1 Topological groups

Recall that a topological group G is a group G endowed with a topology so that the group operations $m : G \times G \to G$ and (inverse) $i : G \times G$ are continuous. Suppose one has an inverse system of topological groups $\{G_i\}_{i \in I}$ indexed by poset I, i.e. with continuous homomorphisms $\phi_{ji} : G_j \to G_i$ for $i < j$ such that $\phi_{ki} = \phi_{ji} \circ \phi_{kj}$ whenever $i < j < k$. One may form the inverse limit

$$\lim_{i \in I} G_i = \{ (a_i) \in \prod_{i \in I} G_i | \phi_{ji}(a_j) = a_i \text{ for } i < j \}$$

and equip it with the topology given by the subspace topology of the product topology. In other words, a basis of open sets is given by $\{(a_i)_{i \in I} \in \lim G_i | a_j \in U_j \}$ for any $j \in I$, U_j open in G_j. One checks that $\lim G_i$ is closed in $\prod_{i \in I} G_i$. Hence if all A_i are compact (resp. totally disconnected), then $\lim G_i$ is compact (resp. totally disconnected) as well. This is particularly the case if all G_i are finite and discrete.

Let G be a topological group, if $N' \subset N \subset G$ are both finite index open normal subgroups of G, then we have a natural projection of discrete quotients $G/N' \twoheadrightarrow G/N$. All such G/N form an inverse system of (discrete) topological groups, and the profinite completion of G is

$$\hat{G} = \lim_{N < G \text{ open with } [G:U] < \infty} G/N$$

and is again compact and Hausdorff. Projections $G \twoheadrightarrow G/N$ induce a natural map $\phi : G \to \hat{G}$.

Lemma 1.1. There is a natural bijection between finite index open subgroups $U \leq G$ and (finite index) open subgroups $\hat{U} \leq \hat{G}$.

Proof. The direction $U \mapsto \hat{U}$ is given by $U \mapsto \text{cl}(\phi(U))$, and $\hat{U} \mapsto U$ by $\hat{U} \mapsto \phi^{-1}(\hat{U})$. Begin with $U \subset G$ open of finite index. Let U_1, \ldots, U_n be all conjugate of U; $n < \infty$ as $[G : U] < \infty$. Then $N := \cap U_i$ is normal and open with finite index. Let $\hat{\pi}_N : \hat{G} \twoheadrightarrow G/N$ be the natural projection. We have $\phi(U) \subset \hat{\pi}_N^{-1}(U/N)$. The latter subgroup is open, thus closed, and so $\text{cl}(\phi(U)) \subset \hat{\pi}_N^{-1}(U/N)$. We have $\phi^{-1}(\hat{\pi}_N^{-1}(U/N)) = U \Rightarrow \phi^{-1}(\text{cl}(\phi(U))) \subset U$. The other inclusion is obvious.

For the other direction, begin with $\hat{U} \subset \hat{G}$ an open subgroup (necessarily finite index as \hat{G} is compact). It contains a basic open set, which is of the form $\hat{\pi}_N^{-1}\{e\}$ as above. We then have $\hat{U} = \hat{\pi}_N^{-1}(H)$ for some $H \subset G/N$. Let $\pi_N = \phi \circ \hat{\pi}_N : G \twoheadrightarrow G/N$ be the other natural projection, so that $\phi^{-1}(\hat{U}) = \phi^{-1}\hat{\pi}_N^{-1}(H) = \pi_N^{-1}(H)$. Put $U = \pi_N^{-1}(H)$. We claim that $\phi(U)$ is dense in \hat{U}. If not, we have an open subset of \hat{U} disjoint from $\phi(U)$. By replacing this open subset by a possibly smaller one, we may assume it is of the form $\hat{\pi}_N^{-1}\{\bar{g}\}$ for some $N' \subset G$ open with finite index that is also contained in N, and $\bar{g} \in G/N'$. We have
\[\hat{\pi}_{N'}^{-1}\{\bar{g}\} \subset \hat{U} \Rightarrow gN' \subset U. \] But this means we can choose a lift \(g \in G \) of \(gN' \) so that \(\phi(U) \supset \hat{\pi}_{N'}^{-1}\{\bar{g}\} \), a contradiction. \[\square \]

In particular, we see that \(\text{clos}(\phi(G)) = \hat{G} \), i.e \(\phi \) has dense image. One also note that this bijection preserves the index.

