1. 1D Heat Equation

Suppose that a smooth solution $u(x, t)$ satisfies the following differential equation

$$u_t = u_{xx} \quad \text{(Heat equation)},$$

(1)

in $\{ (x, t) : 0 \leq x \leq L, 0 \leq t \}$. Then, $u(x, t)$ can represent the temperature under the heat flow on a rod located in $\{ 0 \leq x \leq L \}$. In order to solve the equation, we need the initial data

$$u(x, 0) = g(x) \quad \text{(Cauchy condition)},$$

(2)

and one of the following boundary data

$$u(0, t) = h_1(t), \quad u(L, t) = h_2(t) \quad \text{(Dirichlet condition)},$$

(3)

$$-u_x(0, t) = h_1(t), \quad u_x(L, t) = h_2(t) \quad \text{(Neumann condition)},$$

(4)

$$-u_x(0, t) + \alpha u(0, t) = h_1(t), \quad u_x(L, t) + \alpha u(L, t) = h_2(t) \quad \text{(Robin condition)}.$$

(5)

2. Uniqueness

We establish the following uniqueness theorem.

Theorem 1 (Uniqueness). Given smooth functions $g(x), h_1(t), h_2(t)$, the heat equation (1) has at most one smooth solution $u(x, t)$ satisfying (2) on $\{ 0 \leq x \leq L \}$ and (3) on $\{ t \geq 0 \}$.

Proof. Suppose that $u(x, t)$ and $v(x, t)$ are solutions satisfying the conditions. Then, the smooth function $w(x, t) = u(x, t) - v(x, t)$ satisfies

$$w_t = u_t - v_t = u_{xx} - v_{xx} = w_{xx}.$$

(6)

Moreover, we can observe

$$w(0, t) = w(L, t) = 0.$$

(7)

Next, we define an energy

$$E(t) = \int_0^L w^2(x, t)dx.$$

Then, (6) shows

$$\frac{d}{dt}E(t) = \int_0^L 2ww_tdx = 2 \int_0^L w_{xx}dx.$$
Using the integration by part and (7),
\[
\frac{d}{dt}E(t) = 2ww_x|_{0}^{L} - 2 \int_{0}^{L} |w_x|^2 dx = -2 \int_{0}^{L} |w_x|^2 dx \leq 0.
\]
(8)
Therefore,
\[
0 \leq E(t) \leq E(0),
\]
for all \(t \geq 0 \). However, we have \(w(x,0) = 0 \) by definition, namely \(E(0) = 0 \). Thus, \(E(t) = 0 \) and \(w(x,t) = 0 \). Hence, the smooth solution is unique. \(\square \)

Remark. If \(h_1(t) = h_2(t) = 0 \), then we can modify the proof above to show
\[
\frac{d}{dt} \int_{0}^{L} u^2(x,t) dx \leq 0.
\]
(10)
Then, it would be a natural question to prove \(\lim_{t \to +\infty} \sup_{0 \leq x \leq L} |u(x,t)| = 0 \). We will prove this next week, but it’d be good to try to prove it yourself.

3. Review: Fourier series

We recall the Fourier series. In this class, we will use the following fact without proofs.

Given a smooth function \(f : [-L, L] \to \mathbb{R} \) with \(f(-L) = f(L) \), the following holds
\[
\lim_{N \to +\infty} \sup_{|x| \leq L} |f(x) - S_N(x)| = 0,
\]
for the partial sums \(S_N(x) \) of Fourier series,
\[
S_N(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos\left(m\pi x/L\right) + \sum_{m=1}^{\infty} b_m \sin\left(m\pi x/L\right),
\]
where
\[
a_0 = \frac{1}{L} \int_{-L}^{L} f(x) dx, \quad a_m = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(m\pi x/L\right) dx, \quad b_m = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(m\pi x/L\right) dx.
\]
Suppose that \(f : [0, L] \to \mathbb{R} \) is a smooth function satisfying \(f(0) = 0 \). Then,
\[
\lim_{N \to +\infty} \sup_{0 \leq x \leq L} |f(x) - S_N(x)| = 0,
\]
holds for the partial sums $S_N(x)$ of Fourier sine series,

$$S_N(x) = \sum_{m=1}^{\infty} b_m \sin(m\pi x/L),$$

where

$$b_m = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{m\pi x}{L}\right) dx.$$

Suppose that $f : [0, L] \to \mathbb{R}$ is a smooth function satisfying $f'(0) = 0$. Then,

$$\lim_{N \to \infty} \sup_{0 \leq x \leq L} |f(x) - S_N(x)| = 0,$$

holds for the partial sums $S_N(x)$ of Fourier cosine series,

$$S_N(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos(m\pi x/L),$$

where

$$a_0 = \frac{2}{L} \int_0^L f(x) dx, \quad a_m = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{m\pi x}{L}\right) dx.$$

4. Review: ODE

We recall the some well-known results in ODEs. We will also use them without proofs.

