Stability of Stein kernels, moment maps and invariant measures

Dan Mikulincer

Weizmann Institute of Science
Joint work with Max Fathi

What This Talk Is About

Let X_{t}, Y_{t} be two diffusions in \mathbb{R}^{d} which satisfy

$$
\begin{aligned}
d X_{t} & =a\left(X_{t}\right) d t+\tau\left(X_{t}\right) d B_{t} \\
d Y_{t} & =b\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d B_{t}
\end{aligned}
$$

Assume ν, μ to be their respective (unique) invariant measures.
\square
Question (Stability of invariant measures)
Suppose that $\|a-b\| .+\|\tau-\sigma\|$. is small, is μ close to ν ?

What This Talk Is About

Let X_{t}, Y_{t} be two diffusions in \mathbb{R}^{d} which satisfy

$$
\begin{aligned}
& d X_{t}=a\left(X_{t}\right) d t+\tau\left(X_{t}\right) d B_{t} \\
& d Y_{t}=b\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d B_{t}
\end{aligned}
$$

Assume ν, μ to be their respective (unique) invariant measures.

Question (Stability of invariant measures)

Suppose that $\|a-b\| .+\|\tau-\sigma\|$. is small, is μ close to ν ?

The Motivation (What This Talk is Really About)

If μ is a measure on \mathbb{R}^{d} we will associate to it the following objects:

- A matrix valued map $\tau_{\mu}: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, called the moment map.
\square

The Motivation (What This Talk is Really About)

If μ is a measure on \mathbb{R}^{d} we will associate to it the following objects:

- A matrix valued map $\tau_{\mu}: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, called the moment map
\square
\square
Suppose that $\left\|\varphi_{\mu}-\varphi_{\nu}\right\|$. is small, is μ close to ν ?

The Motivation (What This Talk is Really About)

If μ is a measure on \mathbb{R}^{d} we will associate to it the following objects:

- A matrix valued map $\tau_{\mu}: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, called the moment map.
\square
\square
Suppose that $\left\|\varphi_{.,}-\varphi_{,}\right\|_{.}$is small, is μ close to ν ?

The Motivation (What This Talk is Really About)

If μ is a measure on \mathbb{R}^{d} we will associate to it the following objects:

- A matrix valued map $\tau_{\mu}: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, called the moment map.

Question (Stability of Stein kernels)

Suppose that $\left\|\tau_{\mu}-\tau_{\nu}\right\|$. is small, is μ close to ν ?
Question (Stability of moment maps)
Suppose that $\left\|\varphi_{\mu}-\varphi_{\nu}\right\|$. is small, is μ close to ν ?

The Motivation (What This Talk is Really About)

If μ is a measure on \mathbb{R}^{d} we will associate to it the following objects:

- A matrix valued map $\tau_{\mu}: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$, called a Stein kernel.
- A convex function $\varphi_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$, called the moment map.

Question (Stability of Stein kernels)

Suppose that $\left\|\tau_{\mu}-\tau_{\nu}\right\|$. is small, is μ close to ν ?

Question (Stability of moment maps)

Suppose that $\left\|\varphi_{\mu}-\varphi_{\nu}\right\|$. is small, is μ close to ν ?

Stein's method

Basic observation: If $G \sim \gamma$ is the standard Gaussian on \mathbb{R}^{d}. Then,

$$
\mathbb{E}[\langle G, \nabla f(G)\rangle]=\mathbb{E}[\Delta f(G)],
$$

for any test function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Moreover, the Gaussian is the only measure which satisfies this relation.
Stein's idea: This property is stable. If X is any other random
vector in \mathbb{R}^{d}

$$
\mathbb{E}[\langle X, \nabla f(X)\rangle] \simeq \mathbb{E}[\Delta f(X)] \Longrightarrow X \simeq G,
$$

Stein's method

Basic observation: If $G \sim \gamma$ is the standard Gaussian on \mathbb{R}^{d}. Then,

$$
\mathbb{E}[\langle G, \nabla f(G)\rangle]=\mathbb{E}[\Delta f(G)],
$$

for any test function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$. Moreover, the Gaussian is the only measure which satisfies this relation.
Stein's idea: This property is stable. If X is any other random vector in \mathbb{R}^{d}.

$$
\mathbb{E}[\langle X, \nabla f(X)\rangle] \simeq \mathbb{E}[\Delta f(X)] \Longrightarrow X \simeq G
$$

Stein Kernels

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$, such that

$$
\mathbb{E}[\langle X, \nabla f(X)\rangle]=\mathbb{E}\left[\left\langle\tau(X), \nabla^{2} f(X)\right\rangle_{H S}\right]
$$

We have that $\tau \equiv \operatorname{Id}$ iff $\mu=\gamma$. The discrepancy is then defined as

$$
S^{2}(\mu \| \gamma)=\mathbb{E}_{\mu}\left[\|\tau-\mathrm{Id}\|_{H S}^{2}\right]
$$