2 Review of class field theory

Let \(K \) be a field. Fix a separable closure \(K^{\text{sep}} \) of \(K \). Recall that a maximal abelian extension of \(K \) (in \(K^{\text{sep}} \)) is

\[
K^{\text{ab}} := \bigcup_{L \subset K^{\text{sep}}, L/K \text{ abelian}} L
\]

The Galois group \(G_K^{\text{ab}} := \text{Gal}(K^{\text{ab}}/K) \) is defined to the inverse limit topological group

\[
\text{Gal}(K^{\text{ab}}/K) = \lim_{\text{L/K finite abelian}} \text{Gal}(L/K)
\]

The topological group \(G_K := \text{Gal}(K^{\text{sep}}/K) \) is defined similarly, and the topology on \(G_K^{\text{ab}} \) agrees with the quotient topology it receives from \(G_K \).

Now the local reciprocity map is

Theorem 2.1. For any local field \(F \) there exists a canonical continuous injective\(^1\) homomorphism

\[\theta_F : F^{\times} \rightarrow G_F^{\text{ab}} \]

such that

(i) When \(F \) is non-archimedean, the restriction of \(\theta_F \) to \(\mathcal{O}_F^{\times} \) induces an isomorphism between \(\mathcal{O}_F^{\times} \) and \(I_F^{\text{ab}} \), the inertia in \(G_F^{\text{ab}} \). In fact, \(\theta_F \) identifies \(G_F^{\text{ab}} \) as the profinite completion of \(F^{\times} \) (as a topological group!) by sending a uniformizer in \(F^{\times}/\mathcal{O}_F^{\times} \) to \(\text{Frob} \in G_F^{\text{ab}}/I_F^{\text{ab}} \).

(ii) The map \(\theta_{\mathbb{R}} \) is the only possible non-trivial map with kernel \(\mathbb{R}_{>0} \). The map \(\theta_{\mathbb{C}} \) is the necessarily trivial map.

(iii) For any finite separable extension \(E/F \), we have the following commutative diagram:

\[
\begin{array}{ccc}
E^{\times} & \xrightarrow{\theta_E} & G_E^{\text{ab}} \\
\downarrow{N_{E/F}} & & \downarrow{\pi_E^{\text{ab}}} \\
F^{\times} & \xrightarrow{\theta_F} & G_F^{\text{ab}}
\end{array}
\]

\(^1\)Warning: the topology on \(F^{\times} \) will not be the subspace topology from \(G_F^{\text{ab}} \).
Corollary 2.3. The following three classes of objects are in canonical bijections:

\[\theta \text{ to that} \]

\[(\text{topological groups}) \]

The map \(\theta \) comes from the product of \(G_{\text{ab}} \). Now the global reciprocity map comes from the product of \(\theta_{K_v} \):

Theorem 2.2. The map

\[\prod_{v} \theta_{K_v} : \mathbb{A}^\times_K \to G_{\text{ab}}^\times \]

is a continuous map such that

(i) \(\prod_{v} \theta_{K_v} \) is trivial on \(K^\times \). We denote the induces map on \(\mathbb{A}^\times_K/K^\times \) by \(\theta_K \).

(ii) When \(K \) is a number field, the kernel of \(\theta_K \) is the smaller possible, namely the connected component \(U \) of the identity in \(\mathbb{A}^\times_K/K^\times \), and \(\theta_K \) induces an isomorphism of topological groups from \(U \setminus \mathbb{A}^\times_K/K^\times \cong G_{\text{ab}}^\times \).

