Let us prove theorems in chapter 11.5. It is worth to learn the proofs of those theorems.

Theorem 1 (Theorem 11.5A). Suppose that a sequence x_n with $x_n \neq a$ has the limit a, and $\lim_{x \to a} f(x) = L$. Then, $\lim_{n \to \infty} f(x_n) = L$.

Remind that $f(x)$ is not necessarily defined at a in the theorem.

Proof. Given $\epsilon > 0$, there exists some $\delta > 0$ such that $|f(x) - L| < \epsilon$ holds for $x \in (a - \delta, a + \delta) \setminus \{a\}$. Next, there exists a natural number N such that $|x_n - a| < \delta$ for $n \geq N$. Therefore, $|f(x_n) - L| < \epsilon$ holds for $n \geq N$, namely $\lim_{n \to \infty} f(x_n) = L$. \(\square\)

Example 2. Let $\lim_{x \to a} x = a$ and $f(x)$ be continuous at a. Then, $\lim_{x \to a} f(x) = f(a)$.

Proof. Since $f(x)$ is continuous at a, we have $\lim_{x \to a} f(x) = f(a)$. So, the above theorem implies the desired result. \(\square\)

Example 3. Let $f(x)$ be a continuous function defined on \mathbb{R}, and let $f(x) \leq 0$ hold for all $x \in \mathbb{Q}$. Then, $f(x) \leq 0$ holds for all $x \in \mathbb{R}$.

Proof. Given a real number x and a natural number n, we choose a rational number $r_n \in (a - \frac{1}{n}, a + \frac{1}{n})$. Then, we have $\lim_{n \to \infty} r_n = a$. Since $f(x)$ is continuous, we have $\lim_{n \to \infty} f(r_n) = f(a)$ by the example above.

On the other hand, $f(r_n) \leq 0$ for all n, because $r_n \in \mathbb{Q}$. Thus, the limit location theorem for sequences gives $\lim_{x \to a} f(x) = \lim_{x \to a} f(r_n) \leq 0$. \(\square\)

Theorem 4 (Theorem 11.5B). Let $f(x)$ be defined for $x \in (a - \delta_0, a + \delta_0) \setminus \{a\}$. Suppose that for any sequence $\{x_n\}_{n \geq 0}$ with $x_n(a - \delta_0, a + \delta_0) \setminus \{a\}$ and $\lim_{x \to a} x_n = a$, we have $\lim_{x \to a} f(x_n) = L$. Then, $\lim_{x \to a} f(x) = L$ holds.

Proof. Assume that $f(x)$ does not converge to L as $x \to a$, namely diverges or converges to another number. Then, by definition of the limit, there exists $\epsilon > 0$ such that given any $\delta \in (0, \delta_0)$, $|f(x) - L| \geq \epsilon$ holds for some number $x \in (a - \delta, a + \delta) \setminus \{a\}$. Hence, for all natural number n with $\frac{1}{n} < \delta_0$, there exists a number $x_n \in (a - \frac{1}{n}, a + \frac{1}{n}) \setminus \{a\}$ such that $|f(x_n) - L| \geq \epsilon$. However, we have $\lim_{n \to \infty} f(x_n) = L$ because $\lim_{n \to \infty} x_n = a$. They are contradict. \(\square\)

Example 5. Let $f(x)$ be defined for $x \approx a$. Suppose that for any sequence $\{x_n\}_{n \geq 0}$ with $\lim_{x \to a} x_n = a$, we have $\lim_{x \to a} f(x_n) = f(a)$. Then, $f(x)$ is continuous at a.

Proof. The Theorem 11.5B and definition of limit yield the desired result. \(\square\)
Example 6. Let \(f(x) \) be defined for \(x \in (a, a + \delta_0) \). Suppose that for any sequence \(\{x_n\}_{n \geq 0} \) with \(x_n \in (a, a + \delta_0) \) and \(\lim x_n = a \), we have \(\lim_{x \to a^+} f(x) = L \). Then, \(\lim_{x \to a^+} f(x) = L \) holds.

Proof. Assume that \(f(x) \) does not converge to \(L \) as \(x \to a^+ \). Then, there exist some \(\varepsilon > 0 \) such that for each natural number \(n \) with \(\frac{1}{n} < \delta_0 \) we can choose a number \(x_n \in (a, a + \frac{1}{n}) \) satisfying \(|f(x_n) - L| \geq \varepsilon \). However, we have \(\lim f(x_n) = L \) because \(\lim x_n = a \). They are contradict. \(\square \)

Example 7. We define \(f(x) = \int_x^1 \frac{\sin(1/t)}{t} \, dt \) for \(x \in (0, 1) \). Then, \(f(x) \) is right-continuous at 0.

Proof. For \(0 < x \leq y < 1 \), we have

\[
(1) \quad |f(x) - f(y)| = \left| \int_x^y \frac{\sin(1/t)}{t} \, dt \right| \leq \int_x^y \left| \frac{\sin(1/t)}{t} \right| \, dt \leq \int_x^y \frac{1}{t} \, dt = |y - x|.
\]

Suppose that a sequence \(\{y_n\} \) satisfies \(y_n \in (0, 1) \) and \(\lim y_n = 0 \). Then, given \(\varepsilon > 0 \), there exists a large number \(N \) such that \(|y_n| < \varepsilon/2 \) holds for \(n \geq N \). Therefore, \(|y_n - y_m| \leq |y_n| + |y_m| < \varepsilon \) holds for all \(n, m \geq N \). Hence, combining with (1) yields

\[
|f(y_n) - f(y_m)| \leq |y_n - y_m| < \varepsilon,
\]

for \(n, m \geq N \), namely \(\{f(y_n)\} \) is a Cauchy sequence. We denote by \(L \) the limit of \(\{f(y_n)\} \).

Given \(\varepsilon \in (0, 1) \), we have \(|f(y_n) - L| < \varepsilon/2 \) for \(n \gg 1 \). Since \(|y_n| < \varepsilon/2 \) for \(n \gg 1 \), there exist some term \(y_N \) of the sequence \(\{y_n\} \) such that \(y_N \in (0, \varepsilon/2) \) and \(|f(y_N) - L| < \varepsilon/2 \). Then, for any \(x \in (0, \varepsilon/2) \) the following holds

\[
|f(x) - L| \leq |f(x) - f(y_N)| + |f(y_N) - L| < |x - y_L| + \frac{\varepsilon}{2} \leq \varepsilon.
\]

Therefore, \(\lim_{x \to 0^+} f(x) = L \). \(\square \)

Exercise 8. Prove Example 7 by using Example 6 as follows:

1. For any sequence \(\{x_n\} \) with \(\lim x_n = 0 \), \(\{f(x_n)\} \) is a Cauchy sequence and thus has the limit, as the proof above.
2. Given two sequences \(\{x_n\} \) and \(\{y_n\} \) with \(\lim x_n = \lim y_n = 0 \), the limits of \(\{f(x_n)\} \) and \(\{f(y_n)\} \) are the same.
3. Applying the result of Example 6 proves Example 7.