18.781, Fall 2007 Problem Set 9 Due: WEDNESDAY, November 14

This set of problems concludes our work on reciprocity laws and algebraic number theory.

1. Show that

$$p^{-1} \sum_{t=0}^{p-1} \zeta_p^{t(x-y)} = \delta(x, y)$$

where

$$\delta(x,y) = \begin{cases} 1 & x \equiv y \ (p) \\ 0 & x \not\equiv y \ (p) \end{cases}$$

2. Let χ be a character on $\mathbb{Z}/p\mathbb{Z}$. (That is, a multiplicative homomorphism from $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to the non-zero complex numbers.) Define, as in class,

$$g(a,\chi) = \sum_{t \pmod{p}} \chi(t) \zeta_p^{at}.$$

Prove that if $a \neq 0$ and $\chi \neq 1_p$, the trivial character mod p, that

$$g(a,\chi) = \chi(a^{-1})g(1,\chi)$$

3. The Jacobi sum (used in the cubic case for our proof of reciprocity) is defined by

$$J(\chi, \lambda) = \sum_{\substack{a,b \ (p)\\a+b=1}} \chi(a)\lambda(b)$$

where χ and λ are characters of $\mathbb{Z}/p\mathbb{Z}$. Prove the following:

- (a) $J(1_p, 1_p) = p$ (again 1_p is the trivial character which is always 1 mod p. By convention, we take $1_p(0) = 1$ for this problem, though that is not always the standard convention.)
- (b) $J(1_p, \chi) = 0$
- (c) $J(\chi, \chi^{-1}) = -\chi(-1)$
- (d) If $\chi \cdot \lambda \neq 1_p$, then

$$J(\chi, \lambda) = \frac{g(\chi)g(\lambda)}{g(\chi\lambda)}$$

4. Let $p \equiv 1$ (3), and set $p = \pi \bar{\pi}$, with π a primary prime in R. Show that

$$x^3 \equiv a \ (p)$$

is solvable in the integers if and only if

$$\left(\frac{a}{\pi}\right) = 1.$$

5. The congruence

$$x^3 \equiv 2 + 3\omega \ (11)$$

is difficult to solve in R since there are 121 residue classes mod 11. By cubic reciprocity

$$\left(\frac{2+3\omega}{11}\right) = \left(\frac{11}{2+3\omega}\right).$$

Use this fact, together with your knowledge of the congruence

$$x^3 \equiv 11 \ (7)$$

to prove that the initial congruence mod 11 in R is not solvable.

6. Prove $g(1,p) = \sum_{t \pmod{p}} \zeta_p^{t^2}$ by evaluating the sum

$$\sum_{t \pmod{p}} [1 + \left(\frac{t}{p}\right)] \zeta_p^t$$

(Recall that ζ_p denotes a pth root of unity $e^{2\pi i/p}$ and the Gauss sum

$$g(a, p) = \sum_{t \pmod{p}} \left(\frac{t}{p}\right) \zeta_p^{at}$$

7. Let f be a function from $\mathbb{Z} \to \mathbb{C}$, the complex numbers. Suppose that for p prime, f(n+p) = f(n) for all integers n. Define

$$\hat{f}(a) = p^{-1} \sum_{t \pmod{p}} f(t) \zeta_p^{-at}.$$

Prove that

$$f(t) = \sum_{a \pmod{p}} \hat{f}(a) \zeta_p^{at}$$

(Note the similarity with Fourier analysis for periodic functions on \mathbb{R} .)