(iii) When \(K \) is a global function field, \(\theta_K \) is injective and has dense image. Write \((\mathbb{A}^\times_K)^1 = \{(x_v) \in \mathbb{A}^\times_K \mid \prod_{v} |x_v| = 1\} \subset \mathbb{A}^\times_K \). Write \(k \) the constant field of \(K \) and \(\mathcal{T}_K^\text{ab} \) the kernel of the projection \(G_{\text{ab}}^\times \to G_k := \text{Gal}(\bar{k}/k) \). Then \(\theta_K \) induces an isomorphism of topological groups \((\mathbb{A}^\times_K)^1/K^\times \cong \mathcal{T}_K^\text{ab} \).

In fact, by investigating the structure of \(\mathbb{A}^\times_K/K^\times \), one checks (ii) and (iii) are equivalent to that \(\theta_K \) identifies \(G_{\text{ab}}^\times \) as the profinite completion of \(\mathbb{A}^\times_K/K^\times \).

Corollary 2.3. The following three classes of objects are in canonical bijections:

(i) Finite abelian extensions of \(K \).

(ii) Finite index open\(^3\) subgroups of \(G_{\text{ab}} \).

\(^{2}\)To well-define this map, check that \(\prod_{v} \theta_{K_v} \) induces a map from \(\mathbb{A}^\times_K \) to \(\text{Gal}(L/K) \) for any \(L/K \) finite abelian by using Theorem 2.1(i) and that \(L/K \) is unramified everywhere.

\(^{3}\)We will be isomorphic to a product of \(\mathbb{R}^\times_{>0} \) and \(\mathbb{C}^\times \).

\(^{4}\)This is the algebraic closure of \(F_p \) in \(K \).

\(^{5}\)The adjective “open” here is necessarily; see exercise.
(iii) Finite index open subgroup of $\mathbb{A}_K^\times/K^\times$.

Proof. (i)\iff(ii) is standard infinite Galois theory. (ii)\iff(iii) is given by Theorem 2.2(ii),(iii).

Here to use (ii), note that in the case of a number field, every finite index subgroup of \mathbb{A}_K^\times has to contain the connected component of the identity.

We would nevertheless like to describe (i)\iff(iii). Fix a finite abelian extension L/K, the corresponding finite index open subgroup of $G_{K_{L_w}}^{ab}$ is the image of $\pi_{L/K} : G_{L}^{ab} \to G_{K_{L_w}}^{ab}$. As θ_L has dense image, it is equal to the closure of

$$\pi_{L/K}\theta_L(\mathbb{A}_L^\times/L^\times) = \pi_{L/K}(\prod_w \theta_{L_w})(\mathbb{A}_L^\times) = \pi_{L/K}(\prod_w (\theta_{L_w}L_w^\times)) = \prod_w (\pi_{L_w/K_v}\theta_{L_w}L_w^\times)$$

where v is the place of K below w and π_{L_w/K_v} is the natural map $G_{L_{w}}^{ab} \to G_{K_{w}}^{ab}$. But by Theorem 2.1(iii), $\pi_{L_w/K_v}\theta_{L_w}L_w^\times = \theta_{K_v}N_{L_w/K_v}L_w^\times$. Hence the finite index subgroup of $G_{K_w}^{ab}$ corresponding to L is the closure of

$$\prod_w \theta_{K_v}N_{L_w/K_v}L_w^\times = (\prod_v \theta_{K_v})(\prod_w N_{L_w/K_v}L_w^\times) = (\prod_v \theta_{K_v})N_{L/K}\mathbb{A}_L^\times = \theta_KN_{L/K}(\mathbb{A}_L^\times/L^\times).$$

