
SPECTRAL SEQUENCE CALCULATIONS ARE NP-COMPLETE

ROBERT BURKLUND

Abstract. Many problems in algebraic topology require making computations in
spectral sequences which have the structure of a module over an algebra. We will
show that the problem of determining whether a given differential can occur as part
of a self-consistent collection of differentials is NP-complete. This verifies the folk
theorem that “spectral sequence computations can be hard”.

The computation of the stable homotopy groups of spheres via the Adams spectral
sequence is quickly approaching the point where it is not feasible for a human to compute
all the differentials by hand. This barrier is not one of mathematical difficulty, but rather
one of the size of dataset one must consider, which grows quasi-polynomially in the stem
[Bur21]. While it is infeasible for humans to compute differentials on millions of classes
on the E2-page, such computations remain feasible through a much larger range with
the aid of computers.

Considerations such as these have led to a renewed effort by Hood Chatham, Dexter
Chua, Guozhen Wang and others to produce a software suite specifically taylored to the
problem of computing stable stems. Two components which this software suite will likely
contain are propogation of differentials using the Liebniz rule and speculative evalutation
of potential differentials. What we mean by “speculative evaluation” is roughly the
following,

• In some situations one can show, using the Liebniz rule, that a certain differential
does not occur as part of any self-consistent collection of possible differentials.
On this basis, such a differential can be excluded.

The most basic instance in which a differential may be excluded by speculative evaluation
is given in fig. 1. What we show in this note is that the problem which the computer must
solve as part of “speculative evaluation” is NP-complete. As in many situations where
NP-complete problems arise, in practice we find it unlikely that real-world instances will
approach worst-case runtimes. Instead we have written this note as a justification of the
humorous meta-theorem that, “spectral sequence computations can be hard”.

Recall that a decision problem is in NP if “yes” solutions can be verified in polynomial
time and a decision problem A is NP-hard if every problem in NP can be reduced to
an instance of A in polynomial time [Coo71]. We will now give a formalize the decision
problem which arises in “speculative evaluation”. This begins with setting up a toy
model of a spectral sequence.

Definition 1. For the purpose of this note a spectral sequence of modules over a fixed
bigraded ring R will consist of 1

• a sequence of bigraded R-module E∗,∗
r for r ≥ 1,

• R-linear differentials dr : Ex,y
r → Ex−1,y+r

r ,
• R-linear isomorphisms H∗,∗(Er, dr) ∼= E∗,∗

r+1.

Date: December 2, 2020.
1In this definition we have chosen the indexing that makes the most sense for the way we display

charts.
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Figure 1. The line of slope 1 indicates multiplication by some per-
manent cycle. The dashed red differntial can be excluded on the basis
of the Liebniz rule.

With this we define spectral sequence speculative evaluation decision problem. Infor-
mally, the problem we will define asks whether a given d2-differential occurs as part of
a consistent spectral sequence.

Definition 2. An instance of the problem SSeqn will consist of
• a bigraded ring R := F2[x1, · · · , xn] (this is just a choice of bidegrees in which

the xi live) 2,
• a bigraded F2-vector space E∗,∗ equipped with an R-module structure,
• a potential differential d2(x) = y we wish to evaluate.

An accepting configuration for this problem will consist of a spectral sequence of
R-modules such that E = E1, d1(x) = 0 and d2(x) = y.

Note that the size of an accepting configuration is at most polynomial in the dimension
of the vector space E we started with.

Proposition 3. The decision problem SSeq4 is NP-complete.

We will prove this proposition in two steps. First we will show that SSeqn is in NP.
Then we will show that SSeq4 is NP-hard. Since SSeqn for n ≥ 4 is at least as hard as
SSeq4, this will in turn imply that SSeqn is NP-complete for larger values of n as well.

In order to show that SSeqn is in NP we observe that given a collection of differentials
and pages, verifying that the differentials are R-linear and the pages are the homology of
the previous differential uses only linear algebra operations which can be accomplished
in polynomial time (polynomial in the total dimension of E).

Now we turn to the more difficult task of showing that SSeq4 is NP-hard. We will
accomplish this via a two-step reduction to CNFSAT.

Definition 4. An instance of the subspace union decision problem (which we abbreviate
to SSU) will consist of

• an F2-vector space V ,
• a collection of subspaces W1, . . . ,Wn ⊂ V .

An accepting configuration for this problem will consist of a vector v ∈ V such that
v /∈Wi for all i.

2We have chosen to work with F2 because this makes reductions to boolean logic simplest. This
restriction is not necessary, though we will not prove this.
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Another way of phrasing this question is that it asks whether W1 ∪ · · · ∪Wn is equal
to V 3.

Lemma 5. SSU is NP-complete.

Proof. In order to conclude that SSU is in NP, we note that checking membership v ∈Wi

can be done in polynomial time (polynomial in the dimension of V ) by row reducing a
basis for Wi.

