1. LAPLACE EQUATION

We call $\Delta u = 0$ the Laplace equation, and we call its solution u a harmonic function. Given a smooth function $f(x)$, we call $\Delta u = f$ the Poisson’s equation.

Let Ω denote a bounded open subset in \mathbb{R}^2 with a smooth boundary curve $\partial \Omega$.

2. HARMONIC FUNCTION

Let us investigate several properties of harmonic functions.

Theorem 1 (Uniqueness). *Given a smooth function $g : \partial \Omega \to \mathbb{R}$, there exists a unique smooth harmonic function $u : \Omega \to \mathbb{R}$ satisfying $u = g$ on $\partial \Omega$.*

Proof. Suppose that we have two solutions u, v, and define $w = u - v$. Then, we have $\Delta w = 0$ in Ω and $w = 0$ on $\partial \Omega$. Thus,

$$\int_{\Omega} |Dw|^2 \, dx = \int_{\partial \Omega} w \, \nu \, \mathbf{d}x - \int_{\Omega} w \Delta u \, dx = 0.$$

Therefore, w is a constant, and thus $w = 0$ by the boundary condition. \square

Theorem 2 (Mean value property). *A harmonic function u satisfies*

$$u(0) = \frac{1}{\pi r^2} \int_{B_r(0)} u(x) \, dx = \frac{1}{2\pi} \int_{\partial B_r(0)} u(x) \, ds.$$

Proof. We begin by defining

$$h(r) = \frac{1}{2\pi r} \int_{\partial B_r(0)} u(x) \, ds$$

for $r > 0$. Then, we have

$$h(r) = \frac{1}{2\pi r} \int_0^{2\pi} u(r \cos \theta, r \sin \theta) \, rd\theta = \frac{1}{2\pi} \int_0^{2\pi} u(r \cos \theta, r \sin \theta) \, d\theta$$

Hence,

$$h'(r) = \frac{1}{2\pi} \int_0^{2\pi} \langle \nabla u(r \cos \theta, r \sin \theta), (\cos \theta, \sin \theta) \rangle \, d\theta$$

$$= \frac{1}{2\pi} \int_{\partial B_r(0)} \left\langle \nabla u(r \cos \theta, r \sin \theta), (\cos \theta, \sin \theta) \right\rangle \frac{1}{r} \, ds$$

$$= \frac{1}{2\pi r} \int_{\partial B_r(0)} \frac{\partial u}{\partial r} \, ds = \frac{1}{2\pi r} \int_{B_r(0)} \Delta u \, dx = 0.$$
Since \(h(r) \) is a constant and \(\lim_{r \to 0} u(0) \), we have \(u(0) = h(r) \) the second formula. The first one can be obtained as follows.
\[
\frac{1}{\pi r^2} \int_{B_r(0)} u(x) \, dx = \frac{1}{\pi r^2} \int_{0}^{r} \int_{\partial B_r(0)} u(x) \, ds \, dt = \frac{1}{\pi r^2} 2\pi t u(0) \, dt = u(0).
\]
\(\square \)

We call a function \(u \) subharmonic [resp. superharmonic] if it satisfies \(\Delta u \geq 0 \) [resp. \(\Delta u \geq 0 \)].

Proposition 3. A subharmonic function satisfies
\[
u \leq \frac{1}{\pi r^2} \int_{B_r(0)} u(x) \, dx,
\]
\[
u \leq \frac{1}{2\pi r} \int_{\partial B_r(0)} u(x) \, ds.
\]

A superharmonic function satisfies
\[
u \geq \frac{1}{\pi r^2} \int_{B_r(0)} u(x) \, dx,
\]
\[
u \geq \frac{1}{2\pi r} \int_{\partial B_r(0)} u(x) \, ds.
\]

Proof. Remind that \(\Delta u \geq 0 \) implies \(h'(r) \geq 0 \) in the proof of MVP. One can easily modify the proof above. \(\square \)

3. Maximum principle

We establish the maximum principle for a general class of linear elliptic PDEs. A simple proof of the maximum principle for harmonic functions is provided in the textbook chapter 3.3.

