18.781, Fall 2007 Problem Set 9

Solutions to Selected Problems

Problem 1 When z = y, it is clear that

p—1 p—1 p—1
DNV WL MRS
t=0 t=0 t=0

Now recall the fact that if « is not 0 in modulo p, then {0, o, 2« -+, (p — 1)a} is a complete
residue system modulo p. Also a = b (mod p) implies that (; = C]l; :
Thus, when z # y (mod p), we have

p—1 p—1
I
t=0 t=0

where the last equality can be verified easily. Therefore, we have

p—1
DSCIEY
t=0

This gives the desired conclusion. O

Problem 2 We can easily find that

p—1
x(@)gla,x) = x(at)¢ = Zx 2)CY = g(1,x)
t=0
because if @ is not 0 in modulo p, then {0,a,2a,---,(p — 1)a} is a complete residue system

modulo p.

Since x(a)x(a~!) = 1, we have



Problem 3 (a) The sum is going through (a,b) = (0,p), (1,0), (2,p —1),(3,p —2),---,(p — 1,2).

The number of these is p, hence by the convention of the definition of 1,,, we have J(1,,1,) = p.

(b) This is equivalent to prove that Y f_, "x(t) = 0 for nontrivial character x. For the
nontrivial character x, there is « (€ (Z/pZ)*) such that x(«) # 1. Then again by the fact
that {0, ,2a, -, (p — 1)a} is a complete residue system modulo p,

p—1 p—1 p—1 p—1

D ox(®) =Y x(at) = > x(a)x(t) = x(a) > x(1)

t=0 t=0 t=0 t=0
Since x(a) # 1, we should have Y 7~/ Lx(t) =0.

(c) (Note: for the nontrivial character x, x(0) can be regarded as 0.) First, it is easily verified
that

When a,b € {2,3,--- ,p—1}, a(1 —a)~! = b(1 — b)~!(mod p) if and only if a = b.
Also, a(1 —a)~!is not 0, —1. when a € {2,3,--- ,p — 1}. (For example, a(1 —a)~! = —1 iff

a = a — 1, which is impossible.) Therefore, {a(1 — a)™'}4=2.. p-1 = {1,2,-+- ,p — 2}. This
implies that

p—1 p—1 p—2
Joex ™) =Y x@x'1-a)=> x(al-a)"") = x(a) = —x(-1),
a=2 a=2 a=1

where the last equality holds because of (b).
(d) Write

p—1 p—1 p—1p—1 p—1p—1

T06Ng0A) =Y x@OANA=0) > X(DAGDGT = D> x)AG=id)6 =D D x(i5)AGi—i)¢

i=0 7=0 7=0 i=0 7j=11i=0

And also, by change of coordinate (u:= s+ ¢,v := s), we have

p—1p—1 —1p-1 p—1 —1p—1
S0090) = 3 S XA = 37 S A E-11G" = 3 XA+ 3 3 x(w)A
s=0 t=0 u=0 v=0 v=0 u=1v=0

Since x - A is not a trivial character, we have

"?
L

p—1
D x@A(=v) = A=1) Y (xN)(v) =
v=0

S
Il
o

Therefore, above two summations are same, so we have

J(6 AN g(xA) = g(x)g(A)

which gives us desired result. O

u



Problem 4 It is not hard to observe that Z/pZ is isomorphic to R/mR as a ring, with the isomor-
phism f(a) := a. (Here are some abuses of notation. If a is an element in Z, it can be regarded
as an element in Z/pZ, also since Z € R, a also can be regarded as an element in R — R/7R.)

3

Therefore, 23 = a (mod p) is solvable in the integers if and only if 23 = a (mod 7) in R. Now,

by the problem 5 in Problem set 8, we can deduce the wanted conclusion. O

Problem 5 It is easy to observe that 24 3w and 11 are primary primes. Therefore we have cubic

reciprocity
243w 11
< 11 > B (2 + 3w> ‘

This implies that 23 = 2 + 3w(11) is solvable if and only if 23 = 11(2 + 3w) is solvable. By
the problem 4, this is equivalent to the existence of integer solution of 2% = 11 (mod 7).

By Fermat’s theorem, if  is not a multiple of 7, z° = 1 (mod 7), hence (23 —1)(z3 +1) =0

(mod 7). This gives 23 = —1,0,1 (mod 7) for any integer x. Thus there is no integer solution

of 23 = 11 (mod 7), and we can conclude that 2% = 2 + 3w(11) is not solvable. O

Problem 6 For fixed p, define I be the set of quadratic residues in modulo p, and J be the set of
non residues. Then we have

1
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tel teJ tel teJ

Since
~1= Zcp => G+ G
tel teJ

we can have

g(L,p) =142 G

tel

For any ¢ € I, there are exactly two values a in {1,--- ,p— 1} satisfying a® = ¢ (mod p). This
implies that

p—1
1423 ¢! _1+Z(p =>6"
t=0

tel

so we get the desired conclusion. O

Problem 7
p—1p—1 p—1p—1 p—1 p—1 A
Zf C at __ p—l ZZ](' azC at __ =p -1 sz a(t i) _ Zf(z) <p—1 ZCpa(t_Z))
a=0 =0 1=0 a=0 1=0 a=0

By the problem 1, the last summation is equal to



as desired. O

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)



