SPECTRAL SEQUENCE CALCULATIONS ARE NP-COMPLETE

ROBERT BURKLUND

Abstract

Many problems in algebraic topology require making computations in spectral sequences which have the structure of a module over an algebra. We will show that the problem of determining whether a given differential can occur as part of a self-consistent collection of differentials is NP-complete. This verifies the folk theorem that "spectral sequence computations can be hard".

The computation of the stable homotopy groups of spheres via the Adams spectral sequence is quickly approaching the point where it is not feasible for a human to compute all the differentials by hand. This barrier is not one of mathematical difficulty, but rather one of the size of dataset one must consider, which grows quasi-polynomially in the stem Bur21. While it is infeasible for humans to compute differentials on millions of classes on the E_{2}-page, such computations remain feasible through a much larger range with the aid of computers.

Considerations such as these have led to a renewed effort by Hood Chatham, Dexter Chua, Guozhen Wang and others to produce a software suite specifically taylored to the problem of computing stable stems. Two components which this software suite will likely contain are propogation of differentials using the Liebniz rule and speculative evalutation of potential differentials. What we mean by "speculative evaluation" is roughly the following,

- In some situations one can show, using the Liebniz rule, that a certain differential does not occur as part of any self-consistent collection of possible differentials. On this basis, such a differential can be excluded.
The most basic instance in which a differential may be excluded by speculative evaluation is given in fig. 1. What we show in this note is that the problem which the computer must solve as part of "speculative evaluation" is NP-complete. As in many situations where NP-complete problems arise, in practice we find it unlikely that real-world instances will approach worst-case runtimes. Instead we have written this note as a justification of the humorous meta-theorem that, "spectral sequence computations can be hard".

Recall that a decision problem is in NP if "yes" solutions can be verified in polynomial time and a decision problem A is NP-hard if every problem in NP can be reduced to an instance of A in polynomial time Coo71. We will now give a formalize the decision problem which arises in "speculative evaluation". This begins with setting up a toy model of a spectral sequence.

Definition 1. For the purpose of this note a spectral sequence of modules over a fixed bigraded ring R will consist of 1

- a sequence of bigraded R-module $E_{r}^{*, *}$ for $r \geq 1$,
- R-linear differentials $d_{r}: E_{r}^{x, y} \rightarrow E_{r}^{x-1, y+r}$,
- R-linear isomorphisms $H^{*, *}\left(E_{r}, d_{r}\right) \cong E_{r+1}^{*, *}$.

[^0]

Figure 1. The line of slope 1 indicates multiplication by some permanent cycle. The dashed red differntial can be excluded on the basis of the Liebniz rule.

With this we define spectral sequence speculative evaluation decision problem. Informally, the problem we will define asks whether a given d_{2}-differential occurs as part of a consistent spectral sequence.

Definition 2. An instance of the problem SSeq_{n} will consist of

- a bigraded ring $R:=\mathbb{F}_{2}\left[x_{1}, \cdots, x_{n}\right]$ (this is just a choice of bidegrees in which the x_{i} live) ${ }^{2}$
- a bigraded \mathbb{F}_{2}-vector space $E^{*, *}$ equipped with an R-module structure,
- a potential differential $d_{2}(x)=y$ we wish to evaluate.

An accepting configuration for this problem will consist of a spectral sequence of R-modules such that $E=E_{1}, d_{1}(x)=0$ and $d_{2}(x)=y$.

Note that the size of an accepting configuration is at most polynomial in the dimension of the vector space E we started with.

Proposition 3. The decision problem SSeq ${ }_{4}$ is NP-complete.
We will prove this proposition in two steps. First we will show that SSeq_{n} is in NP. Then we will show that SSeq_{4} is NP-hard. Since SSeq_{n} for $n \geq 4$ is at least as hard as SSeq_{4}, this will in turn imply that SSeq_{n} is NP-complete for larger values of n as well.

In order to show that SSeq_{n} is in NP we observe that given a collection of differentials and pages, verifying that the differentials are R-linear and the pages are the homology of the previous differential uses only linear algebra operations which can be accomplished in polynomial time (polynomial in the total dimension of E).