Stein Kernels

A Stein kernel of $X \sim \mu$ is a matrix valued map $\tau: \mathbb{R}^{d} \rightarrow M_{d}(\mathbb{R})$, such that

$$
\mathbb{E}[\langle X, \nabla f(X)\rangle]=\mathbb{E}\left[\left\langle\tau(X), \nabla^{2} f(X)\right\rangle_{H S}\right]
$$

We have that $\tau \equiv$ Id iff $\mu=\gamma$. The discrepancy is then defined as

$$
S^{2}(\mu \| \gamma)=\mathbb{E}_{\mu}\left[\|\tau-\operatorname{Id}\|_{H S}^{2}\right] .
$$

Stein Kernels - Example

If $X \sim \mu$ is a 'nice' centered random variable on \mathbb{R}, with density ρ its unique Stein kernel is given by

$$
\tau(x):=\frac{\int_{x}^{\infty} y \rho(y) d y}{\rho(x)} .
$$

Indeed, we can integrate by parts,

Stein Kernels - Example

If $X \sim \mu$ is a 'nice' centered random variable on \mathbb{R}, with density ρ its unique Stein kernel is given by

$$
\tau(x):=\frac{\int_{x}^{\infty} y \rho(y) d y}{\rho(x)}
$$

Indeed, we can integrate by parts,

$$
\begin{aligned}
\mathbb{E}\left[X f^{\prime}(X)\right] & =\int_{-\infty}^{\infty} f^{\prime}(x) x \rho(x) d x=\int_{-\infty}^{\infty} f^{\prime \prime}(x)\left(\int_{x}^{\infty} y \rho(y) d y\right) d x \\
& =\int_{-\infty}^{\infty} f^{\prime \prime}(x) \frac{\left(\int_{x}^{\infty} y \rho(y) d y\right)}{\rho(x)} \rho(x) d x=\mathbb{E}\left[\tau(X) f^{\prime \prime}(X)\right]
\end{aligned}
$$

Stein Kernels

Suppose now that $|\tau(x)-1|$ is small. So, $\rho(x) \simeq \int_{x}^{\infty} y \rho(y) d y$. In this case, one can use Gronwall's inequality to show $\rho(x) \simeq e^{-x^{2} / 2}$.

In higher dimension, many different constructions for Stein kernels are known. The known constructions do not have explicit tractable expressions in general

Stein Kernels

Suppose now that $|\tau(x)-1|$ is small. So, $\rho(x) \simeq \int_{x}^{\infty} y \rho(y) d y$. In this case, one can use Gronwall's inequality to show $\rho(x) \simeq e^{-x^{2} / 2}$.

In higher dimension, many different constructions for Stein kernels are known. The known constructions do not have explicit tractable expressions in general.

Stein Discrepancy

Recall that $S^{2}(\mu \| \gamma)=\mathbb{E}_{\mu}\left[\|\tau-\mathrm{Id}\|_{H S}^{2}\right]$. It's an exercise to show,

$$
W_{1}(\mu, \gamma) \leq S(\mu \| \gamma)
$$

What is more impressive is that,

$W_{2}(\mu, \gamma) \leq S(\mu \| \gamma)$,

as well, as shown in (Ledoux, Nourdin, Pecatti 14').

Stein Discrepancy

Recall that $S^{2}(\mu \| \gamma)=\mathbb{E}_{\mu}\left[\|\tau-\operatorname{Id}\|_{H S}^{2}\right]$. It's an exercise to show,

$$
W_{1}(\mu, \gamma) \leq S(\mu \| \gamma)
$$

What is more impressive is that,

$$
W_{2}(\mu, \gamma) \leq S(\mu \| \gamma)
$$

as well, as shown in (Ledoux, Nourdin, Pecatti 14').

Stein Discrepancy

Recall that $S^{2}(\mu \| \gamma)=\mathbb{E}_{\mu}\left[\|\tau-\mathrm{Id}\|_{H S}^{2}\right]$. It's an exercise to show,

$$
W_{1}(\mu, \gamma) \leq S(\mu \| \gamma)
$$

What is more impressive is that,

$$
W_{2}(\mu, \gamma) \leq S(\mu \| \gamma)
$$

as well, as shown in (Ledoux, Nourdin, Pecatti 14').
In fact,

$$
\operatorname{Ent}(\mu \| \gamma) \leq \frac{1}{2} S^{2}(\mu \| \gamma) \ln \left(1+\frac{\mathrm{I}(\mu \| \gamma)}{S^{2}(\mu \| \gamma)}\right)
$$

Stein Discrepancy - Rough Sketch

Consider the OU process $d X_{t}=-X_{t} d t+\sqrt{2} d B_{t}$, with $X_{0} \sim \mu$. γ is the unique invariant measure of the process and we wish to bound:

$$
W_{2}\left(X_{0}, X_{\infty}\right)=\int_{0}^{\infty} \frac{d}{d t} W_{2}\left(X_{0}, X_{t}\right) d t
$$

A result of Otto-Villani allows to bound $\frac{d}{d t} W_{2}\left(X_{0}, X_{t}\right)$ by $I\left(X_{t} \| \gamma\right)$.
Integration by parts is then used to bound $\mathrm{I}\left(X_{t} \| \gamma\right)$ by $S^{2}(\mu \| \gamma)$.

