρ(y)dy . In

this case, one can use Gronwall’s inequality to show ρ(x) ' e−x
2/2.

yo

yo

In higher dimension, many different constructions for Stein kernels

are known. The known constructions do not have explicit tractable

expressions in general.
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Stein Discrepancy

Recall that S2(µ||γ) = Eµ
[
‖τ − Id‖2HS

]
. It’s an exercise to show,

W1(µ, γ) ≤ S(µ||γ).

What is more impressive is that,

W2(µ, γ) ≤ S(µ||γ),

as well, as shown in (Ledoux, Nourdin, Pecatti 14’).

In fact,

Ent(µ||γ) ≤ 1

2
S2(µ||γ) ln

(
1 +

I (µ||γ)

S2(µ||γ)

)
.
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Stein Discrepancy - Rough Sketch

Consider the OU process dXt = −Xtdt +
√

2dBt , with X0 ∼ µ.

γ is the unique invariant measure of the process and we wish to

bound:

W2(X0,X∞) =

∞∫
0

d

dt
W2(X0,Xt)dt.

A result of Otto-Villani allows to bound d
dtW2(X0,Xt) by I(Xt ||γ).

yo

Integration by parts is then used to bound I(Xt ||γ) by S2(µ||γ).
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Stein Discrepancy with Respect to Other Measures

Stein kernels and discrepancy have found numerous applications

for normal approximations:

� Central limit theorems.

� Stability of functional inequalities.

� Second order Poincaré inequalities.

Can we extend the theory by bounding dist(µ, ν) with ‖τµ − τν‖?
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Moment Maps

For a measure µ = e−ψ(x)dx on Rd we define its moment map by:

Definition (Moment map)

A moment map of µ, is a convex function ϕµ : Rd → R such

that e−ϕµ is a centered probability density whose push-forward by

∇ϕµ is µ. The measure e−ϕµdx is called the moment measure.

Remark: convexity of ϕµ implies that ∇ϕµ is the optimal transport

map between e−ϕµdx and µ and in particular it satisfies the

following Monge–Ampère equation:

e−ϕµ(x) = e−ψ(∇ϕµ(x))det(∇2ϕµ(x)).
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Moment Maps - Examples

Some examples:

� If γ is the standard Gaussian, then ϕγ(x) = ‖x‖2
2 .

� For µ ∼ Uniform(Sd−1), ϕµ(x) = ‖x‖.

� For µ ∼ Uniform([−1, 1]d), ϕµ(x) =
d∑

i=1
2 log cosh

(
xi
2

)
+ C .

The last example can be seen as special case of the following

relation, which can be derived in the one-dimensional case:

(ψ−1)′

− log

∣∣∣∣∣∣
1∫

x

tdµ(t)

∣∣∣∣∣∣
 =

1

x
.
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Moment Maps - Existence

In general, it is hard to give explicit expressions for ϕµ.

Theorem (Cordero-Erausquin, Klartag ’15)

Under some regularity assumptions, if µ is a centered measure on

Rd . Then, the moment map exists and is unique.

It is somewhat suggestive that if ϕµ(x) ' x2

2 , then µ ' γ.

As before, if ν and µ are not Gaussians , what can we say when

‖ϕµ − ϕν‖ is small?

It turns out that this is very much related to the previous question

about Stein kernels.
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From Moment Maps to Stein Kernels

Theorem (Fathi 18’)

Let µ be a measure on Rd with moment map ϕ := ϕµ. Then,

the matrix valued map

τµ(x) = ∇2ϕ(∇ϕ−1(x)),

is a Stein kernel for µ.

Proof.

∫
〈∇f (x), x〉dµ(x) =

∫
〈∇f (∇ϕ(y)),∇ϕ(y)〉e−ϕ(y)dy

=

∫
〈∇2f (∇ϕ(y)),∇2ϕ(y)〉HSe−ϕ(y)dy

=

∫
〈∇2f (x),∇2ϕ(∇ϕ−1(x))〉HSdµ(x)
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Stability of Moment Maps

We can now use the Stein discrepancy to deduce some stability

bounds on the moment map.

