Properties of symmetric matrices

18.303: Linear Partial Differential Equations: Analysis and Numerics
Carlos Pérez-Arancibia (cperezar@mit.edu)

Let $A \in \mathbb{R}^{N \times N}$ be a symmetric matrix, i.e., $(Ax, y) = (x, Ay)$ for all $x, y \in \mathbb{R}^N$. The following properties hold true:

- Eigenvectors of A corresponding to different eigenvalues are orthogonal.

 Let λ and μ, $\lambda \neq \mu$, be eigenvalues of A corresponding to eigenvectors x and y, respectively. Then $(Ax, y) = \lambda(x, y)$ and, on the other hand, $(Ax, y) = (x, Ay) = \mu(x, y)$. Subtracting these two identities we obtain $(\lambda - \mu)(x, y) = 0$. Since $\lambda \neq \mu$ we conclude that $(x, y) = 0$.

- If $(Ax, x) \leq 0$ (resp. $(Ax, x) \geq 0$) for all $x \neq 0$, then A has eigenvalues $\lambda \leq 0$ (resp. $\lambda \geq 0$).

 Let x be an eigenvector of A with eigenvalue λ. Then $(Ax, x) = \lambda(x, x) = \lambda\|x\|^2 \leq 0$ which in view of the fact that $\|x\| > 0$, implies that $\lambda \leq 0$.

- If $(Ax, x) < 0$ (resp. $(Ax, x) > 0$) for all $x \neq 0$, then A has eigenvalues $\lambda < 0$ (resp. $\lambda > 0$). In particular, A is invertible.

 The same argument used above shows that $\lambda < 0$ is this case. Since all the eigenvalues are strictly negative, none of them is zero. Therefore, A is invertible.

- A is diagonalizable.

 Since A is symmetric, it is possible to select an orthonormal basis $\{x_j\}_{j=1}^N$ of \mathbb{R}^N given by eigenvectors or A. Letting $V = [x_1, \ldots, x_N]$, we have from the fact that $Ax_j = \lambda_j x_j$, that $AV =VD$ where $D = \text{diag}(\lambda_1, \ldots, \lambda_N)$ and where the eigenvalues are repeated according to their multiplicities. Therefore $A = VDV^T$. Note that we have used the fact that $VV^T = V^TV = I$.

- If $(Ax, x) < 0$ (resp. $(Ax, x) > 0$) for all $x \neq 0$, then A admits a factorization of the form $A = -D^TD$ (resp. $A = D^TD$) for some full-rank matrix D.

 Since A is negative definite ($(Ax, x) < 0$), it has negative eigenvalues. The matrix of eigenvalues can thus be written as $D = -\Lambda^2$ with $\Lambda = \text{diag}(\sqrt{\lambda_1}, \cdots, \sqrt{\lambda_N})$. From the identity $A = -\Lambda^2 V^T = -(V\Lambda)(\Lambda V^T) = -D^TD$ we finally recognize the factor $D = \Lambda V^T$. The fact that D is full rank follows from both V and Λ being non-singular matrices.