Stein Discrepancy - Rough Sketch

Consider the OU process $d X_{t}=-X_{t} d t+\sqrt{2} d B_{t}$, with $X_{0} \sim \mu$. γ is the unique invariant measure of the process and we wish to bound:

$$
W_{2}\left(X_{0}, X_{\infty}\right)=\int_{0}^{\infty} \frac{d}{d t} W_{2}\left(X_{0}, X_{t}\right) d t
$$

A result of Otto-Villani allows to bound $\frac{d}{d t} W_{2}\left(X_{0}, X_{t}\right)$ by $\mathrm{I}\left(X_{t} \| \gamma\right)$.

Integration by parts is then used to bound $\mathrm{I}\left(X_{t} \| \gamma\right)$ by $S^{2}(\mu \| \gamma)$.

Stein Discrepancy - Rough Sketch

Consider the OU process $d X_{t}=-X_{t} d t+\sqrt{2} d B_{t}$, with $X_{0} \sim \mu$. γ is the unique invariant measure of the process and we wish to bound:

$$
W_{2}\left(X_{0}, X_{\infty}\right)=\int_{0}^{\infty} \frac{d}{d t} W_{2}\left(X_{0}, X_{t}\right) d t
$$

A result of Otto-Villani allows to bound $\frac{d}{d t} W_{2}\left(X_{0}, X_{t}\right)$ by $\mathrm{I}\left(X_{t} \| \gamma\right)$.

Integration by parts is then used to bound $\mathrm{I}\left(X_{t} \| \gamma\right)$ by $S^{2}(\mu \| \gamma)$.

Stein Discrepancy with Respect to Other Measures

Stein kernels and discrepancy have found numerous applications for normal approximations:

- Central limit theorems.
- Stability of functional inequalities.
- Second order Poincaré inequalities.

Can we extend the theory by bounding $\operatorname{dist}(\mu, \nu)$ with $\left\|\tau_{\mu}-\tau_{\nu}\right\|$?

Stein Discrepancy with Respect to Other Measures

Stein kernels and discrepancy have found numerous applications for normal approximations:

- Central limit theorems.
- Stability of functional inequalities.
- Second order Poincaré inequalities.

Can we extend the theory by bounding $\operatorname{dist}(\mu, \nu)$ with $\left\|\tau_{\mu}-\tau_{\nu}\right\|$?

Moment Maps

For a measure $\mu=e^{-\psi(x)} d x$ on \mathbb{R}^{d} we define its moment map by:

Definition (Moment map)

A moment map of μ, is a convex function $\varphi_{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $e^{-\varphi_{\mu}}$ is a centered probability density whose push-forward by $\nabla \varphi_{\mu}$ is μ. The measure $e^{-\varphi_{\mu}} d x$ is called the moment measure.

Remark: convexity of φ_{μ} implies that $\nabla \varphi_{\mu}$ is the optimal transport map between $e^{-\varphi_{\mu}} d x$ and μ and in particular it satisfies the following Monge-Ampère equation:

$$
e^{-\varphi_{\mu}(x)}=e^{-\psi\left(\nabla \varphi_{\mu}(x)\right)} \operatorname{det}\left(\nabla^{2} \varphi_{\mu}(x)\right)
$$

Moment Maps - Examples

Some examples:

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x)=\frac{\|x\|^{2}}{2}$
- For $\mu \sim$ Uniform $\left(\mathbb{S}^{d-1}\right), \varphi_{\mu}(x)=\|x\|$

The last example can be seen as special case of the following relation, which can be derived in the one-dimensional case:

Moment Maps - Examples

Some examples:

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x)=\frac{\|x\|^{2}}{2}$.
- For $\mu \sim \operatorname{Uniform}\left(\mathbb{S}^{d-1}\right), \varphi_{\mu}(x)=\|x\|$.
- For $\mu \sim \operatorname{Uniform}\left([-1,1]^{d}\right), \varphi_{\mu}(x)=\sum_{i=1}^{d} 2 \log \cosh \left(\frac{x_{i}}{2}\right)+C$

The last example can be seen as special case of the following relation, which can be derived in the one-dimensional case:

Moment Maps - Examples

Some examples:

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x)=\frac{\|x\|^{2}}{2}$.
- For $\mu \sim \operatorname{Uniform}\left(\mathbb{S}^{d-1}\right), \varphi_{\mu}(x)=\|x\|$.