Now notice that almost all ν are unramified for L/K and for such ν we have $N_{L_{w}/K_v}L_w^\times \supset \mathcal{O}_{K_v}^\times$ as $\theta_{K_v}(\mathcal{O}_{K_v}^\times)^\times = I_{K_v}^{ab}$ by Theorem 2.1(i). This implies $N_{L/K}(\mathbb{A}_L^\times/L^\times)$ is open, we also know the a product $\prod_v U_v$ of open subgroups from each place v, with $U_v \cong \mathcal{O}_{K_v}^\times$ for almost all v, has finite index image in $\mathbb{A}_K^\times/K^\times$ (compactness of $(\mathbb{A}_K^\times)^1/K^\times$). Consequently it is the finite index open subgroup of $\mathbb{A}_K^\times/K^\times$ that corresponds to L. \qed

Now a generalization of a Dirichlet character for \mathbb{Q} is that

Definition 2.4. A Dirichlet character for K is a finite order character on $\mathbb{A}_K^\times/K^\times$, i.e. a continuous homomorphism $\chi : \mathbb{A}_K^\times/K^\times \to \mathbb{C}^\times$ with finite image.

By Theorem 2.2, a Dirichlet character is exactly a character of G_K. A Hecke character is nevertheless more than that:

Definition 2.5. A Hecke character (Größencharakter) is a character of $\mathbb{A}_K^\times/K^\times$.

We say a character is unitary if it has image in the circle group $S^1 \subset \mathbb{C}^\times$. Since any compact subgroup of \mathbb{C}^\times is contained in S^1 (it must have trivial image in $\mathbb{R}_+ \cong \mathbb{C}^\times/S^1$), any character of a compact group is unitary. Let $\chi : \mathbb{A}_K^\times/K^\times \to \mathbb{C}^\times$ be a Hecke character. Recall that we have the valuation map $|\cdot|_K : \mathbb{A}_K^\times/K^\times \to \mathbb{R}_+$ given by the product of all normalized valuation; the product formula ensures that it is trivial on K^\times. We know that the kernel $\ker |\cdot|_K = (\mathbb{A}_K^\times)^1/K^\times$ is compact, and thus $\chi|_{(\mathbb{A}_K^\times)^1/K^\times}$ is unitary. One then easily sees that any character χ is of the form $\chi_0 \cdot |s|_K$ for some χ_0 unitary and $s \in \mathbb{C}$, and $\Re(s)$ depends only on χ. We call $\Re(s)$ the exponent of χ.\[4\]
Since the natural embedding $\mathbb{R}_+ \times \hat{\mathbb{Z}}^\times \hookrightarrow \mathbb{A}_Q^\times$ induces an isomorphism $\mathbb{R}_+ \times \hat{\mathbb{Z}}^\times \cong \mathbb{A}_Q^\times / \mathbb{Q}^\times$, a Hecke character for \mathbb{Q} is really a product of a character on \mathbb{R}_+ and one on $\hat{\mathbb{Z}}^\times$. Every character on $\hat{\mathbb{Z}}^\times$ has finite order and every character on \mathbb{R}_+ of is of the form $x \mapsto |x|^s$. This implies that $\chi \cdot |\cdot|_{\mathbb{Q}}^s$ is a character of finite order; in other words every Hecke character for \mathbb{Q} arises from a Dirichlet character by a twist K. Nevertheless, for any number field K that is larger than \mathbb{Q}, there exists some Hecke character that is not a twist of a Dirichlet character. We give two examples:

Example 2.6. (i) $K = \mathbb{Q}(i)$. Let $\chi' : \mathbb{A}_K^\times \to \mathbb{C}^\times$ be defined by $\chi'|_{\mathbb{C}^\times} = (z \mapsto z^4)$, and $\chi'|_{K_p^\times} = (x \mapsto z^{-4 \text{val}(x)})$ whenever $p = (z)$ is a prime ideal. One checks that χ' is trivial on K^\times so that it gives a Hecke character on $\mathbb{A}_K^\times / K^\times$. It is not a twist of a Dirichlet character since $\chi'|_{\mathbb{C}^\times}(S^1)$ has infinite image.

