We defined the limit of a sequence as follows.

Definition 1. The number L is the limit of a sequence \(\{a_n\} \), if for any natural number m there exists a number N_m such that $|L - a_n| \leq \frac{1}{m}$ holds for all $n \geq N_m$.

It is equivalent to the definition following definition given in page 35 of the textbook.

Definition 2. The number L is the limit of a sequence \(\{a_n\} \), if for any positive number $\epsilon > 0$ there exists a number \bar{N}_ϵ such that $|L - a_n| \leq \epsilon$ holds for all $n \geq \bar{N}_\epsilon$.

One can observe that ϵ in definition 2 plays the role of $\frac{1}{m}$ in definition 1.

When we show a sequence is unbounded, we will frequently use the following Theorem.

Theorem 3. Given any number N, there exists a large natural number n such that $n \geq N$ holds.

Let us consider an example.

Problem 4. Show that the sequence \(\{\sqrt{n}\}_{n \geq 0} \) is not bounded above.

Proof. Assume that \(\{\sqrt{n}\}_{n \geq 0} \) is bounded above. Then, by definition of bounded sequences, there exists a number B such that $\sqrt{n} \leq B$ holds for all $n \geq 0$. Namely, $n \geq B^2$ holds for all $n \geq 0$. This contradicts the above theorem. Therefore, \(\{\sqrt{n}\}_{n \geq 0} \) is unbounded. \[\square\]