The last example can be seen as special case of the following relation, which can be derived in the one-dimensional case:

Moment Maps - Examples

Some examples:

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x)=\frac{\|x\|^{2}}{2}$.
- For $\mu \sim \operatorname{Uniform}\left(\mathbb{S}^{d-1}\right), \varphi_{\mu}(x)=\|x\|$.
- For $\mu \sim \operatorname{Uniform}\left([-1,1]^{d}\right), \varphi_{\mu}(x)=\sum_{i=1}^{d} 2 \log \cosh \left(\frac{x_{i}}{2}\right)+C$.

The last example can be seen as special case of the following relation, which can be derived in the one-dimensional case:

Moment Maps - Examples

Some examples:

- If γ is the standard Gaussian, then $\varphi_{\gamma}(x)=\frac{\|x\|^{2}}{2}$.
- For $\mu \sim \operatorname{Uniform}\left(\mathbb{S}^{d-1}\right), \varphi_{\mu}(x)=\|x\|$.
- For $\mu \sim \operatorname{Uniform}\left([-1,1]^{d}\right), \varphi_{\mu}(x)=\sum_{i=1}^{d} 2 \log \cosh \left(\frac{x_{i}}{2}\right)+C$.

The last example can be seen as special case of the following relation, which can be derived in the one-dimensional case:

$$
\left(\psi^{-1}\right)^{\prime}\left(-\log \left|\int_{x}^{1} t d \mu(t)\right|\right)=\frac{1}{x}
$$

Moment Maps - Existence

In general, it is hard to give explicit expressions for φ_{μ}.

Theorem (Cordero-Erausquin, Klartag '15)

Under some regularity assumptions, if μ is a centered measure on \mathbb{R}^{d}. Then, the moment map exists and is unique.

It is somewhat suggestive that if $\varphi_{\mu}(x) \simeq \frac{x^{2}}{2}$, then $\mu \simeq \gamma$
As before, if ν and μ are not Gaussians, what can we say when
$\left\|\varphi_{\mu}-\varphi_{\nu}\right\|$ is small?
It turns out that this is very much related to the previous question about Stein kernels.

Moment Maps - Existence

In general, it is hard to give explicit expressions for φ_{μ}.

Theorem (Cordero-Erausquin, Klartag '15)

Under some regularity assumptions, if μ is a centered measure on \mathbb{R}^{d}. Then, the moment map exists and is unique.

It is somewhat suggestive that if $\varphi_{\mu}(x) \simeq \frac{x^{2}}{2}$, then $\mu \simeq \gamma$.
As before, if ν and μ are not Gaussians, what can we say when $\left\|\varphi_{\mu}-\varphi_{\nu}\right\|$ is small?
It turns out that this is very much related to the previous question about Stein kernels.

Moment Maps - Existence

In general, it is hard to give explicit expressions for φ_{μ}.

Theorem (Cordero-Erausquin, Klartag '15)

Under some regularity assumptions, if μ is a centered measure on \mathbb{R}^{d}. Then, the moment map exists and is unique.

It is somewhat suggestive that if $\varphi_{\mu}(x) \simeq \frac{x^{2}}{2}$, then $\mu \simeq \gamma$.
As before, if ν and μ are not Gaussians, what can we say when $\left\|\varphi_{\mu}-\varphi_{\nu}\right\|$ is small?
It turns out that this is very much related to the previous question about Stein kernels.

From Moment Maps to Stein Kernels

Theorem (Fathi 18')

Let μ be a measure on \mathbb{R}^{d} with moment $\operatorname{map} \varphi:=\varphi_{\mu}$. Then, the matrix valued map

$$
\tau_{\mu}(x)=\nabla^{2} \varphi\left(\nabla \varphi^{-1}(x)\right)
$$

is a Stein kernel for μ.
Proof.

From Moment Maps to Stein Kernels

Theorem (Fathi 18')

Let μ be a measure on \mathbb{R}^{d} with moment $\operatorname{map} \varphi:=\varphi_{\mu}$. Then, the matrix valued map

$$
\tau_{\mu}(x)=\nabla^{2} \varphi\left(\nabla \varphi^{-1}(x)\right)
$$

is a Stein kernel for μ.

