18.781, Fall 2007 Problem Set 9

Solutions to Selected Problems

Problem 1 When x = y, it is clear that

$$p^{-1} \sum_{t=0}^{p-1} \zeta_p^{t(x-y)} = p^{-1} \sum_{t=0}^{p-1} \zeta_p^0 = p^{-1} \sum_{t=0}^{p-1} 1 = 1.$$

Now recall the fact that if α is not 0 in modulo p, then $\{0, \alpha, 2\alpha, \dots, (p-1)\alpha\}$ is a complete residue system modulo p. Also $a \equiv b \pmod{p}$ implies that $\zeta_p^a = \zeta_p^b$. Thus, when $x \not\equiv y \pmod{p}$, we have

$$\sum_{t=0}^{p-1} \zeta_p^{t(x-y)} = \sum_{t=0}^{p-1} \zeta_p^t = 0,$$

where the last equality can be verified easily. Therefore, we have

$$p^{-1} \sum_{t=0}^{p-1} \zeta_p^{t(x-y)} = 0$$

This gives the desired conclusion. \Box

Problem 2 We can easily find that

$$\chi(a)g(a,\chi) = \sum_{t=0}^{p-1} \chi(at)\zeta_p^{at} = \sum_{x=0}^{p-1} \chi(x)\zeta_p^x = g(1,\chi)$$

because if a is not 0 in modulo p, then $\{0, a, 2a, \dots, (p-1)a\}$ is a complete residue system modulo p.

Since $\chi(a)\chi(a^{-1})=1$, we have

$$g(a,\chi) = \chi(a^{-1})g(1,\chi).$$

Problem 3 (a) The sum is going through $(a, b) = (0, p), (1, 0), (2, p - 1), (3, p - 2), \dots, (p - 1, 2)$. The number of these is p, hence by the convention of the definition of 1_p , we have $J(1_p, 1_p) = p$.

(b) This is equivalent to prove that $\sum_{t=0}^{p-1} \chi(t) = 0$ for nontrivial character χ . For the nontrivial character χ , there is $\alpha \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ such that $\chi(\alpha) \neq 1$. Then again by the fact that $\{0, \alpha, 2\alpha, \cdots, (p-1)\alpha\}$ is a complete residue system modulo p,

$$\sum_{t=0}^{p-1} \chi(t) = \sum_{t=0}^{p-1} \chi(\alpha t) = \sum_{t=0}^{p-1} \chi(\alpha) \chi(t) = \chi(\alpha) \sum_{t=0}^{p-1} \chi(t).$$

Since $\chi(\alpha) \neq 1$, we should have $\sum_{t=0}^{p-1} \chi(t) = 0$.

(c) (Note: for the nontrivial character $\chi, \chi(0)$ can be regarded as 0.) First, it is easily verified that

When
$$a, b \in \{2, 3, \dots, p-1\}$$
, $a(1-a)^{-1} \equiv b(1-b)^{-1} \pmod{p}$ if and only if $a \equiv b$.

Also, $a(1-a)^{-1}$ is not 0, -1. when $a \in \{2, 3, \dots, p-1\}$. (For example, $a(1-a)^{-1} \equiv -1$ iff $a \equiv a-1$, which is impossible.) Therefore, $\{a(1-a)^{-1}\}_{a=2,\dots,p-1} = \{1, 2, \dots, p-2\}$. This implies that

$$J(\chi,\chi^{-1}) = \sum_{a=2}^{p-1} \chi(a)\chi^{-1}(1-a) = \sum_{a=2}^{p-1} \chi(a(1-a)^{-1}) = \sum_{a=1}^{p-2} \chi(a) = -\chi(-1),$$

where the last equality holds because of (b).

(d) Write

$$J(\chi,\lambda)g(\chi\lambda) = \sum_{i=0}^{p-1} \chi(i)\lambda(1-i) \sum_{j=0}^{p-1} \chi(j)\lambda(j)\zeta_p{}^j = \sum_{j=0}^{p-1} \sum_{i=0}^{p-1} \chi(ij)\lambda(j-ij)\zeta_p{}^j = \sum_{j=1}^{p-1} \sum_{i=0}^{p-1} \chi(ij)\lambda(j-ij)\zeta_p{}^j.$$

