18.781, Fall 2007 Problem Set 8

Solutions to Selected Problems

Problem 2 First, observe the following statement.

If a prime integer (in \mathbb{Z}) p is of the form 3k+2, p is a prime element in R.

This can be proved easily using the problem 6 in problem set 7. (Note that if a is a prime factor of p, then N(a) should be p.) By this, we can conclude that 2, 5, 11 are still primes in R.

If $x = r + s\omega$ $(r, s \in \mathbb{Z})$, by easy computation, we have $x\bar{x} = N(x)$. It can help us to find the factorization of the prime integer (in \mathbb{Z}) p. Once we find r, s such that $r^2 - rs + s^2 = p$, then we have $(r + s\omega)(r + s\bar{\omega}) = (r + s\omega)(r - s - s\omega) = p$. (Each factor has prime integer value by the function N, so they are primes in R.)

By above observation, $2^2 - 2 \cdot 1 + 1^2 = 3$, $3^2 - 3 \cdot 1 + 1^2 = 7$ and $3^2 - 3 \cdot 4 + 4^2 = 13$ implies that $3 = (2+\omega)(1-\omega)$, $7 = (3+\omega)(2-\omega)$ and $13 = (3+4\omega)(-1-4\omega)$ can be the prime factorization.

In conclusion, we can have following prime factorizations.

$$7 = (3 + \omega)(2 - \omega)$$

$$21 = 3 \cdot 7 = (2 + \omega)(1 - \omega)(3 + \omega)(2 - \omega)$$

$$45 = 3^{2} \cdot 5 = (2 + \omega)^{2}(1 - \omega)^{2} \cdot 5$$

$$22 = 2 \cdot 11$$

$$143 = 11 \cdot 13 = 11 \cdot (3 + 4\omega)(-1 - 4\omega)$$

Problem 3 First, prove the following claim.

For any prime $\pi \in R$ with $N(\pi) \equiv 1$ (3), $\{\pi, -\pi \omega \pi, -\omega \pi, \omega^2 \pi, -\omega^2 \pi\}$ are all distinct in (mod 3). (i.e. in R/3R.)

It is not hard to prove that the $\{1,-1,\omega,-\omega,\omega^2,-\omega^2\}$ are all distinct in (mod 3). Also, $\pi X \equiv \pi Y$ in R/3R implies that $3=(2+\omega)(1-\omega)\mid \pi(X-Y)$. But since $N(2+\omega)=N(1-\omega)=3$ and $N(\pi)\equiv 1$ (3), it is clear that $(2+\omega)$ and $(1-\omega)$ cannot divide π . Since these are primes in R, we can conclude that $3=(2+\omega)(1-\omega)\mid (X-Y)$. (This is the similar situation with the following. In \mathbb{Z} , $d\mid ab$ implies $d\mid b$ when $\gcd(d,a)=1$.) Therefore, we have $\pi X=\pi Y$ in R/3R if and only if X=Y in R/3R. With the fact that $\{1,-1,\omega,-\omega,\omega^2,-\omega^2\}$ are all

distinct in R/3R, we can find that the above claim is true.

For any element α in R, we can say that $\alpha = (3k+r) + (3t+s)\omega$ with r, s = 0, 1, 2, and in this case, $\alpha = r + s\omega \pmod{3}$. If $3 \nmid N(a)$, then $3 \nmid ((3k+r)^2 - (3k+r)(3t+s) + (3t+s)^2)$. This gives that (r,s) = (0,1), (1,0), (0,2), (2,0), (1,1), (2,2). Also it can be easily verified that $\alpha = r + s\omega$ for (r,s) = (0,1), (1,0), (0,2), (2,0), (1,1), (2,2) are all distinct in (mod 3).

By the claim, the six elements $\{\pi, -\pi \omega \pi, -\omega \pi, \omega^2 \pi, -\omega^2 \pi\}$ are all distinct in (mod 3), and each of their norm (the value by N) is not divisible by 3, hence, in R/3R, this set is exactly equal to $\{1, \omega, 2, 2\omega, 1 + \omega, 2 + 2\omega\}$. Therefore, exactly one of these six elements is equivalent to 2. \square

Problem 4 We can observe that $5^2 - 5 \cdot 3 + 3^2 = 19$. This gives

$$(5+3\omega)(2-3\omega) = 19.$$

Clearly these two prime factors are primary.

(Remark) In this case, we are lucky. If we choose the factorization $(3 + 5\omega)(-2 + 2\omega) = 19$, we need to find the primary element by computation. \Box

Problem 5 (For this problem, assume that $N(\pi)$ is not 3.) Since π is a prime element, $R/\pi R$ is an integral domain which has finite element. (The number of residue classes in $R/\pi R$ is $N(\pi)$ by the problem 1.) In general, finite integral domain is a field, so $R/\pi R$ is a finite field. Therefore, since the nonzero elements of the finite field $R/\pi R$ is a cyclic group as a multiplicative group, there is a primitive root for $R/\pi R$.

Now let g be the primitive root of $R/\pi R$. Then we can express the all elements of $R/\pi R$ as $\{0, g^1, g^2, \cdots, g^{N(\pi)-1} = 1\}$.

If α is a cubic residue mod π , $\alpha \equiv x^3(\pi)$. Then $\left(\frac{\alpha}{\pi}\right)_3 \equiv x^{N(\pi)-1} = g^{t(N(\pi)-1)} = 1$.

Conversely, $\left(\frac{\alpha}{\pi}\right)_3 = 1$ implies that if $\alpha = g^t$, $g^{\frac{t(N(\pi)-1)}{3}} = 1$. Since g is a primitive root, it is equivalent to $(N(\pi)-1)\mid \frac{t(N(\pi)-1)}{3}$ (in \mathbb{Z}), which is same as $3\mid t$. Therefore, $\alpha=(g^{\frac{t}{3}})^3$, so α is a cubic residue mod π . \square

Problem 7 For (a), we already know that 5 is a prime in R by the claim in problem 2. Hence, by the observation in problem 5, any nonzero element can be written as g^t and $g^{24} \equiv 1$ in R/5R. Therefore, any nonzero element α in R/5R satisfies $\alpha^{24} = 1$ in R/5R. Since the number of nonzero elements in R/5R is exactly N(5) - 1 = 24, the factorization of $x^{24} - 1$ in R/5R is

$$x^{24} - 1 = \prod_{\alpha \in (R/5R)^*} (x - \alpha),$$

where $(R/5R)^*$ indicates the set of nonzero elements in (R/5R).

For (b), we already observed that $\alpha = g^t$ is a cubic residue if and only if $3 \mid t$ in \mathbb{Z} . Thus, there are 8 cubic residues in R/5R.

For (c), we can compute that, in R/5R,

$$(\omega(1-\omega))^4 = \omega^4(1-\omega)^4 = \omega \cdot (-3\omega)^2 = 9 = -1 \neq 1$$
$$(\omega(1-\omega))^8 = (-1)^2 = 1$$

implies that $\omega(1-\omega)$ has order 8. Clearly ω has order 3. Since $gcd(3,8)=1,\ \omega^2(1-\omega)=(\omega)(\omega(1-\omega))$ has order $3\cdot 8=24$. \square

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)