Proof.

$$
\begin{aligned}
\int\langle\nabla f(x), x\rangle d \mu(x) & =\int\langle\nabla f(\nabla \varphi(y)), \nabla \varphi(y)\rangle e^{-\varphi(y)} d y \\
& =\int\left\langle\nabla^{2} f(\nabla \varphi(y)), \nabla^{2} \varphi(y)\right\rangle_{H S} e^{-\varphi(y)} d y \\
& =\int\left\langle\nabla^{2} f(x), \nabla^{2} \varphi\left(\nabla \varphi^{-1}(x)\right)\right\rangle_{H S} d \mu(x)
\end{aligned}
$$

Stability of Moment Maps

We can now use the Stein discrepancy to deduce some stability bounds on the moment map.

$$
\begin{aligned}
W_{2}^{2}(\mu \| \gamma) \leq S^{2}(\mu \| \gamma) & =\int\left\|\nabla^{2} \varphi\left(\nabla \varphi^{-1}(x)\right)-\operatorname{Id}\right\|_{H S} d \mu(x) \\
& =\int\left\|\nabla^{2} \varphi(y)-\mathrm{Id}\right\|_{H S} e^{-\varphi(y)} d y
\end{aligned}
$$

From Stein Kernels to Stochastic Processes

Now, let μ be a measure and τ_{μ} its (moment) Stein kernel. We define a stochastic process

$$
d X_{t}=-X_{t} d t+\sqrt{2 \tau_{\mu}\left(X_{t}\right)} d B_{t}
$$

Remark: compare this to the OU process:

μ is an invariant measure of X_{t}

From Stein Kernels to Stochastic Processes

Now, let μ be a measure and τ_{μ} its (moment) Stein kernel. We define a stochastic process

$$
d X_{t}=-X_{t} d t+\sqrt{2 \tau_{\mu}\left(X_{t}\right)} d B_{t}
$$

Remark: compare this to the OU process:

$$
d Y_{t}=-Y_{t} d t+\sqrt{2} \operatorname{Id} d B_{t}
$$

μ is an invariant measure of X_{t}

From Stein Kernels to Stochastic Processes

Now, let μ be a measure and τ_{μ} its (moment) Stein kernel. We define a stochastic process

$$
d X_{t}=-X_{t} d t+\sqrt{2 \tau_{\mu}\left(X_{t}\right)} d B_{t}
$$

Remark: compare this to the OU process:

$$
d Y_{t}=-Y_{t} d t+\sqrt{2} \operatorname{Id} d B_{t}
$$

Lemma

μ is an invariant measure of X_{t}.

Invariant Measures

Proof.

The infinitesimal generator of X_{t} is given by:

$$
L f(x)=-\langle x, \nabla f(x)\rangle+\left\langle\tau_{\mu}(x), \nabla^{2} f(x)\right\rangle_{H S} .
$$

μ is an invariant measure of X_{t}, if and only if,

$$
\mathbb{E}_{\mu}[L f(x)]=0
$$

Or, in other words,

$$
\mathbb{E}_{\mu}[\langle x, \nabla f(x)\rangle]=\mathbb{E}_{\mu}\left[\left\langle\tau_{\mu}(x), \nabla^{2} f(x)\right\rangle_{H S}\right]
$$

which is the Stein relation.

Invariant Measures

Proof.

The infinitesimal generator of X_{t} is given by:

$$
L f(x)=-\langle x, \nabla f(x)\rangle+\left\langle\tau_{\mu}(x), \nabla^{2} f(x)\right\rangle_{H S} .
$$

μ is an invariant measure of X_{t}, if and only if,

$$
\mathbb{E}_{\mu}[L f(x)]=0
$$

Or, in other words,

$$
\mathbb{E}_{\mu}[\langle x, \nabla f(x)\rangle]=\mathbb{E}_{\mu}\left[\left\langle\tau_{\mu}(x), \nabla^{2} f(x)\right\rangle_{H S}\right]
$$

which is the Stein relation.

Invariant Measures

Proof.

The infinitesimal generator of X_{t} is given by:

$$
L f(x)=-\langle x, \nabla f(x)\rangle+\left\langle\tau_{\mu}(x), \nabla^{2} f(x)\right\rangle_{H S} .
$$

μ is an invariant measure of X_{t}, if and only if,

$$
\mathbb{E}_{\mu}[L f(x)]=0
$$

Or, in other words,

$$
\mathbb{E}_{\mu}[\langle x, \nabla f(x)\rangle]=\mathbb{E}_{\mu}\left[\left\langle\tau_{\mu}(x), \nabla^{2} f(x)\right\rangle_{H S}\right],
$$

which is the Stein relation.

Stochastic Process - Properties

This process was studied before, in different settings:

- The Dirichlet form is $\mathbb{E}_{\mu}[f L f]=\mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]$. Moreover

$$
\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]
$$

- It has an exponential convergence to equilibrium. If $X_{t} \sim \mu_{t}$,

$$
W \cdot\left(\mu_{t}, \mu\right) \leq e^{-\frac{t}{2}} W \cdot\left(\mu_{0}, \mu\right)
$$

Those properties make it tempting to use the processes in order to sample from u. The problem is that τ_{μ} is not tractable, in general.

Stochastic Process - Properties

This process was studied before, in different settings:

- The Dirichlet form is $\mathbb{E}_{\mu}[f L f]=\mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]$. Moreover

$$
\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]
$$

- It has an exponential convergence to equilibrium. If $X_{t} \sim \mu_{t}$,

$$
W \cdot\left(\mu_{t}, \mu\right) \leq e^{-\frac{t}{2}} W \cdot\left(\mu_{0}, \mu\right)
$$

> Those properties make it tempting to use the processes in order to sample from μ. The problem is that τ_{μ} is not tractable, in general.