Now we turn to the more difficult task of showing that SSeq_{4} is NP-hard. We will accomplish this via a two-step reduction to CNFSAT.

Definition 4. An instance of the subspace union decision problem (which we abbreviate to SSU) will consist of

- an \mathbb{F}_{2}-vector space V,
- a collection of subspaces $W_{1}, \ldots, W_{n} \subset V$.

An accepting configuration for this problem will consist of a vector $v \in V$ such that $v \notin W_{i}$ for all i.

[^1]Another way of phrasing this question is that it asks whether $W_{1} \cup \cdots \cup W_{n}$ is equal to V^{3}

Lemma 5. $S S U$ is NP-complete.
Proof. In order to conclude that SSU is in NP, we note that checking membership $v \in W_{i}$ can be done in polynomial time (polynomial in the dimension of V) by row reducing a basis for W_{i}.

Now we must show that SSU is NP-hard. We will do this by embedding instances of CNFSAT into SSU. Since CNFSAT is NP-hard Coo71 this will allow us to conclude that SSU is NP-hard. Replacing the subspaces W_{i} by quotient maps out of V with kernel W_{i}, we can rephrase SSU as follows:

- We're given an \mathbb{F}_{2}-vector space V,
- a collection of quotients $M_{i}: V \rightarrow V_{i}$ for $i=1, \ldots, n$,
- and an accepting configuration consists of a vector $v \in V$ such that $M_{i} v \neq 0$ for all i.

After fixing a basis for V and each of the V_{i} let M_{i}^{j} denote the $j^{\text {th }}$ row of M_{i}. Then, the condition for v to be an accepting configuration can be expressed by the predicate

$$
\left(\left(M_{1}^{1} \cdot v \neq 0\right) \vee \cdots \vee\left(M_{1}^{a_{1}} \cdot v \neq 0\right)\right) \wedge \cdots \wedge\left(\left(M_{n}^{1} \cdot v \neq 0\right) \vee \cdots \vee\left(M_{n}^{a_{n}} \cdot v \neq 0\right)\right) .
$$

Each of the dot-products can then be interpretted as xor'ing the appropriate terms of the vector v.

From this perspective we can embed an instance of CNFSAT into SSU as follows. Use the variable x_{1}, \ldots, x_{k} appearing in the instance of CNFSAT as the components of v. Then, if we use matrices M whose rows have at most a single non-zero entry we can construct any instance of CNFSAT which doesn't use not. In order to simulate "not" we will add a new variable x_{0} and a matrix M_{0} that forces $x_{0}=1$. Then, we can make the entry of the M_{i}^{j} that aligns with x_{0} non-zero when necessary in order to build a "not" (xor with 1).

Example 6. Under the embedding given in the proof of Lemma 5 the instance of CNFSAT given by

$$
\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee \neg x_{1}\right) \wedge\left(\neg x_{3} \vee x_{1}\right)
$$

is encoded by $V=\left(\mathbb{F}_{2}\right)^{4}$ and matrices

$$
M_{0}=\left[\begin{array}{llll}
1 & 0 & 0 & 0
\end{array}\right], M_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], M_{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{array}\right], M_{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right] .
$$

Two example of accepting configurations are $v=(1,1,1,1)$ and $v_{2}=(1,0,0,0)$.
We will now finish the proof of Proposition 3 by embedding SSU in SSeq 4 .
Construction 7. Given an instance of SSU we associate to it an instance of SSeq 4 according to the following procedure.

- The operators x_{1}, x_{2}, x_{3} and x_{4} have degrees

$$
\left|x_{1}\right|=(2,0), \quad\left|x_{2}\right|=(2,1), \quad\left|x_{3}\right|=(-2,0), \quad\left|x_{4}\right|=(-2,1) .
$$

- The bigraded R-module E is given by the sum of R-modules $X \oplus B \oplus D$ where these summands are defined below.
- The module D has a single genator d in bidegree $(4 n-1,2)$ which is subject to relations,

$$
x_{1} d=0, \quad x_{2} d=0, \quad\left(x_{3}, x_{4}\right)^{n+1} d=0 .
$$

[^2]An instance of SSeq_{4}

Figure 2. This chart illustrates the E_{1} page of the instance of SSeq_{4} which Construction 7 associates to the instance of SSU from Example 6 . The x_{1} and x_{2} multiplications are indicated by black lines while the x_{3} and x_{4} multiplications are indicated by blue lines.

