Solutions to Selected Problems

Problem 1 When $x=y$, it is clear that

$$
p^{-1} \sum_{t=0}^{p-1} \zeta_{p}^{t(x-y)}=p^{-1} \sum_{t=0}^{p-1} \zeta_{p}^{0}=p^{-1} \sum_{t=0}^{p-1} 1=1
$$

Now recall the fact that if α is not 0 in modulo p, then $\{0, \alpha, 2 \alpha, \cdots,(p-1) \alpha\}$ is a complete residue system modulo p. Also $a \equiv b(\bmod p)$ implies that $\zeta_{p}^{a}=\zeta_{p}^{b}$.
Thus, when $x \not \equiv y(\bmod p)$, we have

$$
\sum_{t=0}^{p-1} \zeta_{p}^{t(x-y)}=\sum_{t=0}^{p-1} \zeta_{p}^{t}=0
$$

where the last equality can be verified easily. Therefore, we have

$$
p^{-1} \sum_{t=0}^{p-1} \zeta_{p}^{t(x-y)}=0
$$

This gives the desired conclusion.

Problem 2 We can easily find that

$$
\chi(a) g(a, \chi)=\sum_{t=0}^{p-1} \chi(a t) \zeta_{p}^{a t}=\sum_{x=0}^{p-1} \chi(x) \zeta_{p}^{x}=g(1, \chi)
$$

because if a is not 0 in modulo p, then $\{0, a, 2 a, \cdots,(p-1) a\}$ is a complete residue system modulo p.
Since $\chi(a) \chi\left(a^{-1}\right)=1$, we have

$$
g(a, \chi)=\chi\left(a^{-1}\right) g(1, \chi)
$$

Problem 3 (a) The sum is going through $(a, b)=(0, p),(1,0),(2, p-1),(3, p-2), \cdots,(p-1,2)$. The number of these is p, hence by the convention of the definition of 1_{p}, we have $J\left(1_{p}, 1_{p}\right)=p$.
(b) This is equivalent to prove that $\sum_{t=0}^{p-1} \chi(t)=0$ for nontrivial character χ. For the nontrivial character χ, there is $\alpha\left(\in(\mathbb{Z} / p \mathbb{Z})^{\times}\right)$such that $\chi(\alpha) \neq 1$. Then again by the fact that $\{0, \alpha, 2 \alpha, \cdots,(p-1) \alpha\}$ is a complete residue system modulo p,

$$
\sum_{t=0}^{p-1} \chi(t)=\sum_{t=0}^{p-1} \chi(\alpha t)=\sum_{t=0}^{p-1} \chi(\alpha) \chi(t)=\chi(\alpha) \sum_{t=0}^{p-1} \chi(t)
$$

Since $\chi(\alpha) \neq 1$, we should have $\sum_{t=0}^{p-1} \chi(t)=0$.
(c) (Note: for the nontrivial character $\chi, \chi(0)$ can be regarded as 0 .) First, it is easily verified that

When $a, b \in\{2,3, \cdots, p-1\}, a(1-a)^{-1} \equiv b(1-b)^{-1}(\bmod p)$ if and only if $a \equiv b$.
Also, $a(1-a)^{-1}$ is not $0,-1$. when $a \in\{2,3, \cdots, p-1\}$. (For example, $a(1-a)^{-1} \equiv-1 \mathrm{iff}$ $a \equiv a-1$, which is impossible.) Therefore, $\left\{a(1-a)^{-1}\right\}_{a=2, \cdots, p-1}=\{1,2, \cdots, p-2\}$. This implies that

$$
J\left(\chi, \chi^{-1}\right)=\sum_{a=2}^{p-1} \chi(a) \chi^{-1}(1-a)=\sum_{a=2}^{p-1} \chi\left(a(1-a)^{-1}\right)=\sum_{a=1}^{p-2} \chi(a)=-\chi(-1)
$$

where the last equality holds because of (b).
(d) Write

$$
J(\chi, \lambda) g(\chi \lambda)=\sum_{i=0}^{p-1} \chi(i) \lambda(1-i) \sum_{j=0}^{p-1} \chi(j) \lambda(j) \zeta_{p}{ }^{j}=\sum_{j=0}^{p-1} \sum_{i=0}^{p-1} \chi(i j) \lambda(j-i j) \zeta_{p}{ }^{j}=\sum_{j=1}^{p-1} \sum_{i=0}^{p-1} \chi(i j) \lambda(j-i j) \zeta_{p}{ }^{j}
$$