And also, by change of coordinate (u := s + t, v := s), we have

$$g(\chi)g(\lambda) = \sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \chi(s)\lambda(t)\zeta_p^{s+t} = \sum_{u=0}^{p-1} \sum_{v=0}^{p-1} \chi(v)\lambda(u-v)\zeta_p^{u} = \sum_{v=0}^{p-1} \chi(v)\lambda(-v) + \sum_{u=1}^{p-1} \sum_{v=0}^{p-1} \chi(v)\lambda(u-v)\zeta_p^{u}$$

Since $\chi \cdot \lambda$ is not a trivial character, we have

$$\sum_{v=0}^{p-1} \chi(v)\lambda(-v) = \lambda(-1)\sum_{v=0}^{p-1} (\chi\lambda)(v) = 0.$$

Therefore, above two summations are same, so we have

$$J(\chi, \lambda)g(\chi\lambda) = g(\chi)g(\lambda)$$

which gives us desired result. \square

Problem 4 It is not hard to observe that $\mathbb{Z}/p\mathbb{Z}$ is isomorphic to $R/\pi R$ as a ring, with the isomorphism f(a) := a. (Here are some abuses of notation. If a is an element in \mathbb{Z} , it can be regarded as an element in $\mathbb{Z}/p\mathbb{Z}$, also since $\mathbb{Z} \in R$, a also can be regarded as an element in $R \to R/\pi R$.)

Therefore, $x^3 \equiv a \pmod{p}$ is solvable in the integers if and only if $x^3 \equiv a \pmod{\pi}$ in R. Now, by the problem 5 in Problem set 8, we can deduce the wanted conclusion. \square

Problem 5 It is easy to observe that $2+3\omega$ and 11 are primary primes. Therefore we have cubic reciprocity

 $\left(\frac{2+3\omega}{11}\right) = \left(\frac{11}{2+3\omega}\right).$

This implies that $x^3 \equiv 2 + 3\omega(11)$ is solvable if and only if $x^3 \equiv 11(2 + 3\omega)$ is solvable. By the problem 4, this is equivalent to the existence of integer solution of $x^3 \equiv 11 \pmod{7}$.

By Fermat's theorem, if x is not a multiple of 7, $x^6 \equiv 1 \pmod{7}$, hence $(x^3 - 1)(x^3 + 1) \equiv 0 \pmod{7}$. This gives $x^3 \equiv -1, 0, 1 \pmod{7}$ for any integer x. Thus there is no integer solution of $x^3 \equiv 11 \pmod{7}$, and we can conclude that $x^3 \equiv 2 + 3\omega(11)$ is not solvable. \square

Problem 6 For fixed p, define I be the set of quadratic residues in modulo p, and J be the set of non residues. Then we have

$$g(1,p) = \sum_{t=1}^{p-1} \left(\frac{t}{p}\right) \zeta_p^{\ t} = \sum_{t \in I} \left(\frac{t}{p}\right) \zeta_p^{\ t} + \sum_{t \in J} \left(\frac{t}{p}\right) \zeta_p^{\ t} = \sum_{t \in I} \zeta_p^{\ t} - \sum_{t \in J} \zeta_p^{\ t}.$$

Since

$$-1 = \sum_{t=1}^{p-1} \zeta_p^{t} = \sum_{t \in I} \zeta_p^{t} + \sum_{t \in J} \zeta_p^{t},$$

we can have

$$g(1,p) = 1 + 2\sum_{t \in I} \zeta_p^{\ t}.$$

For any $t \in I$, there are exactly two values a in $\{1, \dots, p-1\}$ satisfying $a^2 \equiv t \pmod{p}$. This implies that

$$1 + 2\sum_{t \in I} \zeta_p^{\ t} = 1 + \sum_{a=1}^{p-1} \zeta_p^{\ a^2} = \sum_{t=0}^{p-1} \zeta_p^{\ t^2},$$

so we get the desired conclusion. \Box

Problem 7

$$\sum_{a=0}^{p-1} \hat{f}(a) \zeta_p^{\ at} = p^{-1} \sum_{a=0}^{p-1} \sum_{i=0}^{p-1} f(i) \zeta_p^{\ -ai} \zeta_p^{\ at} = p^{-1} \sum_{i=0}^{p-1} \sum_{a=0}^{p-1} f(i) \zeta_p^{\ a(t-i)} = \sum_{i=0}^{p-1} f(i) \left(p^{-1} \sum_{a=0}^{p-1} \zeta_p^{\ a(t-i)} \right)$$

By the problem 1, the last summation is equal to

$$\sum_{i=0}^{p-1} f(i)\delta(i,t) = f(t),$$

as desired. \Box

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)