Now we must show that SSU is NP-hard. We will do this by embedding instances of
CNFSAT into SSU. Since CNFSAT is NP-hard [Coo71] this will allow us to conclude
that SSU is NP-hard. Replacing the subspaces Wi by quotient maps out of V with
kernel Wi, we can rephrase SSU as follows:

• We’re given an F2-vector space V ,
• a collection of quotients Mi : V → Vi for i = 1, . . . , n,
• and an accepting configuration consists of a vector v ∈ V such that Miv 6= 0 for

all i.
After fixing a basis for V and each of the Vi let M

j
i denote the jth row of Mi. Then,

the condition for v to be an accepting configuration can be expressed by the predicate

((M1
1 · v 6= 0) ∨ · · · ∨ (Ma1

1 · v 6= 0)) ∧ · · · ∧ ((M1
n · v 6= 0) ∨ · · · ∨ (Man

n · v 6= 0)).

Each of the dot-products can then be interpretted as xor’ing the appropriate terms of
the vector v.

From this perspective we can embed an instance of CNFSAT into SSU as follows.
Use the variable x1, . . . , xk appearing in the instance of CNFSAT as the components of
v. Then, if we use matrices M whose rows have at most a single non-zero entry we can
construct any instance of CNFSAT which doesn’t use not. In order to simulate “not” we
will add a new variable x0 and a matrix M0 that forces x0 = 1. Then, we can make the
entry of the M j

i that aligns with x0 non-zero when necessary in order to build a “not”
(xor with 1). �

Example 6. Under the embedding given in the proof of Lemma 5 the instance of
CNFSAT given by

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x1) ∧ (¬x3 ∨ x1)

is encoded by V = (F2)
4 and matrices

M0 =
[
1 0 0 0

]
,M1 =

0 1 0 0
1 0 1 0
0 0 0 1

 ,M2 =

[
0 0 1 0
1 1 0 0

]
,M3 =

[
1 0 0 1
0 1 0 0

]
.

Two example of accepting configurations are v = (1, 1, 1, 1) and v2 = (1, 0, 0, 0).

We will now finish the proof of Proposition 3 by embedding SSU in SSeq4.

Construction 7. Given an instance of SSU we associate to it an instance of SSeq4
according to the following procedure.

• The operators x1, x2, x3 and x4 have degrees

|x1| = (2, 0), |x2| = (2, 1), |x3| = (−2, 0), |x4| = (−2, 1).
• The bigraded R-module E is given by the sum of R-modules X ⊕B ⊕D where

these summands are defined below.
• The module D has a single genator d in bidegree (4n− 1, 2) which is subject to

relations,
x1d = 0, x2d = 0, (x3, x4)

n+1d = 0.

3This question makes sense over any field k, but it is only hard over finite fields.
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An instance of SSeq4
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Figure 2. This chart illustrates the E1 page of the instance of SSeq4
which Construction 7 associates to the instance of SSU from Example 6.
The x1 and x2 multiplications are indicated by black lines while the x3

and x4 multiplications are indicated by blue lines.

• The module X has two generators a and c in degrees (0, 0) and (4n, 0) respec-
tively. The generators a and c are subject to relations,

x3a = 0, x4a = 0, x1c = 0, x2c = 0

xi
1x

n−i
2 a = xi

3x
n−i
4 c for i = 0, . . . , n

• LetW denote the bigradedR-submodule of V⊗R/(x3, x4) generated by xi−1
1 xn−i

2 Wi

for i = 1, . . . , n together with (x1, x2)
n. Then, we set B = (V ⊗R/(x3, x4))/W

where the copy of V sits in degree (−1, 1).
• The differential we would like to speculatively evaluate is d2(c) = d.

Since the size of the instance of SSeq4 given by Construction 7 is polynomial in n
and the dimension of V , this is a polynomial reduction.

We now analyze the instance of SSeq4 associated to an instance of SSU by Con-
struction 7. By considering the degrees of the various nontrivial elements and using the
Liebniz rule we can conclude the following:

• All differentials on the elements of B are zero.
• All differentials on the elements of D are zero.
• d1(a) = v for some vector v ∈ V ⊂ B.
• d2(c) = d (by hypothesis).
• d2(x

a
3x

b
4c) = xa

3x
b
4d for all a+ b ≤ n.

Suppose that d1(xi−1
1 xn−i

2 a) = 0. Then, on the E2 page we would have

0 = x1 · 0 = x1d2(x
i−1
1 xn−i

2 a) = d2(x
i
1x

n−i
2 a) = d2(x

i
3x

n−i
4 c) = xi

3x
n−i
4 d 6= 0.

Thus, any accepting configuration has the property that d1(x
i−1
1 xn−i

2 a) 6= 0 for all i.
Moreover, it is not difficult to see that this is the only necessary condition for the
given differentials to form an accepting configuration. Finally, we observe that our
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An accepting configuration of an instance of SSeq4
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Figure 3. This chart illustrates an accepting configuration of the in-
stance of SSeq4 associated to the instance of SSU from Example 6. This
configuration is associated to the vector v = (1, 0, 0, 0).

construction of the module B was tailored so that d1(x
i−1
1 xn−i

2 a) = xi−1
1 xn−i

2 v = 0 if
and only if v ∈Wi.
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