In this subsection, we consider \(a_{ij}(x), b_i(x), c(x) \) are smooth functions defined on \(\overline{\Omega} \) satisfying
\[
a_{ij}(x)\xi_i\xi_j \geq \lambda |\xi|^2, \tag{1}
\]
for some constant \(\lambda > 0 \), where \(\xi \in \mathbb{R}^n \). In addition, \(a_{ij}(x) \) is a symmetric matrix at each \(x \), namely \(a_{ij}(x) = a_{ji}(x) \). We define a linear differential operator \(L \) by
\[
Lu = a_{ij}\partial_{ij}u + b_i\partial_iu + cu. \tag{2}
\]
We recall the eigenvalue decomposition from Linear algebra. For each \(x \) there exists real numbers \(\lambda_1(x), \ldots, \lambda_n(x) \) and unit vectors \(\vec{q}_1(x), \ldots, \vec{q}_n(x) \in \mathbb{R} \) such that \(\lambda_i \geq \lambda, \langle \vec{q}_i, \vec{q}_j \rangle = 0 \) for \(i \neq j \), and

\[
a_{ij} = \sum_{k=1}^{n} \lambda_k \vec{q}_i^k \vec{q}_j^k, \tag{3}
\]

where \(\vec{q}_k = (q_1^k, \ldots, q_n^k) \).

Lemma 4. Suppose that \(Lu > 0 \) and \(c(x) \leq 0 \) hold in \(\Omega \). Then, the smooth subsolution \(u \) satisfies

\[
\max_{\Omega} u \leq \max_{\partial \Omega} u_+,
\]

where \(u_+ = \max\{0, u\} \).

Proof. Assume that \(u \) attains its maximum at an interior point \(x_0 \in \Omega \) and \(u(x_0) > 0 \). Then, at \(x_0 \) we have

\[
0 < Lu = a_{ij} u_{ij} + b_i u_i + c u \leq a_{ij} u_{ij},
\]

by \(u_i(x_0) = 0, c \leq 0, \) and \(u(x_0) > 0 \). In addition, by (3).

\[
0 < a_{ij} u_{ij} = \sum_{i,j,k=1}^{n} \lambda_k (q_i^k q_j^k u_{ij}).
\]

However, a function \(h(t) = u(x_0 + t \vec{q}_k(x_0)) \) attains its maximum at \(t = 0 \). Hence

\[
0 \geq h''(0) = q_i^k q_j^k u_{ij}(x_0), \tag{4}
\]

namely \(0 < a_{ij} u_{ij} \leq 0 \). Contradiction. \(\square \)

Theorem 5 (Weak maximum principle). Suppose that \(Lu \geq 0 \) and \(c(x) \leq 0 \) hold in \(\Omega \). Then, the smooth subsolution \(u \) satisfies

\[
\max_{\Omega} u \leq \max_{\partial \Omega} u_+,
\]

where \(u_+ = \max\{0, u\} \).

Proof. We define \(w = u + \epsilon e^{-\alpha x_1} \) for \(\epsilon > 0 \) and \(\alpha \in \mathbb{R} \). Then,

\[
Lw = Lu + \epsilon Le^{-\alpha x_1} \geq \epsilon Le^{-\alpha x_1}.
\]
Moreover,
\[Le^{-\alpha x_1} = e^{-\alpha x_1}\left[a^2a_{11} + ab_1 + c\right] \geq e^{-\alpha x_1}\left[\lambda a^2 + ab_1 + c\right]. \]

Since \(\lambda > 0 \) and \(b, c \) are bounded, we can choose sufficiently large \(\alpha \) depending on \(\lambda, b, c \) such that \(Le^{-\alpha x_1} > 0 \). Then, we have \(Lw > 0 \). Thus, Lemma 4 yields
\[
\max_{\Omega} u \leq \max_{\Omega} w \leq \max_{\partial^+ \Omega} w_+ \leq \max_{\partial^+ \Omega} u_+ + \varepsilon \max_{\partial^+ \Omega} e^{-\alpha x_1}.
\]

Passing \(\varepsilon \to 0 \) yields the desired result. \(\square \)

Lemma 6 (Hopf). *Suppose that \(Lu \geq 0 \) and \(c(x) \leq 0 \) hold in an open ball \(B \). Moreover, there exists a boundary point \(x_0 \in \partial B \) satisfying \(u(x_0) \geq 0 \) and \(u(x_0) > u(x) \) for \(x \in B \). Then, the following holds*
\[\partial_+ u(x_0) > 0. \]