Stochastic Process - Properties

This process was studied before, in different settings:

- The Dirichlet form is $\mathbb{E}_{\mu}[f L f]=\mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]$. Moreover

$$
\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]
$$

- It has an exponential convergence to equilibrium. If $X_{t} \sim \mu_{t}$,

$$
W \cdot\left(\mu_{t}, \mu\right) \leq e^{-\frac{t}{2}} W \cdot\left(\mu_{0}, \mu\right)
$$

> Those properties make it tempting to use the processes in order to sample from μ. The problem is that τ_{μ} is not tractable, in general

Stochastic Process - Properties

This process was studied before, in different settings:

- The Dirichlet form is $\mathbb{E}_{\mu}[f L f]=\mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]$. Moreover

$$
\operatorname{Var}_{\mu}(f) \leq \mathbb{E}_{\mu}\left[\nabla f^{T} \tau_{\mu} \nabla f\right]
$$

- It has an exponential convergence to equilibrium. If $X_{t} \sim \mu_{t}$,

$$
W \cdot\left(\mu_{t}, \mu\right) \leq e^{-\frac{t}{2}} W \cdot\left(\mu_{0}, \mu\right)
$$

Those properties make it tempting to use the processes in order to sample from μ. The problem is that τ_{μ} is not tractable, in general.

Summary Up to Now

We have a nice measure $\mu=e^{-\psi(x)} d x$ on \mathbb{R}^{d}. To this measure we associate the moment map φ_{μ},

$$
e^{-\varphi_{\mu}(x)}=e^{-\psi\left(\nabla \varphi_{\mu}(x)\right)} \operatorname{det}\left(\nabla^{2} \varphi_{\mu}(x)\right)
$$

We use the moment map to construct a positive-definite Stein
kernel τ_{μ}

From the kernel we build a stochastic process which has μ as an

invariant measure.

Summary Up to Now

We have a nice measure $\mu=e^{-\psi(x)} d x$ on \mathbb{R}^{d}. To this measure we associate the moment map φ_{μ},

$$
e^{-\varphi_{\mu}(x)}=e^{-\psi\left(\nabla \varphi_{\mu}(x)\right)} \operatorname{det}\left(\nabla^{2} \varphi_{\mu}(x)\right)
$$

We use the moment map to construct a positive-definite Stein kernel τ_{μ} :

$$
\tau_{\mu}(x):=\nabla^{2} \varphi\left(\nabla \varphi^{-1}(x)\right)
$$

From the kernel we build a stochastic process which has μ as an
invariant measure.

Summary Up to Now

We have a nice measure $\mu=e^{-\psi(x)} d x$ on \mathbb{R}^{d}. To this measure we associate the moment map φ_{μ},

$$
e^{-\varphi_{\mu}(x)}=e^{-\psi\left(\nabla \varphi_{\mu}(x)\right)} \operatorname{det}\left(\nabla^{2} \varphi_{\mu}(x)\right)
$$

We use the moment map to construct a positive-definite Stein kernel τ_{μ} :

$$
\tau_{\mu}(x):=\nabla^{2} \varphi\left(\nabla \varphi^{-1}(x)\right) .
$$

From the kernel we build a stochastic process which has μ as an invariant measure.

$$
d X_{t}=-X_{t} d t+\sqrt{2 \tau_{\mu}\left(X_{t}\right)} d B_{t}
$$

What This Talk Is About

Let X_{t}, Y_{t} be two diffusions in \mathbb{R}^{d} which satisfy

$$
\begin{aligned}
& d X_{t}=a\left(X_{t}\right) d t+\tau\left(X_{t}\right) d B_{t} \\
& d Y_{t}=b\left(Y_{t}\right) d t+\sigma\left(Y_{t}\right) d B_{t}
\end{aligned}
$$

Assume ν, μ to be their respective (unique) invariant measures.

Question (Stability of invariant measures)

Suppose that $\|a-b\| .+\|\tau-\sigma\|$. is small, is μ close to ν ?

Easy Case

Suppose that,

$$
\begin{aligned}
& d X_{t}=a\left(X_{t}\right) d t+d B_{t} \\
& d Y_{t}=b\left(Y_{t}\right) d t+d B_{t}
\end{aligned}
$$

Then, the processes are equivalent in the Wiener space, and one can use Girsanov's theorem to write their relative densities.

This allows a bound of the form

$$
\operatorname{Ent}\left(X_{t} \| Y_{t}\right) \leq \int_{0}^{t} \mathbb{E}\left[\left\|a\left(X_{t}\right)-b\left(X_{t}\right)\right\|^{2}\right] d t
$$

Another Easy Case - Lipschitz Coefficients

Suppose that $\|a(x)-a(y)\|,\|\tau(x)-\tau(y)\|$ HS $\leq\|x-y\|$.

