5 Fourier Analysis on \mathbb{A}_K

We would like to prove the existence of isomorphisms $j_F : F \rightarrow \hat{F}$ for local fields F and $j_K : \mathbb{A}_K \rightarrow \hat{\mathbb{A}}_K$ for global fields K which restricts to $K \rightarrow \hat{\mathbb{A}}_K/K$. Before defining j_F (resp. j_K), note that $j_F(1)$ (resp. $j_K(1)$) is by definition a unitary additive character on F (resp. on \mathbb{A}_K that is trivial on K). We begin by constructing such a character ψ_F (resp. ψ_K).

Case $F = \mathbb{R}$: We put $\psi_{\mathbb{R}}(x) := e^{-2\pi ix}$.

Case $F = \mathbb{Q}_p$: Consider $\psi_{\mathbb{Q}}(x) = e^{2\pi ix}$. It is trivial on \mathbb{Z}. Now $\hat{\mathbb{Q}} := \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Z}$ satisfies $\hat{\mathbb{Q}} = \mathbb{Q} + \mathbb{Z}$ and $\mathbb{Q} \cap \hat{\mathbb{Z}} = \mathbb{Z}$. Hence we may extends $\psi_{\mathbb{Q}}$ to $\psi'_{\mathbb{Q}} : \hat{\mathbb{Q}} \rightarrow \mathbb{C}^\times$ by assigning $\psi'_{\mathbb{Q}}|_{\mathbb{Z}} \equiv 1$.

Case $F = \mathbb{F}_p((t))$: See exercise.

Case $K = \mathbb{Q}$: Let $\psi_{\mathbb{Q}} : \mathbb{A}_\mathbb{Q} \rightarrow \mathbb{C}^\times$ be defined as $\psi_{\mathbb{R}} \times \psi'_{\mathbb{Q}}$. From the definitions above we see that $\psi_{\mathbb{Q}|K} \equiv 1$.

Case K number field: We put $\psi_K(x) := \psi_{\mathbb{Q}}(\text{Tr}_{K/\mathbb{Q}}(x))$.

Case F or K of positive characteristic: See Appendix.

We now define $j_F : F \rightarrow \hat{F}$ by $(j_F(x))(y) = \psi_F(xy)$. We have

Theorem 5.1. Let F be a local field. Then $j_F : F \rightarrow \hat{F}$ is an isomorphism of topological groups.

Proof. (i) j_F is a homomorphism: $(j_F(x_1 + x_2))(y) = \psi_F((x_1 + x_2)y) = \psi_F(x_1y) \cdot \psi_F(x_2y) = (j_F(x_1))(y) + (j_F(x_2))(y)$.

(ii) j_F is injective: For every $x \neq 0$ there exists some y such that $\psi(xy) \neq 1$.

(iii) j_F is continuous: Let $\Delta \subset \mathbb{C}^\times$ be any open set and $V \subset F$ any compact subset, we have to prove that $j_F^{-1}\{\phi \in \hat{F} \mid \phi(V) \subset \Delta\} = \{x \in F \mid \psi(xy) \in \Delta, \forall y \in V\}$ is open. Fix any $x \in F$ such that $\psi(xy) \in \Delta$ for all $y \in F$. Since ψ is continuous, for any $y \in V$ there exists $U_y \times V_y$ a neighborhood of (x, y) such that $\psi(U_y \times V_y) \subset \Delta$. Since V is compact, it is covered by finitely many V_y, and thus $\bigcap U_y$ for those y is an open neighborhood of x that we seek.

