18.781, Fall 2007 Problem Set 9
 Due: WEDNESDAY, November 14

This set of problems concludes our work on reciprocity laws and algebraic number theory.

1. Show that

$$
p^{-1} \sum_{t=0}^{p-1} \zeta_{p}^{t(x-y)}=\delta(x, y)
$$

where

$$
\delta(x, y)= \begin{cases}1 & x \equiv y(p) \\ 0 & x \not \equiv y(p)\end{cases}
$$

2. Let χ be a character on $\mathbb{Z} / p \mathbb{Z}$. (That is, a multiplicative homomorphism from $(\mathbb{Z} / p \mathbb{Z})^{\times}$to the non-zero complex numbers.) Define, as in class,

$$
g(a, \chi)=\sum_{t(\bmod p)} \chi(t) \zeta_{p}^{a t}
$$

Prove that if $a \neq 0$ and $\chi \neq 1_{p}$, the trivial character $\bmod p$, that

$$
g(a, \chi)=\chi\left(a^{-1}\right) g(1, \chi)
$$

3. The Jacobi sum (used in the cubic case for our proof of reciprocity) is defined by

$$
J(\chi, \lambda)=\sum_{\substack{a, b(p) \\ a+b=1}} \chi(a) \lambda(b)
$$

where χ and λ are characters of $\mathbb{Z} / p \mathbb{Z}$. Prove the following:
(a) $J\left(1_{p}, 1_{p}\right)=p$ (again 1_{p} is the trivial character which is always 1 $\bmod p$. By convention, we take $1_{p}(0)=1$ for this problem, though that is not always the standard convention.)
(b) $J\left(1_{p}, \chi\right)=0$
(c) $J\left(\chi, \chi^{-1}\right)=-\chi(-1)$
(d) If $\chi \cdot \lambda \neq 1_{p}$, then

$$
J(\chi, \lambda)=\frac{g(\chi) g(\lambda)}{g(\chi \lambda)}
$$

4. Let $p \equiv 1$ (3), and set $p=\pi \bar{\pi}$, with π a primary prime in R. Show that

$$
x^{3} \equiv a(p)
$$

is solvable in the integers if and only if

$$
\left(\frac{a}{\pi}\right)=1 .
$$

5. The congruence

$$
x^{3} \equiv 2+3 \omega(11)
$$

is difficult to solve in R since there are 121 residue classes mod 11 . By cubic reciprocity

$$
\left(\frac{2+3 \omega}{11}\right)=\left(\frac{11}{2+3 \omega}\right) .
$$

Use this fact, together with your knowledge of the congruence

$$
x^{3} \equiv 11(7)
$$

to prove that the initial congruence $\bmod 11$ in R is not solvable.
6. Prove $g(1, p)=\sum_{t(\bmod p)} \zeta_{p}^{t^{2}}$ by evaluating the sum

$$
\sum_{t(\bmod p)}\left[1+\left(\frac{t}{p}\right)\right] \zeta_{p}^{t}
$$

(Recall that ζ_{p} denotes a p th root of unity $e^{2 \pi i / p}$ and the Gauss sum

$$
g(a, p)=\sum_{t(\bmod p)}\left(\frac{t}{p}\right) \zeta_{p}^{a t}
$$

7. Let f be a function from $\mathbb{Z} \rightarrow \mathbb{C}$, the complex numbers. Suppose that for p prime, $f(n+p)=f(n)$ for all integers n. Define

$$
\hat{f}(a)=p^{-1} \sum_{t(\bmod p)} f(t) \zeta_{p}^{-a t}
$$

Prove that

$$
f(t)=\sum_{a(\bmod p)} \hat{f}(a) \zeta_{p}^{a t}
$$

(Note the similarity with Fourier analysis for periodic functions on \mathbb{R}.)

