18.303 Problem Set 2

Due Thursday, 1 March 2018

Problem 1:

- 1. Consider the linear operators $L: U \to V$ and $M: V \to W$ on the inner product spaces U, V and W. Show that:
 - (a) $L = (L^*)^*$
 - (b) $(L^*)^{-1} = (L^{-1})^*$
 - (c) $(M \circ L)^* = L^* \circ M^*$
- 2. Let $c(x) \in C^0([a, b])$ be a continuous function. Prove that the linear multiplication operator S[u](x) = c(x)u(x) is self-adjoint with respect to the real L^2 inner product. What sort of boundary conditions need to be imposed?
- 3. Prove that the complex differential operator L[u] = iu' is self-adjoint with respect to the complex L^2 inner product (i.e., $\langle u, v \rangle = \int_{-\pi}^{\pi} u(x)\overline{v(x)} \, dx$) on the space of continuously differentiable complex-valued 2π -periodic functions: $u(x + 2\pi) = u(x)$ for all x.

Problem 2: Let $D[u] = u', D : U \to V$, be the derivative operator acting on the vector space $U = \{u(x) \in C^2[0,1] | u(0) = 0, u(1) = 0\}$.

- 1. Given the weighted inner product $\langle u, \tilde{u} \rangle = \int_0^1 u(x)\tilde{u}(x) e^x dx$ on both spaces U and V, determine the corresponding adjoint operator D^* .
- 2. Let $S = D^* \circ D : U \to U$. Show that S is self-adjoint.
- 3. Write down and solve the boundary value problem $S[u] = 2e^x$.

Problem 3: Let β be a real constant. Consider the differential operator $S: U \to U$, S[u] = -u'', where $U = \{u(x) \in C^2[0,1] | u(0) = 0, u'(1) + \beta u(1) = 0\}$ with the L^2 inner product (i.e. $\langle u, v \rangle = \int_0^1 u(x) \overline{v(x)} \, dx$).

- 1. Prove that S is self-adjoint.
- 2. Find the transcendental equation for the eigenvalues of S and use it to show that S has infinitely many distinct real eigenvalues.
- 3. Prove that S is positive definite (i.e., $\langle Su, u \rangle > 0$ for all $u \neq 0$) if and only if $\beta > -1$. (Hint: Assume that any function $u \in U$ has a convergent expansion in terms of the eigenfunctions of S).
- 4. Let $\beta = 1$. We now attempt to numerically approximate the smallest eigenvalue of S.
 - (a) Use the Matlab command fzero (or a root finding method of your choice) to approximate the smallest eigenvalue of S with at least 10 digits of accuracy.

(b) Use finite differences, with grid points $x_j = jh$, h = 1/N, j = 1, ..., N, to discretize the eigenvalue problem $-u'' = \lambda u$, $u \in U$. To do so, use centered differences to approximate the second order derivative u'', and backward differences to approximate the term u'(1) in the boundary condition, to obtain the a discrete eigenvalue problem $A\mathbf{u} = \lambda \mathbf{u}$ with $A \in \mathbb{R}^{N \times N}$, where $(\mathbf{u})_j \approx u(x_j)$. Denote by λ_D the smallest eigenvalue of A and by λ_C the smallest eigenvalue of S. How does the error in the approximation $\lambda_C \approx \lambda_D$ tend to zero as $h \to 0$? To answer the question, assume that the error tends to zero as $O(h^{\alpha})$ and estimate $\alpha > 0$. To compute the error, assume that the approximate value obtained in the previous part is the exact value λ_C .