(iv) j_F is surjective: We use the structure of the local fields. Let $\chi : F \rightarrow \mathbb{C}^\times$ be any additive unitary character. When $F = \mathbb{R}$, let $\Delta = \{z \in \mathbb{C} \mid |z - 1| < 1\}$, and $U := \chi^{-1}(\Delta)$ is open; suppose $(-a, a) \subset U$. For any $|x| < a$, we have $\chi(x) = e^{2\pi is(x)}$ for some $\phi(x) \in (-1/2, 1/2)$, and $\phi(x/2) = \phi(x)/2$. Also $\phi(x + y) = \phi(x) + \phi(y)$ whenever $x, y, x + y \in (-a, a)$. By continuity this shows $\phi(x) = sx$ is linear, and $\chi(x) = \psi(-sx)$. The $F = \mathbb{C}$ case follows as $\mathbb{C} = \mathbb{R} \times \mathbb{R}$. Lastly, when F is non-archimedean, as O_F is profinite we know that $\ker(\chi) \supset \varpi_F^m O_F$ for some m. Suppose this is the case, then one checks that it’s possible to find $s_m \in F$ such that $\chi \cdot j_F(s_m)$ is trivial on $\varpi_F^{m-1} O_F$. Likewise, one may
find s_{m-1} such that $\chi \cdot j_F(s_m + s_{m-1})$ is trivial on $\varpi_F^{m-2}O_F$. One verifies that $s_m + s_{m-1} + ...$ converges in F, and $\chi = j_F(-s_m - s_{m-1} - ...)$.

(v) $j_F^{-1} : j_F(F) \to F$ is continuous: It suffices to prove the continuity at the identity. Recall that we have a norm $|·|$ on F such that $|xy| = |x||y|$, and the topology on F is defined by $|·|$. As a homomorphism of topological groups it suffices to prove that j_F^{-1} is continuous at the identity. That F is locally compact implies $V = \{y \in F \mid |y| \leq 1\}$ is compact. If $|x| \to 0$, then $|xy| \to 0$ for any $y \in V$ and thus $\psi_F(xy) \to 1$. This proves the asserted continuity.

For the global case, we likewise define $j_K : \mathbb{A}_K \to \hat{\mathbb{A}}_K$ by $(j_K(x))(y) = \psi_K(xy)$. Likewise we have

Theorem 5.2. Let K be a local field. Then $j_K : \mathbb{A}_K \to \hat{\mathbb{A}}_K$ is an isomorphism of topological groups.

Proof. The same proof in (i),(ii),(iii) and (iv) above shows that j_K is a continuous injective homomorphism with dense image. To prove the rest we need a lemma

Lemma 5.3. For almost all places v, $\psi_K|_{\mathcal{O}_K}$ is trivial on \mathcal{O}_K but non-trivial on $\varpi_v^{-1}\mathcal{O}_K$.

Proof of Lemma 5.3. That ψ_K is trivial on almost all \mathcal{O}_K comes from the continuity of K. When K is a number field, we have $\psi_K|_{\mathcal{O}_K}$ is non-trivial on $\varpi_v^{-1}\mathcal{O}_K$ for those finite places v for which K/Q is unramified. (This is because if E/F is a finite unramified extension, then $\text{Tr}_{E/F}(\mathcal{O}_E) = \mathcal{O}_F$.) When K is a global function field, this is because any non-trivial 1-form $\omega \in \Omega_1^{1, K/k}$ has finitely zeros and poles; see Appendix.

Now we prove that j_K is surjective: any additive unitary character $\phi : \mathbb{A}_K \to \mathbb{C}^\times$ restricts to $\phi_v : K_v \to \mathbb{C}^\times$. By construction $\phi_v \neq 0$. Thus by our results for local fields there exists $x_v \in K_v$ such that $\phi_v = j_K(x_v)|_{K_v}$. Now by continuity, $\phi_v|_{\mathcal{O}_K}$ is trivial for almost all v. This implies, thanks to Lemma 5.3, that $x_v \in \mathcal{O}_K$ for almost all v. We then have $x = (x_v) \in \mathbb{A}_K$ and $\phi = j_K(x)$.