(ii) $K = \mathbb{Q}(\sqrt{2})$. Denote by ∞ and ∞' its two real places and $\iota_{\infty} : K \to \mathbb{R}$ the embedding corresponding to the first place. The unit group \mathcal{O}_K^\times is generated by -1 and $\sqrt{2} + 1$. Let $\chi' : \mathbb{A}_K^\times \to \mathbb{C}^\times$ be defined by $\chi'|_{\mathbb{C}^\times} = (x \mapsto x^{\frac{-2 \sqrt{2}}{\log(\sqrt{2} + 1)}})$, $\chi'|_{\mathbb{C}^\times} \equiv 1$, and define $\chi'|_{K_p^\times} = (x \mapsto |\iota_{\infty}(z)|^{\frac{-2 \sqrt{2}}{\log(\sqrt{2} + 1)}})$ whenever $p = (z)$ similar to above. Then we get a character χ as above such that $\chi'|_{K_{\infty}^\times / K^\times}$ has infinite image, and thus is not a twist of Dirichlet characters.

3 A backward interpretation

Recall that the functional equation of the zeta function goes as follows: let $\Lambda(s) = \pi^{-s/2}\Gamma(s/2)\zeta(s)$. Then $\Lambda(s)$ has a meromorphic continuation to the whole complex plane, and $\Lambda(s) = \Lambda(1-s)$.

How do we prove it? One begins with $g(x) = e^{-\pi x^2}$, for which we have its Fourier transform $\hat{g}(x) = g(x)$. We apply the Poisson summation formula as

$$\sum_{n \in \mathbb{Z}} g(an) = \frac{1}{a} \sum_{n \in \mathbb{Z}} \hat{g}(n/a), \ a \in \mathbb{R}^\times$$

The first equality applies to a general class of functions and its Fourier transform, and so far a is just an innocent scaling. But then for $\text{Re}(s) > 1$ one looks at the integral

$$\int_0^\infty a^{s-1} \left(\sum_{n \in \mathbb{Z}\setminus\{0\}} g(an) \right) da = \sum_{n \in \mathbb{Z}\setminus\{0\}} \int_0^\infty \frac{a^{s-1}}{(n\sqrt{\pi})^s} e^{-\pi a^2} da = \zeta(s)\pi^{-s/2}\Gamma(s/2) = \Lambda(s). \quad (1)$$

On the other hand, one also has

$$\int_0^\infty a^{s-1} \left(\sum_{n \in \mathbb{Z}\setminus\{0\}} g(an) \right) da = \int_1^\infty a^{s-1} \left(\sum_{n \in \mathbb{Z}\setminus\{0\}} g(an) \right) da + \int_0^1 a^{s-1} \left(\sum_{n \in \mathbb{Z}\setminus\{0\}} g(an) \right) da$$
\[= \int_{1}^{\infty} \frac{a^{s-1}}{a} \left(\sum_{n \in \mathbb{Z} \setminus \{0\}} g(an) \right) \, \text{da} + \int_{1}^{1} \frac{a^{s-2}}{a} \left(1 - \frac{1}{a} + \sum_{n \in \mathbb{Z} \setminus \{0\}} g(n/a) \right) \, \text{da} \]

\[= \int_{1}^{\infty} \frac{a^{s-1}}{a} \left(\sum_{n \in \mathbb{Z} \setminus \{0\}} g(an) \right) \, \text{da} + \int_{1}^{\infty} \frac{a^{s-2}}{a} \left(a^{-s} - a^{-s+1} \right) \, \text{da} + \int_{1}^{\infty} \frac{a^{-s}}{a} \left(\sum_{n \in \mathbb{Z} \setminus \{0\}} g(an) \right) \, \text{da} \]

\[= \int_{1}^{\infty} \frac{a^{s-1}}{a} \left(\sum_{n \in \mathbb{Z} \setminus \{0\}} g(an) \right) \, \text{da} + \frac{1}{s} + \frac{1}{1-s} + \int_{1}^{\infty} \frac{a^{-s}}{a} \left(\sum_{n \in \mathbb{Z} \setminus \{0\}} g(an) \right) \, \text{da} \]

where the last expression converges for any \(s \), and thus is a meromorphic continuation for others. It is moreover symmetric for \(s \leftrightarrow 1 - s \), and thus \(\Lambda(s) = \Lambda(1 - s) \).