Proof. By translating the ball \(B \), we may assume \(x_0 \in \partial B_r(0) \) and \(B_r(0) \subset B \). Next, we define
\[\Omega = B_r(0) \cap B_{r/2}(x_0). \]

We consider a function \(v = u + eh \), where \(h(x) = e^{-\alpha |x|^2} - e^{-ar^2} \). Then, in \(\Omega \)
\[Lh = e^{-\alpha |x|^2}\left[4a^2a_{11}x_i x_j - 2a \sum_{i=1}^n a_{ii} + 2b_i x_i + c\right] - ce^{-ar^2} \geq e^{-\alpha |x|^2}\left[4a^2\lambda |x|^2 - 2a \sum_{i=1}^n (a_{ii} + |b_i||x|) + c\right]. \]

Since \(|x|^2 \geq \frac{\varepsilon^2}{4} \) and \(|x| \leq r \) holds in \(\Omega \), we have \(Lh > 0 \) by choosing a sufficiently large \(\alpha \). Namely, we have \(Lv = Lu + eLh > 0 \), and thus Lemma 4 yields
\[
\max_{\Omega} v \leq \max_{\partial^+ \Omega} v_+. \quad (5)
\]

Now, we claim that there exists a small enough \(\varepsilon \) such that \(v(x_0) = \max_{\partial \Omega} v_+ \). First of all, on the portion \(\partial B_r(0) \cap B_{r/2}(x_0) \subset \partial \Omega \) we have \(h = 0 \). Hence, \(v_+ = u_+ \leq u(x_0) = v(x_0) \). Next, the other portion \(B_r(0) \cap \partial B_{r/2}(x_0) \subset \partial \Omega \) is a compact subset of the open set \(B \), where \(u(x) < u(x_0) \) holds. Hence, there exists a small \(\delta > 0 \) such that \(u(x) \leq u(x_0) - \delta \) holds on \(B_r(0) \cap \partial B_{r/2}(x_0) \). Since \(h \) is bounded over \(\Omega \), we can choose small enough \(\varepsilon \) such that \(e\varepsilon \leq \delta \). Then, \(v = u + e\varepsilon \leq u + \delta \leq u(x_0) = v(x_0) \) holds on \(B_r(0) \cap \partial B_{r/2}(x_0) \).
In conclusion, we have $v(x_0) = \max_{\partial \Omega} v_+ = \max_{\overline{\Omega}} v$. Thus,

$$\partial_\nu u(x_0) = \partial_\nu v(x_0) - \epsilon \partial_\nu h(x_0) \geq -\epsilon \partial_\nu h(x_0) > 0.$$ \hspace{1cm} (6)

\[\square\]

Theorem 7 (Strong maximum principle). Suppose that $Lu \geq 0$ and $c(x) \leq 0$ hold in Ω. Then, the smooth subsolution u is a constant in $\overline{\Omega}$ or

$$u(x) < \max_{\partial \Omega} u_+,$$

holds for $x \in \Omega$.

Proof. Assume that u attains its maximum at an interior point $x_0 \in \Omega$ and $u(x_0) = M \geq 0$. We define a set $\Sigma = \{x \in \overline{\Omega} : u(x) = M\}$. Since u is a continuous function, Σ is a closed set. Towards contradiction, we assume Ω is not contained in Σ. Then, there exists a point $y_0 \in \Omega \setminus \Sigma$ such that $d(y_0, \partial \Omega) > d(y_0, \Sigma)$, where $d(y_0, A)$ denotes the distance from y_0 to the set A. There exists a small $r > 0$ such that $B_r(y_0) \subset \Omega \setminus \Sigma$, because $\Omega \setminus \Sigma$ is an open set. Next, we define R by

$$R = \sup \{r : B_r(y_0) \cap \Omega \setminus \Sigma\}.$$

Then, there exists a point $z_0 \in \Sigma \cap \partial B_R(y_0)$ and $z_0 \in \Omega$. Since $u(z_0) = \max u$ and $z_0 \in \Omega$, we have $Du(z_0) = 0$. However, by the Hopf’s Lemma, we have $\partial_\nu u(z_0) > 0$ where ν is the outward pointing direction of $\partial B_R(y_0)$. Contradiction. \[\square\]