W 2
2 (µ||γ) ≤ S2(µ||γ) =

∫
‖∇2ϕ(∇ϕ−1(x))− Id‖HSdµ(x)

=

∫
‖∇2ϕ(y)− Id‖HSe−ϕ(y)dy .
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From Stein Kernels to Stochastic Processes

Now, let µ be a measure and τµ its (moment) Stein kernel. We

define a stochastic process

dXt = −Xtdt +
√

2τµ(Xt)dBt .

Remark: compare this to the OU process:

dYt = −Ytdt +
√

2IddBt .

Lemma

µ is an invariant measure of Xt .

16



From Stein Kernels to Stochastic Processes

Now, let µ be a measure and τµ its (moment) Stein kernel. We

define a stochastic process

dXt = −Xtdt +
√

2τµ(Xt)dBt .

Remark: compare this to the OU process:

dYt = −Ytdt +
√

2IddBt .

Lemma

µ is an invariant measure of Xt .

16



From Stein Kernels to Stochastic Processes

Now, let µ be a measure and τµ its (moment) Stein kernel. We

define a stochastic process

dXt = −Xtdt +
√

2τµ(Xt)dBt .

Remark: compare this to the OU process:

dYt = −Ytdt +
√

2IddBt .

Lemma

µ is an invariant measure of Xt .

16



Invariant Measures

Proof.

The infinitesimal generator of Xt is given by:

Lf (x) = −〈x ,∇f (x)〉+ 〈τµ(x),∇2f (x)〉HS .

µ is an invariant measure of Xt , if and only if,

Eµ [Lf (x)] = 0.

Or, in other words,

Eµ [〈x ,∇f (x)〉] = Eµ
[
〈τµ(x),∇2f (x)〉HS

]
,

which is the Stein relation.
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Stochastic Process - Properties

This process was studied before, in different settings:

� The Dirichlet form is Eµ [fLf ] = Eµ
[
∇f T τµ∇f

]
. Moreover

Varµ (f ) ≤ Eµ
[
∇f T τµ∇f

]
.

� It has an exponential convergence to equilibrium. If Xt ∼ µt ,

W·(µt , µ) ≤ e−
t
2W·(µ0, µ).

Those properties make it tempting to use the processes in order to

sample from µ. The problem is that τµ is not tractable, in general.
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Summary Up to Now

We have a nice measure µ = e−ψ(x)dx on Rd . To this measure we

associate the moment map ϕµ,

e−ϕµ(x) = e−ψ(∇ϕµ(x))det(∇2ϕµ(x)).

We use the moment map to construct a positive-definite Stein

kernel τµ:

τµ(x) := ∇2ϕ(∇ϕ−1(x)).

From the kernel we build a stochastic process which has µ as an

invariant measure.

dXt = −Xtdt +
√

2τµ(Xt)dBt .
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Easy Case

Suppose that,

dXt = a(Xt)dt + dBt ,

dYt = b(Yt)dt + dBt .

Then, the processes are equivalent in the Wiener space, and one

can use Girsanov’s theorem to write their relative densities.

This allows a bound of the form

Ent (Xt ||Yt) ≤
∫ t

0
E
[
‖a(Xt)− b(Xt)‖2

]
dt.

21



Another Easy Case - Lipschitz Coefficients

Suppose that ‖a(x)− a(y)‖, ‖τ(x)− τ(y)‖HS ≤ ‖x − y‖.
Fix X0 = Y0 ∼ µ and apply Itô’s formula to ‖Xt −Yt‖2 and obtain

d

dt
E
[
‖Xt − Yt‖2

]
= 2E [〈Xt − Yt , a(Xt)− b(Yt)〉] + E

[
‖σ(Xt)− τ(Yt)‖2HS

]
≤ 2E

[
‖Xt − Yt‖2

]
+ 2

[
‖a(Xt)− b(Yt)‖2

]
+ E

[
‖σ(Xt)− τ(Yt)‖2HS

]
.