And also, by change of coordinate $(u:=s+t, v:=s)$, we have

$$
g(\chi) g(\lambda)=\sum_{s=0}^{p-1} \sum_{t=0}^{p-1} \chi(s) \lambda(t) \zeta_{p}{ }^{s+t}=\sum_{u=0}^{p-1} \sum_{v=0}^{p-1} \chi(v) \lambda(u-v) \zeta_{p}{ }^{u}=\sum_{v=0}^{p-1} \chi(v) \lambda(-v)+\sum_{u=1}^{p-1} \sum_{v=0}^{p-1} \chi(v) \lambda(u-v) \zeta_{p}{ }^{u}
$$

Since $\chi \cdot \lambda$ is not a trivial character, we have

$$
\sum_{v=0}^{p-1} \chi(v) \lambda(-v)=\lambda(-1) \sum_{v=0}^{p-1}(\chi \lambda)(v)=0
$$

Therefore, above two summations are same, so we have

$$
J(\chi, \lambda) g(\chi \lambda)=g(\chi) g(\lambda)
$$

which gives us desired result.

Problem 4 It is not hard to observe that $\mathbb{Z} / p \mathbb{Z}$ is isomorphic to $R / \pi R$ as a ring, with the isomorphism $f(a):=a$. (Here are some abuses of notation. If a is an element in \mathbb{Z}, it can be regarded as an element in $\mathbb{Z} / p \mathbb{Z}$, also since $\mathbb{Z} \in R, a$ also can be regarded as an element in $R \rightarrow R / \pi R$.)

Therefore, $x^{3} \equiv a(\bmod p)$ is solvable in the integers if and only if $x^{3} \equiv a(\bmod \pi)$ in R. Now, by the problem 5 in Problem set 8, we can deduce the wanted conclusion.

Problem 5 It is easy to observe that $2+3 \omega$ and 11 are primary primes. Therefore we have cubic reciprocity

$$
\left(\frac{2+3 \omega}{11}\right)=\left(\frac{11}{2+3 \omega}\right)
$$

This implies that $x^{3} \equiv 2+3 \omega(11)$ is solvable if and only if $x^{3} \equiv 11(2+3 \omega)$ is solvable. By the problem 4 , this is equivalent to the existence of integer solution of $x^{3} \equiv 11(\bmod 7)$.
By Fermat's theorem, if x is not a multiple of $7, x^{6} \equiv 1(\bmod 7)$, hence $\left(x^{3}-1\right)\left(x^{3}+1\right) \equiv 0$ $(\bmod 7)$. This gives $x^{3} \equiv-1,0,1(\bmod 7)$ for any integer x. Thus there is no integer solution of $x^{3} \equiv 11(\bmod 7)$, and we can conclude that $x^{3} \equiv 2+3 \omega(11)$ is not solvable.

Problem 6 For fixed p, define I be the set of quadratic residues in modulo p, and J be the set of non residues. Then we have

$$
g(1, p)=\sum_{t=1}^{p-1}\left(\frac{t}{p}\right) \zeta_{p}{ }^{t}=\sum_{t \in I}\left(\frac{t}{p}\right) \zeta_{p}{ }^{t}+\sum_{t \in J}\left(\frac{t}{p}\right) \zeta_{p}{ }^{t}=\sum_{t \in I} \zeta_{p}^{t}-\sum_{t \in J} \zeta_{p}{ }^{t}
$$

Since

$$
-1=\sum_{t=1}^{p-1} \zeta_{p}^{t}=\sum_{t \in I} \zeta_{p}^{t}+\sum_{t \in J} \zeta_{p}^{t}
$$

we can have

$$
g(1, p)=1+2 \sum_{t \in I} \zeta_{p}^{t}
$$

For any $t \in I$, there are exactly two values a in $\{1, \cdots, p-1\}$ satisfying $a^{2} \equiv t(\bmod p)$. This implies that

$$
1+2 \sum_{t \in I} \zeta_{p}^{t}=1+\sum_{a=1}^{p-1} \zeta_{p}^{a^{2}}=\sum_{t=0}^{p-1} \zeta_{p}^{t^{2}}
$$

so we get the desired conclusion.

Problem 7

$$
\sum_{a=0}^{p-1} \hat{f}(a) \zeta_{p}^{a t}=p^{-1} \sum_{a=0}^{p-1} \sum_{i=0}^{p-1} f(i) \zeta_{p}^{-a i} \zeta_{p}^{a t}=p^{-1} \sum_{i=0}^{p-1} \sum_{a=0}^{p-1} f(i) \zeta_{p}^{a(t-i)}=\sum_{i=0}^{p-1} f(i)\left(p^{-1} \sum_{a=0}^{p-1} \zeta_{p}^{a(t-i)}\right)
$$

By the problem 1, the last summation is equal to

$$
\sum_{i=0}^{p-1} f(i) \delta(i, t)=f(t)
$$

as desired.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