Lastly, to show that j_K^{-1} is continuous, let S be the finite set of places consisting of all archimedean places as well as non-archimedean places such that $\psi_K|_{\mathcal{O}_K}$ is non-trivial on \mathcal{O}_K (thanks to Lemma 5.3 again). For any basic neighborhood $U = \prod U_v \subset A_K \neq 0$, by enlarging S we may assume $U_v = \mathcal{O}_K$ for all $v \not\in S$. By the continuity of j_K^{-1}, that we proved earlier, for every $v \in S$ there exists compact C_v and open I such that $\psi_K|x_vy_v \in I$ for every $v \in S$, $x_v \in U_v$ and $y_v \in C_v$. Let $C = \prod_{v \in S} C_v \times \prod_{v \not\in S} \mathcal{O}_K$, then $\psi_K(xy) \in I$ for any $x \in U$, $y \in C$, and thus $j_K(U) \supset \{\phi \in \hat{A}_K \mid \phi(C) \subset I\}$. This shows the required continuity.

Since ψ_K is trivial on K, we see from definition that restricting j_K to (the diagonally embedded) K gives $j_K|_K : K \to \mathbb{A}_K/K$. We have
Theorem 5.4. $j_K|_K$ is an isomorphisms from K to \hat{A}_K/K.

Proof. Note that it suffices to prove it algebraically, since \hat{A}_K/K is compact $\Rightarrow \hat{A}_K/K$ is discrete, and also K is discrete. Now $j_K^{-1}(\hat{A}_K/K)$ is a discrete subgroup of \hat{A}_K (note j_K is a homeomorphism). But K is already a cocompact discrete subgroup of \hat{A}_K. Thus $[j_K^{-1}(\hat{A}_K/K) : K] = [\hat{A}_K/K : j_K(K)]$ is finite. On the other hand, j_K induces a K-vector space structure on \hat{A}_K, and it's easy to check both \hat{A}_K/K and $j_K(K)$ are K-subspaces. Thus $[\hat{A}_K/K : j_K(K)] = 1$ and $j_K(K) = \hat{A}_K/K$.

Now we apply Poisson summation formula to the LCA groups we have worked on! Let's set up some language.

Definition 5.5. Suppose $j_B : B \sim \hat{B}$ is a topological isomorphism between an LCA group B and its dual. We say a Haar measure μ on B is self-dual (with respect to j_B) if the dual measure $\hat{\mu} = (j_B)_*(\mu)$.

Since $\widehat{c \mu}$ is $c^{-1}\hat{\mu}$, self-dual measure always exist. We have

Proposition 5.6. If we have a short exact sequence $0 \to A \to B \to C \to 0$ of LCA groups with $j_B : B \sim \hat{B}$ which restricts to $j_A : A \sim \hat{C}$, and a self-dual measure μ_B for B. Let μ_A be any Haar measure for A. Then we have for any nice function f on B

$$\int_A f(a)d\mu_A = \int_C \hat{f}(a)d(j_A)_*\mu_A.$$ \hspace{1cm} (1)

In particular, if A is discrete and μ_A is the counting measure, then $\mu_C(C) = 1$.

Proof. Equation (1) is really the Poisson summation formula, and the first assertion is that the measure $\hat{\mu}_C$ on \hat{C} is given by $(j_A)_*\mu_A$. We know that the two sides of (1) differ by a constant $c \in \mathbb{R}_+\setminus\{1\}$ for any f. By replacing f with \hat{f} (or rather $j_B^{-1}(\hat{f})$), one gets the two sides of (1) differ by c^{-1}, thus $c^2 = 1 \Rightarrow c = 1$. To show the last assertion, suppose $\hat{\mu}_C = (j_A)_*\mu_A$ is the counting measure. Let h be the function on \hat{C} that takes value 1 at the identity ϕ_0 and zero elsewhere. Fourier inversion gives $h(\phi_0) = \int_C \phi_0^{-1}(c)\hat{h}(c)d\mu_C = \int_C 1 d\mu_C = \mu_C(C)$ and thus $\mu_C(C) = 1$.