Another Easy Case - Lipschitz Coefficients

Suppose that $\|a(x)-a(y)\|,\|\tau(x)-\tau(y)\|$ нS $\leq\|x-y\|$.
Fix $X_{0}=Y_{0} \sim \mu$ and apply Itô's formula to $\left\|X_{t}-Y_{t}\right\|^{2}$ and obtain

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]=2 \mathbb{E}\left[\left\langle X_{t}-Y_{t}, a\left(X_{t}\right)-b\left(Y_{t}\right)\right\rangle\right]+\mathbb{E}\left[\left\|\sigma\left(X_{t}\right)-\tau\left(Y_{t}\right)\right\|_{H S}^{2}\right] \\
& \leq 2 \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]+2\left[\left\|a\left(X_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right]+\mathbb{E}\left[\left\|\sigma\left(X_{t}\right)-\tau\left(Y_{t}\right)\right\|_{H S}^{2}\right] .
\end{aligned}
$$

Another Easy Case - Lipschitz Coefficients

Suppose that $\|a(x)-a(y)\|,\|\tau(x)-\tau(y)\|$ нS $\leq\|x-y\|$.
Fix $X_{0}=Y_{0} \sim \mu$ and apply Itô's formula to $\left\|X_{t}-Y_{t}\right\|^{2}$ and obtain

$$
\begin{aligned}
\frac{d}{d t} \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]=2 \mathbb{E}\left[\left(X_{t}-Y_{t}, a\left(X_{t}\right)-b\left(Y_{t}\right)\right\rangle\right]+\mathbb{E}\left[\left\|\sigma\left(X_{t}\right)-\tau\left(Y_{t}\right)\right\|_{H S}^{2}\right] \\
\leq 2 \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]+2\left[\left\|a\left(X_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right]+\mathbb{E}\left[\left\|\sigma\left(X_{t}\right)-\tau\left(Y_{t}\right)\right\|_{H S}^{2}\right] .
\end{aligned}
$$

Then,

$$
\begin{aligned}
{\left[\left\|a\left(X_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right] } & \leq 2 \mathbb{E}\left[\left\|a\left(X_{t}\right)-a\left(Y_{t}\right)\right\|^{2}\right]+2\left[\left\|a\left(Y_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right] \\
& \leq 2 \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]+2 \mathbb{E}_{\mu}\left[\|a-b\|^{2}\right] .
\end{aligned}
$$

Another Easy Case - Lipschitz Coefficients

We conclude:
$\frac{d}{d t} \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right] \leq 8 \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]+4 \mathbb{E}_{\mu}\left[\|a-b\|^{2}\right]+2 \mathbb{E}_{\mu}\left[\|\tau-\sigma\|^{2}\right]$.
Gronwall's inequality yields

Another Easy Case - Lipschitz Coefficients

We conclude:

$$
\frac{d}{d t} \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right] \leq 8 \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]+4 \mathbb{E}_{\mu}\left[\|a-b\|^{2}\right]+2 \mathbb{E}_{\mu}\left[\|\tau-\sigma\|^{2}\right] .
$$

Gronwall's inequality yields

$$
\begin{aligned}
W_{2}^{2}\left(\mu, \nu_{t}\right) & =W_{2}^{2}\left(Y_{t}, X_{t}\right) \leq \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|_{2}^{2}\right] \\
& \leq\left(4 \mathbb{E}_{\mu}\left[\|a-b\|^{2}\right]+2 \mathbb{E}_{\mu}\left[\|\tau-\sigma\|^{2}\right]\right) \frac{e^{8 t}-1}{8}
\end{aligned}
$$

Another Easy Case - Lipschitz Coefficients

Assume that X_{t} converges to equilibrium exponentially fast.

$$
W_{2}\left(\nu_{t}, \nu\right) \leq e^{-t} W_{2}\left(\nu_{0}, \nu\right)
$$

By optimizing over t, we have proven
Theorem
Suppose that a, τ are Lipschitz and that X_{t} has exponential
convergence to equilibrium. Then

$$
W_{2}^{2}(\mu, \nu) \leq C\left(\mathbb{E}_{\mu}\left[\|a-b\|^{2}\right]+\mathbb{E}_{\mu}\left[\|\tau-\sigma\|^{2}\right]\right) .
$$

Another Easy Case - Lipschitz Coefficients

Assume that X_{t} converges to equilibrium exponentially fast.

$$
W_{2}\left(\nu_{t}, \nu\right) \leq e^{-t} W_{2}\left(\nu_{0}, \nu\right)
$$

By optimizing over t, we have proven

Theorem

Suppose that a, τ are Lipschitz and that X_{t} has exponential convergence to equilibrium. Then

$$
W_{2}^{2}(\mu, \nu) \leq C\left(\mathbb{E}_{\mu}\left[\|a-b\|^{2}\right]+\mathbb{E}_{\mu}\left[\|\tau-\sigma\|^{2}\right]\right)
$$

The General Case

In general, there is no reason to assume that the coefficients will be Lipschitz. In particular, the Stein kernel τ_{μ} is typically not Globally Lipschitz.

