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RATIONAL RECIPROCITY LAWS 

EMMA LEHMER 

Abstract. It is well known that the famous Legendre law of quadratic reciprocity, of which over 150 
proofs are in print, has been generalized over the years to algebraic fields by a number of famous 
mathematicians from Gauss to Artin to the extent that it has become virtually unrecognizable. On the other 
hand, it seems to have escaped notice that in the past decade there were developed rational reciprocity laws 
for higher power residues which are more direct and easily recognizable generalizations of the Legendre 
law. These recent developments will be the subject of this report. 

1. Introduction. Euler appears to have been the first to ask for what primes p is a given number a 
(prime top) a quadratic residue of p. He had already obtained what is now known as Euler's criterion 
which can be written 
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from which it is quite obvious that - 1 is a quadratic residue of p if and only if p=4n + 1. He found 
that 2 and 3 are quadratic residues of primes p if and only if p =8n f1 and 12n f1 respectively. He 
also made the conjecture that i fp  and q are distinct odd primes then q is a quadratic residue of p if 
and only if -p is a residue of q. 

Legendre extended Euler's criteria for 2 and 3 to be residues and gave for q <100 the arithmetical 
progressions for primes p having q as a quadratic residue, namely: 

p =4qn? ri, where r iE  l(mod4) and (ri/q)= 1. (2) 

He is also responsible for what is now known as the Legendre symbol used in (I), in terms of 
which he wrote down the reciprocity law which now bears his name: 

Neither Euler nor Legendre succeeded in giving a proof of either (2) or (3). A good account of the 
early history and a proof of the equivalence of (2) and (3) will be found in the recent book by W. J. 
LeVeque [17]. While the elegance of (3) speaks for itself, (2) shows that the character of a fixed prime 
q to an arbitrary prime p depends on the infinite class of primes to which p belongs. 

Gauss rediscovered the reciprocity law before his eighteenth birthday and was "tormented" by it 
for a whole year before he produced the first of his seven proofs. About a hundred years later 
Bachmam collected 50 proofs, and 15 years ago Gerstenhaber [S] published "The 152nd Proof of the 
Law of Quadratic Reciprocity" in this MONTHLY. In all likelihood there are another dozen proofs in 
existence by now. 

Gauss was the first to consider extending the quadratic reciprocity law to higher power residues. If 
we let p =kn + 1, then (1) becomes 

where 1is a primitive i t h  root of unity and where the index of a is taken with respect to some 
primitive root g of p. 

For k =4 we have p =4n +1=a2+b2=(a + ib)(a - ib) =plp2. This led Gauss to the study of what 
is now known as the Gaussian primesp, = a  + ib and to the discovery of a quartic reciprocity law for 
these complex primes. This law was proved by Eisenstein who wrote it in the elegant form which 
parallels (3), namely 

This statement should be supplemented by the fact that - 1 is a quartic residue of p if and only if 
p =8n + 1 and that 2 is a quartic residue of p if and only if p =a2+64b:. Gauss was not only aware of 
this, but gave conditions for all primes q G 19 to be quartic residues of p in terms of the permissible 
ratios of a /b  modulo q. 

Kummer considered the problem for prime k and developed the theory of cyclotomic fields in 
order to prove a reciprocity law in such fields. Hilbert reinterpreted the reciprocity law in terms of the 
norm residue symbol and generalized it to arbitrary algebraic number fields. In his ninth problem, 
Hilbert asks for "the most general law of reciprocity in an arbitrary algebraic number field." In his 
1969 account of Hilbert's ninth problem Faddeev [7] credits Safarevi~ with the solution of the 
problem in 1949. On the other hand, in the 1976 AMS volume on Hilbert's problems Tate>[20] does 
not even mention Safarevi~, but credits Artin with the solution in 1927, although he goes on to~hiscuss 
further generalizations. It should be noted that in recent years the reciprocity problem .has been 
restated in terms of the splitting of a general polynomial into factors modulo p. This is a generaliza- 
tion of the obvious fact that the quadratic equation splits into two distinct linear factors if andsnly if 
its discriminant is a quadratic residue of p. In an expository paper in this MONTHLY with the fetching 
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title "What is a reciprocity law?Wyman [26] discusses the reciprocity problem from this point of 
view and concludes the paper with the following remark: 

"Finally I have to confess that I still do not know what a reciprocity law is or what it should be. 
The reciprocity problem like many other number-theory problems can be stated in a fairly simple and 
concrete way. However the simply stated problems are often the hardest and a complete solution 
seems to be very far out of reach. In fact, we probably will not know what we are looking for until we 
have found it." 