Now let K be a global field, $j_K : \mathbb{A}_K \to \hat{\mathbb{A}}_K$ as constructed above and μ a self-dual measure on \mathbb{A}_K. We equip \mathbb{A}_K/K with the quotient measure $\bar{\mu}$ given by μ and the counting measure on K. The proposition above says \mathbb{A}_K/K has measure 1. We say $\bar{\mu}$ is a Tamagawa measure. The usual norm $|\cdot|$ on \mathbb{A}_K has the property that for any $x \in \mathbb{A}_K$. If we denote by $t_x = (y \mapsto xy)$ the automorphism on \mathbb{A}_K/K, then $(t_x)_*(\bar{\mu}) = |x|\bar{\mu}$ (see exercise).

We now notationally identify $\hat{\mathbb{A}}_K$ with \mathbb{A}_K. For every archimedean place v of K, let $S(K_v)$ be the space of Schwartz functions on K_v, i.e. smooth functions with all derivatives
having exponential decay. On the other hand, for \(v \) non-archimedean, let \(S(K_v) = C^\infty_c(K_v) \) be the space of compactly supported functions on \(K_v \) that are locally constant, i.e. invariant under translation by some open subgroup. Now let \(S(\mathbb{A}_K) \) be the linear space of functions generated by those of the form \(\bigotimes_v f_v \) with \(f_v \in S(K_v) \) and \(f_v = 1_{\mathcal{O}_{K_v}} \) for almost all \(v \).

One checks that Fourier transform preserves \(S(\mathbb{A}_K) \); the main point is that for almost all \(v \), \(\hat{1}_{\mathcal{O}_{K_v}} = 1_{\mathcal{O}_{K_v}} \). This functions are nice in that they are limits of compactly supported continuous functions for our analytical need. In particular (5.6) holds for \(f \in S(\mathbb{A}_K) \) with \(A = K \) (equipped with the counting measure), \(C = \mathbb{A}_K/K \) and \(\hat{C} = \mathbb{A}_K/K = K \), giving

\[
\sum_{x \in K} f(x) = \sum_{x \in K} \hat{f}(x).
\]

For any \(a \in \mathbb{A}_K^\times \), if we put \(f_a(x) = f(ax) \), then one easily checks \(\hat{f_a}(x) = |a|^{-1} \hat{f}(a^{-1}x) \). Plugging \(f_a \) into the above equation gives

\[
\sum_{x \in K} f(ax) = \frac{1}{|a|} \sum_{x \in K} \hat{f}(a^{-1}x). \tag{2}
\]

5.1 Appendix

Here we develop the theory differential 1-forms and their residues on \(\text{Spec}(F) \) or \(\text{Spec}(K) \), the algebraic geometry objects underlying \(F \) or \(K \) when they are local and global function fields. Such 1-forms will turn out to be equivalent to additive characters.

Let \(L \supset k \) be any extension of fields. The space of relative differentials 1-forms \(\Omega^1_{L/k} \) is the \(L \)-vector space generated by \(df \) with \(f \in L \), with the relation \(df = 0 \) whenever \(f \in k \), and \(d(f_1f_2) = f_1df_2 + f_2df_1 \) for any \(f_1, f_2 \in L \).

Now suppose \(F \) and \(K \) are local and global function fields containing a finite field \(k \) as its constant field. One may check\(^{1}\) \(\dim_F \Omega^1_{F/k} = 1 \) (resp. \(\dim_K \Omega^1_{K/k} = 1 \)). In the local case, we may identify \(F \cong k((t)) \). For any 1-form \(\omega \in \Omega^1_{F/k} \) we may write \(\omega = \sum_i a_i t^i dt \) with \(a_i \in k, a_i = 0 \) for \(i \ll 0 \). We then define the residue of \(\omega \) as \(\text{res} \omega := a_{-1} \in k \). This is a similar to the theory of residue for Riemann surfaces, where residues should be defined (coordinate-freely) for 1-forms instead of functions.

It is then necessarily to check that residue does not depends on the choice of the identifcation \(F \cong k((t)) \) (which is made by the single choice of uniformizer \(t \in F \)). I however cannot find any smart non-cohomological proof; for example, in Serre’s *Algebraic groups and class fields* (see pp. 19-21; the book can be downloaded with MIT IP) he proves it with two

\(^{1}\)I made the remark in class that \(\dim_{L/k} \Omega^1_{L/k} \) has dimension equal to the transcendental degree. This is only true when \(L/k \) is finitely generated and separable, and thus applies only to \(K \) but not \(F \).
pages of elementary calculation, using the property that \(\text{res}(df/f) = \text{val}(f)\) is independent of the choice. We assume such calculation has been done.