However, in many interesting cases, we can find a proxy for the
Lipschitz condition
Theerem (Ambresio, Brue, Trevisan - 2017)
If μ is log-concave and $f \in W^{1, p}(\mu)$. Then, there exists a
function g, such that

$$
\|f(x)-f(y)\| \leq(g(x)+g(y))\|x-y\|,
$$

and

$$
\mathbb{E}_{\mu}\left[\|g\|^{p}\right] \leq \mathbb{E}_{\mu}\left[\|\nabla f\|^{p}\right]
$$

The General Case

In general, there is no reason to assume that the coefficients will be Lipschitz. In particular, the Stein kernel τ_{μ} is typically not Globally Lipschitz.
However, in many interesting cases, we can find a proxy for the Lipschitz condition.

and

$$
\mathbb{E}_{\mu}\left[\|g\|^{p}\right] \leq \mathbb{E}_{\mu}\left[\|\nabla f\|^{p}\right]
$$

The General Case

In general, there is no reason to assume that the coefficients will be Lipschitz. In particular, the Stein kernel τ_{μ} is typically not Globally Lipschitz.
However, in many interesting cases, we can find a proxy for the Lipschitz condition.

Theorem (Ambrosio, Brué, Trevisan - 2017)

If μ is log-concave and $f \in W^{1, p}(\mu)$. Then, there exists a function g, such that

$$
\|f(x)-f(y)\| \leq(g(x)+g(y))\|x-y\|,
$$

and

$$
\mathbb{E}_{\mu}\left[\|g\|^{p}\right] \leq \mathbb{E}_{\mu}\left[\|\nabla f\|^{p}\right]
$$

The General Case - Challenges

In the Lipschitz case, we had

$$
\mathbb{E}\left[\left\|a\left(X_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right] \leq \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]
$$

Now, we will get

$$
\mathbb{E}\left[\left\|a\left(X_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right] \leq \mathbb{E}\left[\left(g\left(X_{t}\right)+g\left(Y_{t}\right)\right)^{2}\left\|X_{t}-Y_{t}\right\|^{2}\right]
$$

which isn't comparable to $\mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]$.

Idea: use another distance which will be more tractable with Itô's formula:

The General Case - Challenges

In the Lipschitz case, we had

$$
\mathbb{E}\left[\left\|a\left(X_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right] \leq \mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]
$$

Now, we will get

$$
\mathbb{E}\left[\left\|a\left(X_{t}\right)-b\left(Y_{t}\right)\right\|^{2}\right] \leq \mathbb{E}\left[\left(g\left(X_{t}\right)+g\left(Y_{t}\right)\right)^{2}\left\|X_{t}-Y_{t}\right\|^{2}\right]
$$

which isn't comparable to $\mathbb{E}\left[\left\|X_{t}-Y_{t}\right\|^{2}\right]$.

Idea: use another distance which will be more tractable with Itô's formula:

$$
D_{\delta}(X, Y)=\inf _{(X, Y)} \mathbb{E}\left[\ln \left(1+\frac{\|X-Y\|^{2}}{\delta^{2}}\right)\right]
$$

The General Case

We now make the following assumptions:

- $\|\tau(x)-\tau(y)\|_{H S},\|a(x)-a(y)\| \leq(g(x)+g(y))\|x-y\|$.
- $\frac{d \mu}{d \nu}$ is in $L^{p}(\nu)$ for some p.
- X_{t} has an exponential convergence to equilibrium.

Theorem

Set $r:=\mathbb{E}_{\mu}[\|a-b\|]+\mathbb{E}_{\mu}\left[\|\tau-\sigma\|^{2}\right]$. With the above assumptions,

$$
W_{.}^{2}(\mu, \nu) \lesssim \ln \left(1+\frac{1}{r}\right)^{-1} .
$$

The General Case - Stein Kernels

If ν is a well-conditioned log-concave measure, and φ is its moment map, then we can show $\nabla^{2} \varphi \in W^{1,2}\left(e^{-\varphi} d x\right)$. Which yields

Theorem

Suppose ν is a well-conditioned log-concave measure and let μ be a measure with $\frac{d \mu}{d \nu}$ bounded. Then, τ_{ν}, τ_{μ} are their respective (moment) Stein kernels.

$$
W_{2}^{2}(\mu, \nu) \lesssim \ln \left(1+\frac{1}{\mathbb{E}_{\mu}\left[\left\|\tau_{\mu}-\tau_{\nu}\right\|^{2}\right]}\right)^{-1}
$$

Thank you!