Now how do we make it adelic? From an adelic point of view, instead of a function \(f(x) \) on \(\mathbb{R} \) we should consider a function on \(\mathbb{A}_{\mathbb{Q}} \). The naive (but not too naive) way to produce a function on \(\mathbb{A}_{\mathbb{Q}} \) is to pull back \(f \) from \(\mathbb{R} \) to \(\mathbb{R} \times \prod_{p<\infty} \mathbb{Z}/p; \) let \(f \) be the function on \(\mathbb{A}_{\mathbb{Q}} \) defined by

\[f(x_\infty x^\infty) = \begin{cases} \frac{g(x_\infty)}{0}, & \text{for } x_\infty \in \mathbb{R}, x^\infty \in \prod_{p<\infty} \mathbb{Z}/p; \\
0, & \text{for } x^\infty \in \prod_{p<\infty} \mathbb{Q}/p \setminus \prod_{p<\infty} \mathbb{Z}/p. \end{cases} \]

Then there is a really nice way to write the sum over integers:

\[\sum_{n \in \mathbb{Z}} g(n) = \sum_{x \in \mathbb{Q}} f(x), \]

and thus the Poisson summation formula get translated to

\[\sum_{x \in \mathbb{Q}} f(a_\infty x) = \frac{1}{a_\infty} \sum_{x \in \mathbb{Q}} \hat{f}(a^{-1}_\infty x), \text{ for } a_\infty \in \mathbb{R}^\times \subset \mathbb{A}_{\mathbb{Q}}^\times. \] (2)

Here \(\hat{f} = f \) as \(\hat{g} = g \). Likewise the LHS of equation (1) is equal to

\[\int_{1}^{\infty} \frac{a^{s-1}}{a} \left(\sum_{x \in \mathbb{Q}^\times} f(a_\infty x) \right) \, \text{da}_\infty. \] (3)

There are things we can complain about (2) and (3). For example, having \(a_\infty \in \mathbb{R}^\times \) (or \(\mathbb{R}^+_\infty \)) only for the archimedean place seems not beautiful enough. So we observe that for (3) using \(\mathbb{A}_{\mathbb{Q}}^\times = \mathbb{R}^+_\infty \times \hat{\mathbb{Z}}^\times \times \mathbb{Q}^\times \) we can rewrite (2) as

\[\sum_{x \in \mathbb{Q}} f(ax) = |a|^{-1} \sum_{x \in \mathbb{Q}} \hat{f}(a^{-1}x), \text{ for } a \in \mathbb{A}_{\mathbb{Q}}^\times. \] (4)
and (3) as (for some measure da)

$$\int_{0}^{\infty} a_{\infty}^{s-1} \left(\sum_{x \in \mathbb{Q}^\times} f(a_{\infty} x) \right) da_{\infty} = \int_{\mathbb{A}} |a|^{s-1} f(a) da.$$ \hspace{1cm} (5)

And thus the functional equation $\Lambda(s) = \Lambda(1 - s)$ becomes

$$\int_{\mathbb{A}} |a|^s f(a) \frac{da}{|a|} = \int_{\mathbb{A}} |a|^{1-s} \hat{f}(a) \frac{da}{|a|}.$$ \hspace{1cm} (6)

Now you bet that if we have (4) for general global fields, we can derive (4) for general global field, and also allow the Hecke characters to enter!