We now fix a non-trivial additive character \(\psi : k \to \mathbb{C}^\times\). For any \(\omega \in \Omega^1_{F/k}\), we define \(\psi_F\) on \(F\) by \(\psi_F,\omega(f) = \text{res}(f\omega)\). When \(\omega\) is non-zero, \(\psi_F,\omega\) is non-trivial. It’s obvious that \(\psi_F,\omega\) is an additive unitary (continuous) character. We would like to explain why this point of view is natural. Let \(E/F\) be a finite separable\(^2\) extension, and write \(k_E/k_F\) their respective constant field. Denote by \(\iota_{E/F} : \Omega^1_{F/k} \to \Omega^1_{E/k}\) the natural map. Then we have the following equation

\[
\text{Tr}_{k_E/k_F}(\text{res}(f \cdot \iota_{E/F}(\omega))) = \text{res}(\text{Tr}_{E/F}(f) \cdot \omega), \forall f \in E, \omega \in \Omega^1_{F/k}.
\]

It’s easy to verify (3) when \(E/F\) is unramified, so that one may identify \(E = k_E((t)) \supset F = k_F((t))\), and \(\text{Tr}_{E/F}\) pretty much just comes from \(\text{Tr}_{k_E/k_F}\). It’s also easy to verify (3) when \(E/F\) is totally ramified of the form \(k_F((t^{1/m}))/k_F((t))\). In general, when \(E/F\) is separable but tamely ramified, things can get pretty tricky; see Serre pp. 23-25.

Now the point is that (3) is equivalent to saying \(\psi_F,\omega \circ \text{Tr}_{E/F} = \psi_{E, \iota_{E/F}}(\omega)\). Thus it seems appropriate to identify \(\Omega^1_{F/k}\) as \(\hat{F}\) by sending \(\omega\) to \(\psi_F,\omega\) (that this is an algebraic isomorphism is proved in Theorem 5.1).

Next, we look at the global case. For any place \(v\) of \(K\), we denote by \(k_v\) the constant field of \(\mathbb{F}_q\) in \(K_v\) (i.e. the algebraic closure of \(\mathbb{F}_q\) in \(K_v\)). There is a natural map \(\iota_v : \Omega^1_{K_0/k_v} \to \Omega^1_{K/k_v}\). For any \(\omega \in \Omega^1_{K/\mathbb{F}_q}\), we define \(\text{res}_v(\omega) = \text{Tr}_{k_v/\mathbb{F}_q}(\text{res}(\iota_v(\omega)))\). Now \(K\) should be thought of as the field of meromorphic functions on a projective smooth curve over \(\mathbb{F}_q\) - an \(\mathbb{F}_q\)-analogue of a compact Riemann surface, and our experiences about the latter will suggest

\[
\sum_v \text{res}_v(\omega) = 0. \tag{4}
\]

Proof of equation (4). First we reduce to the case of \(K = k(t)\). We know that \(K\) is always a finite separable extension of some \(K_0 \cong k(t)\). We wish to reduce (4) from \(K\) to \(K_0\). Denote by \(\iota : \Omega^1_{K_0/k} \to \Omega^1_{K/k}\) the natural map. For any \(f \in K, \omega \in \Omega^1_{K_0/k}\), and a place \(w\) of \(K_0\) we have

\[
\sum_v \text{res}_v(f \cdot \iota(\omega)) = \text{res}_w(\text{Tr}_{K_0/K}(f) \cdot \omega) \tag{5}
\]

where \(v\) runs over places of \(K\) above \(w\). This is essentially (3). Summing up (5) for all \(w\) gives

\[
\sum_v \text{res}_v(f \cdot \iota(\omega)) = \sum_w \text{res}_w(\text{Tr}_{K_0/K}(f) \cdot \omega) \tag{6}
\]

