
18.781, Fall 2007 Problem Set 8

Solutions to Selected Problems

Problem 2 First, observe the following statement.

If a prime integer (in Z) p is of the form 3k + 2, p is a prime element in R.

This can be proved easily using the problem 6 in problem set 7. (Note that if a is a prime
factor of p ,then N(a) should be p. ) By this, we can conclude that 2, 5, 11 are still primes in R.

If x = r + sω (r, s ∈ Z),by easy computation, we have xx̄ = N(x). It can help us to find the
factorization of the prime integer (in Z) p. Once we find r, s such that r2 − rs + s2 = p, then
we have (r + sω)(r + sω̄) = (r + sω)(r− s− sω) = p. (Each factor has prime integer value by
the function N , so they are primes in R.)

By above observation, 22−2 ·1+12 = 3, 32−3 ·1+12 = 7 and 32−3 ·4+42 = 13 implies that
3 = (2+ω)(1−ω), 7 = (3+ω)(2−ω) and 13 = (3+4ω)(−1−4ω) can be the prime factorization.

In conclusion, we can have following prime factorizations.

7 = (3 + ω)(2 − ω)

21 = 3 · 7 = (2 + ω)(1 − ω)(3 + ω)(2 − ω)

45 = 32 · 5 = (2 + ω)2(1 − ω)2 · 5

22 = 2 · 11

143 = 11 · 13 = 11 · (3 + 4ω)(−1 − 4ω)
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Problem 3 First, prove the following claim.

For any prime π ∈ R with N(π) ≡ 1 (3), {π,−π ωπ,−ωπ, ω2π,−ω2π} are all distinct in
(mod 3). (i.e, in R/3R.)

It is not hard to prove that the {1,−1, ω,−ω, ω2,−ω2} are all distinct in (mod 3). Also, πX ≡
πY in R/3R implies that 3 = (2 + ω)(1−ω) | π(X −Y ). But since N(2 + ω) = N(1−ω) = 3
and N(π) ≡ 1 (3), it is clear that (2+ω) and (1−ω) cannot divide π. Since these are primes
in R, we can conclude that 3 = (2 + ω)(1 − ω) | (X − Y ). (This is the similar situation with
the following. In Z, d | ab implies d | b when gcd(d, a) = 1.) Therefore, we have πX = πY
in R/3R if and only if X = Y in R/3R. With the fact that {1,−1, ω,−ω, ω2,−ω2} are all
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distinct in R/3R, we can find that the above claim is true.

For any element α in R, we can say that α = (3k + r) + (3t + s)ω with r, s = 0, 1, 2, and in
this case, α = r + sω (mod 3). If 3 - N(a), then 3 - ((3k + r)2 − (3k + r)(3t + s) + (3t + s)2).
This gives that (r, s) = (0, 1), (1, 0), (0, 2), (2, 0), (1, 1), (2, 2). Also it can be easily verified
that α = r + sω for (r, s) = (0, 1), (1, 0), (0, 2), (2, 0), (1, 1), (2, 2) are all distinct in (mod 3).

By the claim, the six elements {π,−π ωπ,−ωπ, ω2π,−ω2π} are all distinct in (mod 3), and
each of their norm (the value by N) is not divisible by 3, hence, in R/3R, this set is exactly
equal to {1, ω, 2, 2ω, 1 + ω, 2 + 2ω}. Therefore, exactly one of these six elements is equivalent
to 2. 2

Problem 4 We can observe that 52 − 5 · 3 + 32 = 19. This gives

(5 + 3ω)(2 − 3ω) = 19.

Clearly these two prime factors are primary.
(Remark) In this case, we are lucky. If we choose the factorization (3 + 5ω)(−2 + 2ω) = 19,
we need to find the primary element by computation. 2

Problem 5 (For this problem, assume that N(π) is not 3.) Since π is a prime element, R/πR
is an integral domain which has finite element. (The number of residue classes in R/πR is
N(π) by the problem 1.) In general, finite integral domain is a field, so R/πR is a finite
field. Therefore,since the nonzero elements of the finite field R/πR is a cyclic group as a
multiplicative group, there is a primitive root for R/πR.

Now let g be the primitive root of R/πR. Then we can express the all elements of R/πR as
{0, g1, g2, · · · , gN(π)−1 = 1}.

If α is a cubic residue mod π, α ≡ x3(π). Then
(

α
π

)
3
≡ xN(π)−1 = gt(N(π)−1) = 1.

Conversely,
(

α
π

)
3

= 1 implies that if α = gt, g
t(N(π)−1)

3 = 1. Since g is a primitive root, it is

equivalent to (N(π)− 1) | t(N(π)−1)
3 (in Z), which is same as 3 | t. Therefore, α = (g

t
3 )3, so α

is a cubic residue mod π. 2

Problem 7 For (a), we already know that 5 is a prime in R by the claim in problem 2. Hence, by
the observation in problem 5, any nonzero element can be written as gt and g24 ≡ 1 in R/5R.
Therefore, any nonzero element α in R/5R satisfies α24 = 1 in R/5R. Since the number of
nonzero elements in R/5R is exactly N(5) − 1 = 24, the factorization of x24 − 1 in R/5R is

x24 − 1 =
∏

α∈(R/5R)∗

(x − α),
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where (R/5R)∗ indicates the set of nonzero elements in (R/5R).

For (b), we already observed that α = gt is a cubic residue if and only if 3 | t in Z. Thus,
there are 8 cubic residues in R/5R.

For (c), we can compute that, in R/5R,

(ω(1 − ω))4 = ω4(1 − ω)4 = ω · (−3ω)2 = 9 = −1 6= 1

(ω(1 − ω))8 = (−1)2 = 1

implies that ω(1 − ω) has order 8. Clearly ω has order 3. Since gcd(3, 8) = 1, ω2(1 − ω) =
(ω)(ω(1 − ω)) has order 3 · 8 = 24. 2

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)
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