Then,[
‖a(Xt)− b(Yt)‖2

]
≤ 2E

[
‖a(Xt)− a(Yt)‖2

]
+ 2

[
‖a(Yt)− b(Yt)‖2

]
≤ 2E

[
‖Xt − Yt‖2

]
+ 2Eµ

[
‖a− b‖2

]
.
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Another Easy Case - Lipschitz Coefficients

Suppose that ‖a(x)− a(y)‖, ‖τ(x)− τ(y)‖HS ≤ ‖x − y‖.
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Another Easy Case - Lipschitz Coefficients

We conclude:

d

dt
E
[
‖Xt − Yt‖2

]
≤ 8E

[
‖Xt − Yt‖2

]
+ 4Eµ

[
‖a− b‖2

]
+ 2Eµ

[
‖τ − σ‖2

]
.

Gronwall’s inequality yields

W 2
2 (µ, νt) = W 2

2 (Yt ,Xt) ≤ E
[
‖Xt − Yt‖22

]
≤ (4Eµ

[
‖a− b‖2

]
+ 2Eµ

[
‖τ − σ‖2

]
)
e8t − 1

8
.
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Another Easy Case - Lipschitz Coefficients

Assume that Xt converges to equilibrium exponentially fast.

W2(νt , ν) ≤ e−tW2(ν0, ν).

By optimizing over t, we have proven

Theorem

Suppose that a, τ are Lipschitz and that Xt has exponential

convergence to equilibrium. Then

W 2
2 (µ, ν) ≤ C (Eµ

[
‖a− b‖2

]
+ Eµ

[
‖τ − σ‖2

]
).
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The General Case

In general, there is no reason to assume that the coefficients will

be Lipschitz. In particular, the Stein kernel τµ is typically not

Globally Lipschitz.

However, in many interesting cases, we can find a proxy for the

Lipschitz condition.

Theorem (Ambrosio, Brué, Trevisan - 2017)

If µ is log-concave and f ∈W 1,p(µ). Then, there exists a

function g , such that

‖f (x)− f (y)‖ ≤ (g(x) + g(y)) ‖x − y‖,

and

Eµ [‖g‖p] ≤ Eµ [‖∇f ‖p] .
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The General Case - Challenges

In the Lipschitz case, we had

E
[
‖a(Xt)− b(Yt)‖2

]
≤ E

[
‖Xt − Yt‖2

]
.

Now, we will get

E
[
‖a(Xt)− b(Yt)‖2

]
≤ E

[
(g(Xt) + g(Yt))2 ‖Xt − Yt‖2

]
,

which isn’t comparable to E
[
‖Xt − Yt‖2

]
.

yo

Idea: use another distance which will be more tractable with Itô’s

formula:

Dδ(X ,Y ) = inf
(X ,Y )

E
[

ln

(
1 +
‖X − Y ‖2

δ2

)]
.
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The General Case

We now make the following assumptions:

� ‖τ(x)− τ(y)‖HS , ‖a(x)− a(y)‖ ≤ (g(x) + g(y))‖x − y‖.
�

dµ
dν is in Lp(ν) for some p.

� Xt has an exponential convergence to equilibrium.

Theorem

Set r := Eµ [‖a− b‖] + Eµ
[
‖τ − σ‖2

]
. With the above

assumptions,

W 2
· (µ, ν) . ln

(
1 +

1

r

)−1
.
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The General Case - Stein Kernels

If ν is a well-conditioned log-concave measure, and ϕ is its moment

map, then we can show ∇2ϕ ∈W 1,2(e−ϕdx). Which yields

Theorem

Suppose ν is a well-conditioned log-concave measure and let µ be

a measure with dµ
dν bounded. Then, τν , τµ are their respective

(moment) Stein kernels.

W 2
2 (µ, ν) . ln

(
1 +

1

Eµ [‖τµ − τν‖2]

)−1
.
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Thank you!