\(^2\)Equation (3) is also true when \(E/F\) is not separable, in which case both sides are identically zero.
where \(v \) runs over places of \(K \) and \(w \) runs over places of \(K_0 \). Observe that (5) implies \(\iota : \Omega_{K_0/k}^1 \to \Omega_{K/k}^1 \) is non-trivial, as one may choose \(\omega \in \Omega_{K_0/k}^1 \) so that \(\text{res}_w(\omega) \neq 0 \) and \(f \in K \) such that \(\text{Tr}_{K/K_0}(f) \neq 0 \). Equation (5) then implies \(\text{res}_v(f \cdot \iota(\omega)) \neq 0 \). As \(\Omega_{K/k}^1 \) is 1-dimensional, every 1-form in \(\Omega_{K/k}^1 \) can be written as \(f \cdot \iota(\omega) \), and thus (6) reduces the proof of (4) to \(K_0 \).

Now \(K = K_0 = k(t) \). The set of places are indexed by monic irreducible polynomials in \(p(t) \in k[t] \) together with \(\infty \). Any 1-form \(\omega \in \Omega_{K/k}^1 \) may be written as

\[
\omega = f(t)dt + \sum_i \frac{c_i}{p_i(t)^{k_i}}dt
\]

for some \(c_i \in \mathbb{F}_q, k_i \in \mathbb{Z}_{>0}, p(t) \in \mathbb{F}_q[t] \) monic irreducible, and \(f(t) \in \mathbb{F}_q[t] \) arbitrary. It suffices to check the identity (4) for each term. Firstly, \(f(t)dt \) has no pole and thus no residue at all finite places, and if we write \(f(t) = \sum_{i \geq 0} a_i t^i \), then \(f(t)dt = \sum_{i \leq -2} -a_{-i-2}s^i ds \) where \(s = 1/t \) has at least double poles but still no residue.

For the terms \(\frac{1}{p(t)^k} \), write \(v_p \) the place of \(K \) associated to the prime ideal \((p(t)) \). We may, by using (3) with the case \(E/F \) is unramified, assume \(k \) is replaced by a finite extension so that \(p(t) \) is linear. Then \(\text{res}_{v_p} \frac{dt}{p(t)^k} = 1 \) if \(k = 1 \) and 0 if \(k > 1 \). Also \(\text{res}_v \frac{dt}{p(t)^k} = 0 \) for all other finite \(v \neq v_p \) as the 1-form has no pole there. Lastly

\[
\text{res}_\infty \frac{dt}{p(t)^k} = \text{res}_\infty \frac{(p(t)^{-1})^{k-2}}{d(p(t)^{-1})}
\]

has a simple pole of residue \(-1\) when \(k = 1 \) and higher order pole of zero residue when \(k > 1 \), thus the sum of residue is zero and this completes the proof.

Recall that we fixed an additive character \(\psi : k \to \mathbb{C}^\times \). For any \(\omega \in \Omega_{K/k}^1 \), we define \(\psi_{K,\omega} \) on \(\mathbb{A}_K \) by putting \(\psi_{K,\omega}(x) = \sum_v \text{res}_v(x_v \omega) \) for any \(x = (x_v) \in K_v \subset \mathbb{A}_K \). When \(x \in K \), \(x \omega \in \Omega_{K/k}^1 \) and it follows from equation (4) that \(\psi_{K,\omega} \) is trivial on \(K \). Moreover, suppose \(L/K \) is a finite separable extension, and we write \(\iota_{L/K} : \Omega_{K/k}^1 \to \Omega_{L/k}^1 \) the natural map, then by the same reason as in (3) and (6) we have \(\psi_{L,\iota_{L/K}(\omega)} = \psi_{K,\omega} \circ \text{Tr}_{L/K} \). This explains that the map \(\omega \mapsto \psi_{K,\omega} \) is a natural map from \(\Omega_{K/k}^1 \) to \(\mathbb{A}_K/K \).

6