- The module X has two generators a and c in degrees $(0,0)$ and $(4 n, 0)$ respectively. The generators a and c are subject to relations,

$$
\begin{gathered}
x_{3} a=0, \quad x_{4} a=0, \quad x_{1} c=0, \quad x_{2} c=0 \\
x_{1}^{i} x_{2}^{n-i} a=x_{3}^{i} x_{4}^{n-i} c \quad \text { for } i=0, \ldots, n
\end{gathered}
$$

- Let W denote the bigraded R-submodule of $V \otimes R /\left(x_{3}, x_{4}\right)$ generated by $x_{1}^{i-1} x_{2}^{n-i} W_{i}$ for $i=1, \ldots, n$ together with $\left(x_{1}, x_{2}\right)^{n}$. Then, we set $B=\left(V \otimes R /\left(x_{3}, x_{4}\right)\right) / W$ where the copy of V sits in degree $(-1,1)$.
- The differential we would like to speculatively evaluate is $d_{2}(c)=d$.

Since the size of the instance of SSeq_{4} given by Construction 7 is polynomial in n and the dimension of V, this is a polynomial reduction.

We now analyze the instance of SSeq_{4} associated to an instance of SSU by Construction 7. By considering the degrees of the various nontrivial elements and using the Liebniz rule we can conclude the following:

- All differentials on the elements of B are zero.
- All differentials on the elements of D are zero.
- $d_{1}(a)=v$ for some vector $v \in V \subset B$.
- $d_{2}(c)=d$ (by hypothesis).
- $d_{2}\left(x_{3}^{a} x_{4}^{b} c\right)=x_{3}^{a} x_{4}^{b} d$ for all $a+b \leq n$.

Suppose that $d_{1}\left(x_{1}^{i-1} x_{2}^{n-i} a\right)=0$. Then, on the E_{2} page we would have

$$
0=x_{1} \cdot 0=x_{1} d_{2}\left(x_{1}^{i-1} x_{2}^{n-i} a\right)=d_{2}\left(x_{1}^{i} x_{2}^{n-i} a\right)=d_{2}\left(x_{3}^{i} x_{4}^{n-i} c\right)=x_{3}^{i} x_{4}^{n-i} d \neq 0 .
$$

Thus, any accepting configuration has the property that $d_{1}\left(x_{1}^{i-1} x_{2}^{n-i} a\right) \neq 0$ for all i. Moreover, it is not difficult to see that this is the only necessary condition for the given differentials to form an accepting configuration. Finally, we observe that our

An accepting configuration of an instance of SSeq_{4}

Figure 3. This chart illustrates an accepting configuration of the instance of SSeq_{4} associated to the instance of SSU from Example 6. This configuration is associated to the vector $v=(1,0,0,0)$.
construction of the module B was tailored so that $d_{1}\left(x_{1}^{i-1} x_{2}^{n-i} a\right)=x_{1}^{i-1} x_{2}^{n-i} v=0$ if and only if $v \in W_{i}$.

References

[Bur21] Robert Burklund. How big are the stable homotopy groups of spheres? 2021. In preparation. [Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71, page 151-158, New York, NY, USA, 1971. Association for Computing Machinery.

Department of Mathematics, MIT, Cambridge, MA, USA
Email address: burklund@mit.edu

[^0]: Date: December 2, 2020.
 ${ }^{1}$ In this definition we have chosen the indexing that makes the most sense for the way we display charts.

[^1]: ${ }^{2}$ We have chosen to work with \mathbb{F}_{2} because this makes reductions to boolean logic simplest. This restriction is not necessary, though we will not prove this.

[^2]: ${ }^{3}$ This question makes sense over any field k, but it is only hard over finite fields.

