Problem 1:

1. Consider the linear operators \(L : U \to V \) and \(M : V \to W \) on the inner product spaces \(U, V \) and \(W \). Show that:

 (a) \(L = (L^*)^* \)

 (b) \((L^*)^{-1} = (L^{-1})^* \)

 (c) \((M \circ L)^* = L^* \circ M^* \)

2. Let \(c(x) \in C^0([a,b]) \) be a continuous function. Prove that the linear multiplication operator \(S[u](x) = c(x)u(x) \) is self-adjoint with respect to the real \(L^2 \) inner product. What sort of boundary conditions need to be imposed?

3. Prove that the complex differential operator \(L[u] = iu' \) is self-adjoint with respect to the complex \(L^2 \) inner product (i.e., \(\langle u, v \rangle = \int_{-\pi}^{\pi} u(x)\overline{v(x)} \, dx \)) on the space of continuously differentiable complex-valued \(2\pi \)-periodic functions: \(u(x + 2\pi) = u(x) \) for all \(x \).

Problem 2: Let \(D[u] = u' \), \(D : U \to V \), be the derivative operator acting on the vector space \(U = \{ u(x) \in C^2[0,1] \mid u(0) = 0, u(1) = 0 \} \).

1. Given the weighted inner product \(\langle u, \tilde{u} \rangle = \int_0^1 u(x)\overline{\tilde{u}(x)} e^x \, dx \) on both spaces \(U \) and \(V \), determine the corresponding adjoint operator \(D^* \).

2. Let \(S = D^* \circ D : U \to U \). Show that \(S \) is self-adjoint.

3. Write down and solve the boundary value problem \(S[u] = 2 e^x \).

Problem 3: Let \(\beta \) be a real constant. Consider the differential operator \(S : U \to U \), \(S[u] = -u'' \), where \(U = \{ u(x) \in C^2[0,1] \mid u(0) = 0, u'(1) + \beta u(1) = 0 \} \) with the \(L^2 \) inner product (i.e. \(\langle u, v \rangle = \int_0^1 u(x)\overline{v(x)} \, dx \)).

1. Prove that \(S \) is self-adjoint.

2. Find the transcendental equation for the eigenvalues of \(S \) and use it to show that \(S \) has infinitely many distinct real eigenvalues.

3. Prove that \(S \) is positive definite (i.e., \(\langle Su, u \rangle > 0 \) for all \(u \neq 0 \)) if and only if \(\beta > -1 \). (Hint: Assume that any function \(u \in U \) has a convergent expansion in terms of the eigenfunctions of \(S \)).

4. Let \(\beta = 1 \). We now attempt to numerically approximate the smallest eigenvalue of \(S \).

 (a) Use the Matlab command \texttt{fzero} (or a root finding method of your choice) to approximate the smallest eigenvalue of \(S \) with at least 10 digits of accuracy.
(b) Use finite differences, with grid points \(x_j = jh, \ h = 1/N, \ j = 1, \ldots, N, \) to discretize the eigenvalue problem \(-u'' = \lambda u, \ u \in U.\) To do so, use centered differences to approximate the second order derivative \(u'' \), and backward differences to approximate the term \(u'(1) \) in the boundary condition, to obtain the a discrete eigenvalue problem \(Au = \lambda u \) with \(A \in \mathbb{R}^{N \times N}, \) where \((u)_j \approx u(x_j). \) Denote by \(\lambda_D \) the smallest eigenvalue of \(A \) and by \(\lambda_C \) the smallest eigenvalue of \(S. \) How does the error in the approximation \(\lambda_C \approx \lambda_D \) tend to zero as \(h \to 0? \) To answer the question, assume that the error tends to zero as \(O(h^\alpha) \) and estimate \(\alpha > 0. \) To compute the error, assume that the approximate value obtained in the previous part is the exact value \(\lambda_C. \)