It is the purpose of this report to speak for those number-theorists who believe that they know 
what a reciprocity law is and not only know what they are looking for but have actually been 
discovering new rational reciprocity laws in the past decade. 

2. Rational quartic reciprocity laws. We have already seen that Legendre's reciprocity law can be 
interpreted in at least three different ways and that none of the generalizations led to a rational 
reciprocity law. For our purposes we will simply define a reciprocity law as a reciprocal relation 
between the characters of two odd primes, or more generally between the characters of some function 
of such primes. To obtain a rational reciprocity law, we must put some conditions on the primes to 
insure that the product of these characters is ? 1. 

In the quartic case, p =  q=  l(mod 4) and so the assumption that (p/q)= 1 would insure that 
(p/q)4 and (q/p),, and hence their product, are r 1. The problem of determining these signs would 
give a generalization of either (2) or (3) or both. Some 20 years ago I combed the literature and asked 
my co-workers whether such a rational law was known to them with negative results. 

Because Gauss and others have found binary quadratic forms representingp in terms of q and y, 
where y =a/b(modq), it seemed reasonable to try to find a general expression for q to be a residue of 
p in terms of these forms. This was done in 1958 [9] thus giving a generalization of (2). Unfortunately, 
the reciprocity law which was equivalent to these criteria did not appear to be rational and was not 
even stated in [9]. It reads: 

It was a decade later that Burde [6] gave a very elegant rational reciprocity law which is as follows: 

Letp=aZ+ bZ and q = ~ ~ +  B' with a = A =  l(mod4) and let (p/q)= 1, then 

Although (6) was not recognized at first as a rational reciprocity law, it is not hard to show that (6) 
and (7) are equivalent. This fact proved in [ l l ]  provides a totally different proof of (7) and shows that 
the rational quartic reciprocity law is equivalent to the fact that the quartic character ( q / ~ ) ~  depends 
on the class of binary quadratic forms of discriminant -pq which represent p and not on p itself. 

Another rational form of the quartic reciprocity law for those primes which are represented by the 
formp=cZ+ qd2 was given independently and by entirely different methods by Ezra Brown [3] and 
myself [ l l ]  as follows: 

If p =q= l(mod4) are such that p =cZ+ qdZ, then 

For q =5, 13, and 37 every prime p is represented as p =c2+qdz if (p/q) = 1. Brown [4, 51 also 
gave similar reciprocity laws for primes represented by other quadratic forms. 

Meanwhile, another kind of reciprocity law which is very closely connected with the qyartic law 
has been resurrected and is now known as the Scholz reciprocity law. The history of this law is as 
follows: 
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In 1969 Barmcand and Cohn [I] proved that the quadratic unit e2 = 1+ fl is a quadratic residue 
of p if and only if p =c2+32d2. Jacob Brandler [2] showed that E, =(l + fi)/2 and e13= 
(3 + fi)/2 are quadratic residues of p =c2+ qd2 if and only if d is even and that E,, =4 + fl is 
always a quadratic residue of p. 

Comparing this with (8) it was not hard to conjecture that 

from which it would immediately follow from symmetry that 

I again combed the literature and asked my friends, but nobody knew whether this elegant result 
was true or false. Only after I devised a cyclotomic proof of (9) and therefore of (10) in [lo] did I 
discover a verbal statement of (10) as part four of a complicated five-part theorem in class field theory 
in Scholz [19]. Since then, a completely elementary proof has been devised by Williams [25]. 

3. Rational octic and higher reciprocity laws. Results and conjectures about quartic characters of 
quadratic units will be found in my paper [12]. Recently Leonard and Williams [IS, 14proved some 
of these conjectures. They have made a detailed study of the quartic character of these units in these 
papers, but have not yet proved a quartic analogue of Scholtz' reciprocity law (10). We would expect 
that such a law would be intimately connected with an octic reciprocity law which was obtained 
independently by K. S. Williams [24] and P. Y. Wu [27] as follows: 

Let p=a2+b2=c2+2d2=l(mod8) and a = c = A = C -q = ~ ~ + ~ ~ = ~ ~ + 2 ~ ~ = 1 ( m o d 8 ) ,  
l(mod4), with ( ~ / q ) ~ =  =( q / ~ ) ~1; then 

This should be supplemented by the well-known fact that 

p=a2+256b2 ~ l ( m o d 1 6 )
($)8 = 1 if and only if 

=a2+ 64b2 -9(mod 16), b odd. 