Suppose that a function $u(x)$ satisfies the following differential equation

$$u''(x) + \mu^2 u(x) = 0. \quad (11)$$

Then,

$$u(x) = c_1 \sin(\mu x) + c_2 \cos(\mu x), \quad (12)$$

for some constants c_1, c_2 depending on initial (or boundary data). For example, if $u(x)$ satisfies $u(0) = 0$ and $u'(0) = 1$, then the constants must be $c_1 = \mu^{-1}$ and $c_2 = 0$.

Suppose that a function $u(x)$ satisfies the following differential equation

$$u'(x) = \lambda u(x). \quad (13)$$
Then,

\[u(x) = ce^{\lambda x}, \tag{14} \]

for some constant \(c \) depending on the initial data.

5. Separation of Variables

In this section, we will SOLVE the Cauchy-Dirichlet problem with the vanishing Dirichlet data. Namely, given smooth \(g(x) \), we will find the solutions to the heat equation (1) under the conditions (2) and (3), where \(h_1(t) = h_2(t) = 0 \).

To begin with, we remind that by the uniqueness theorem there exists at most one solution. Hence, if we find a solution, then it is the only solution.

Next, we want find a function \(u(x,t) = v(x)w(t) \) satisfying (1) and (3) with \(h_1 = h_2 = 0 \). (Notice that in this step we do not consider (2), yet.) Then, (1) implies

\[w_t v = u_{xx} = w v_{xx}. \]

Dividing by \(vw \) yields

\[\frac{w_t(t)}{w(t)} = \frac{v_{xx}(x)}{v(x)}. \]

The left hand side only depends on \(t \), while the right hand side only depends on \(x \). Therefore, there exists some constant \(\lambda \in \mathbb{R} \) such that

\[\frac{w_t}{w} = \frac{v_{xx}}{v} = \lambda. \]

We consider the three cases that \(\lambda > 0, \lambda = 0, \) and \(\lambda < 0 \).

Case 1: \(\lambda > 0 \). In this case, by using the Dirichlet condition \(v(0) = v(L) = 0 \) we can obtain

\[0 \leq \lambda \int_0^L v^2 dx = \int_0^L v(\lambda v)dx = \int_0^L vv_{xx}dx = v|v_x|_0^L - \int_0^L |v_x|^2 dx = -\int_0^L |v_x|^2 dx \leq 0, \tag{15} \]

namely \(v = 0 \). Thus, \(u = 0 \).

Case 2: \(\lambda = 0 \). In this case, \(v_{xx} = 0 \) implies \(v(x) = ax + b \). Hence, the Dirichlet condition \(v(0) = v(L) = 0 \) guarantees \(v = 0 \). Thus, \(u = 0 \).
Case 3: $\lambda = -\mu^2 < 0$. In this case, the equation $v_{xx} + \mu^2 v = 0$ has non-trivial solutions. By the results in ODE, $v(x) = A \cos(\mu x) + B \sin(\mu x)$ holds for the constants A, B satisfying the boundary conditions

$$
0 = v(0) = A \cos 0 + B \sin 0 = A,
0 = v(L) = A \cos(\mu L) + B \sin(\mu L) = B \sin(\mu L).
$$

Hence, we have $\sin(\mu L)$, and thus $\mu L = m\pi$ for a natural number m. Namely, given $m \in \mathbb{N}$ we have

$$
v_m = c \sin(m\pi x/L),
$$

for some constant c. In addition, $\lambda = -\mu^2 = (m\pi/L)^2$ gives

$$
\frac{d}{dt}w_m = -\mu^2 w_m = -(m\pi/L)^2 w_m.
$$

Hence, the ODE result says

$$
w_m = c \exp(-(m\pi/L)^2 t)
$$

for some constant c. In conclusion, for each $m \in \mathbb{N}$ and any constant $B_m \in \mathbb{R}$

$$
u_m(x, t) = B_m \exp(-(m\pi/L)^2 t) \sin(m\pi x/L)
$$

satisfies (1) and (3) with $h_1 = h_2 = 0$.

By the result in the last case, we know that

$$
u = \sum_{m=1}^{\infty} B_m \exp(-(m\pi/L)^2 t) \sin(m\pi x/L),
$$

satisfies (1) and (3) with $h_1 = h_2 = 0$.

Now, we define the coefficients B_m by

$$
B_m = \frac{2}{L} \int_0^L g(x) \sin(m\pi x/L) dx.
$$

Then, by the Fourier series theorem above, the function $u(x, t)$ in (17) satisfies (2). Namely, it is the desired solution.