Similar criteria have been worked out for all primes q <47 in terms of p=a2+b2=c2+2d2= 
l(mod8) by von Lienen [19], but no explicit conditions were given for a general q to be an octic 
residue of p in terms of the corresponding sets of binary quadratic forms, although obviously such 
criteria must exist and be equivalent to (1 1). 

Leonard and Williams now have just published 16th power reciprocity law [14] which involves 
representation of p and q by a quaternary quadratic form, so that the work on kth power reciprocity 
laws is still in progress. 

In this connection we must mention another form of the 2kth power law which was derived from a 
recent generalization of the Gauss Lemma [13], which was used by Gauss in his third proof of the 
quadratic reciprocity law. This generalization states that if A is a kth power residue of p, and-if the 
product of the first half of the residues of p by A taken modulop contains &(A) residues which exceed 
p/2 then 

Applying this lemma with A =q, and then with A =p and p replaced by q, we obtain: 
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This reduces to (3) for k = 1, since y (q)+&(p)_= (p - l)(q -1)/4(mod 2). For k =2 and k =4 
comparison of (14) with (7) and (11) relates the parity of the numbers y(q)  and yq(p) with a,  b,c,d in 
the quadratic partitions of p. No direct proof of this fact has so far been obtained. 

4. Rational reciprocity laws for odd powers. Because the character is never -1, we can no 
longer expect rational reciprocity laws, but we can still obtain criteria for q to be a kth power residue 
of p in terms of quadratic forms. This has been done by Jacobi for k =3  and q <37, in terms of the 
partition of 4p = General conditions and quadratic forms forp in terms of q and the ratios ~ ~ + 2 7 ~ ~ .  
y-L/ M (modq) similar to those obtained for k =4 will be found in [9]. Recently K. S. Williams [23] 
separated the remaining cgses of L/ M(modq) to correspond with the two non-residue classes. 

For quintic residues the case is complicated by the fact that the criteria depend on the representa- 
tion 

1 6 ~x2+ 50u2 +50v2 + 125w2 with 4xw =v2-u2 -4uv. (15)= 

Recently K. S. Williams extended the known criteria to q < 19 in terms of the ratios of u/w and v/w 

He also returned to Euler's criterion and gave rational expressions for u(J'-')/~ in terms of L and 
M in [22] and for u(J'-')/~ in terms of the x,u,v,w in [Dl, and so we have come full circle back to 
Euler. For arbitrary k there appears to be no better way of finding out whether a given number is a 
kth power residue of a large prime p than by raising it to the (p - l)/kth power (modp) and asking 
whether it is one or not, especially with the advent of high-speed computing. 

5. Applications. Far from concluding that our more elaborate criteria are of no value, we can turn 
the tables around and use Euler's criterion to obtain conditions on the variables 

These conditions are useful, for example, in proving a number to be a prime by representing it 
uniquely by one of these quadratic forms. 

Another application of the criteria for kth power residuacity is to the divisibility by p of the 
(p - l)/kth term of a second order recumng series [lo]. 

The connection between the criteria for the quadratic unit and the solvability of u2 -D U ~-4= 

was established in [19]. 
Beginning with [I], in [3], [ll], [15], [ l a  and others the kth power residuacity of units was 

connected with the parity of class numbers in various quadratic fields both real and imaginary. 
Finally, a relation was recently established between the 2kth character of A and the parity of the 

permutation arising from multiplying the kth power residues by A [13]. We hope that many other 
connections will come to light in the future. 

Presented to the annual meeting of the Northern Section of the MAA in San Francisco on Feb. 26, 1977. 
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CORRECTIONS TO 

"The Rational Cuboid Revisited" 


(This MONTHLY, 84 (1977) 518-533) 


J. Lagrange has pointed out the following correction to my article. At the top of p. 523, for 
xi =550,576 read xi =520,576. See also his article [17], in which he gives another parametric solution 
of (3.2) and announces a complete proof of impossibility for the case Spohn [16] left incomplete. Two 
minor misprints: in the middle of p. 524, for (x,x,), read (x2x3)'; in the middle of p. 530 for a +b 
read a +p. 
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MISCELLANEA 

10. The efforts of computer engineers have already produced a mechanized Briggs (who' +ent his 
lifetime computing logarithms) and a mechanized Barlow (whose famous Tables were his life3 work) 
but no one has ever conceived of a mechanized Napier (for he invented logarithms). 

B. V. Bowden, Faster Than Thought, London, 1953, p. 321 


