18.781, Fall 2007 Problem Set 8

Solutions to Selected Problems

Problem 2 First, observe the following statement.

If a prime integer $($ in $\mathbb{Z}) p$ is of the form $3 k+2, p$ is a prime element in R.

This can be proved easily using the problem 6 in problem set 7. (Note that if a is a prime factor of p,then $N(a)$ should be p.) By this, we can conclude that $2,5,11$ are still primes in R.

If $x=r+s \omega(r, s \in \mathbb{Z})$, by easy computation, we have $x \bar{x}=N(x)$. It can help us to find the factorization of the prime integer (in $\mathbb{Z}) p$. Once we find r, s such that $r^{2}-r s+s^{2}=p$, then we have $(r+s \omega)(r+s \bar{\omega})=(r+s \omega)(r-s-s \omega)=p$. (Each factor has prime integer value by the function N, so they are primes in R.)

By above observation, $2^{2}-2 \cdot 1+1^{2}=3,3^{2}-3 \cdot 1+1^{2}=7$ and $3^{2}-3 \cdot 4+4^{2}=13$ implies that $3=(2+\omega)(1-\omega), 7=(3+\omega)(2-\omega)$ and $13=(3+4 \omega)(-1-4 \omega)$ can be the prime factorization.

In conclusion, we can have following prime factorizations.

$$
\begin{gathered}
7=(3+\omega)(2-\omega) \\
21=3 \cdot 7=(2+\omega)(1-\omega)(3+\omega)(2-\omega) \\
45=3^{2} \cdot 5=(2+\omega)^{2}(1-\omega)^{2} \cdot 5 \\
22=2 \cdot 11 \\
143=11 \cdot 13=11 \cdot(3+4 \omega)(-1-4 \omega)
\end{gathered}
$$

Problem 3 First, prove the following claim.

For any prime $\pi \in R$ with $N(\pi) \equiv 1(3),\left\{\pi,-\pi \omega \pi,-\omega \pi, \omega^{2} \pi,-\omega^{2} \pi\right\}$ are all distinct in $(\bmod 3)$. (i.e, in $R / 3 R$.)

It is not hard to prove that the $\left\{1,-1, \omega,-\omega, \omega^{2},-\omega^{2}\right\}$ are all distinct in $(\bmod 3)$. Also, $\pi X \equiv$ πY in $R / 3 R$ implies that $3=(2+\omega)(1-\omega) \mid \pi(X-Y)$. But since $N(2+\omega)=N(1-\omega)=3$ and $N(\pi) \equiv 1(3)$, it is clear that $(2+\omega)$ and $(1-\omega)$ cannot divide π. Since these are primes in R, we can conclude that $3=(2+\omega)(1-\omega) \mid(X-Y)$. (This is the similar situation with the following. In $\mathbb{Z}, d \mid a b$ implies $d \mid b$ when $\operatorname{gcd}(d, a)=1$.) Therefore, we have $\pi X=\pi Y$ in $R / 3 R$ if and only if $X=Y$ in $R / 3 R$. With the fact that $\left\{1,-1, \omega,-\omega, \omega^{2},-\omega^{2}\right\}$ are all
distinct in $R / 3 R$, we can find that the above claim is true.

For any element α in R, we can say that $\alpha=(3 k+r)+(3 t+s) \omega$ with $r, s=0,1,2$, and in this case, $\alpha=r+s \omega(\bmod 3)$. If $3 \nmid N(a)$, then $3 \nmid\left((3 k+r)^{2}-(3 k+r)(3 t+s)+(3 t+s)^{2}\right)$. This gives that $(r, s)=(0,1),(1,0),(0,2),(2,0),(1,1),(2,2)$. Also it can be easily verified that $\alpha=r+s \omega$ for $(r, s)=(0,1),(1,0),(0,2),(2,0),(1,1),(2,2)$ are all distinct in $(\bmod 3)$.

By the claim, the six elements $\left\{\pi,-\pi \omega \pi,-\omega \pi, \omega^{2} \pi,-\omega^{2} \pi\right\}$ are all distinct in (mod 3$)$, and each of their norm (the value by N) is not divisible by 3 , hence, in $R / 3 R$, this set is exactly equal to $\{1, \omega, 2,2 \omega, 1+\omega, 2+2 \omega\}$. Therefore, exactly one of these six elements is equivalent to 2 .

Problem 4 We can observe that $5^{2}-5 \cdot 3+3^{2}=19$. This gives

$$
(5+3 \omega)(2-3 \omega)=19
$$

Clearly these two prime factors are primary.
(Remark) In this case, we are lucky. If we choose the factorization $(3+5 \omega)(-2+2 \omega)=19$, we need to find the primary element by computation.

Problem 5 (For this problem, assume that $N(\pi)$ is not 3.) Since π is a prime element, $R / \pi R$ is an integral domain which has finite element. (The number of residue classes in $R / \pi R$ is $N(\pi)$ by the problem 1.) In general, finite integral domain is a field, so $R / \pi R$ is a finite field. Therefore,since the nonzero elements of the finite field $R / \pi R$ is a cyclic group as a multiplicative group, there is a primitive root for $R / \pi R$.

Now let g be the primitive root of $R / \pi R$. Then we can express the all elements of $R / \pi R$ as $\left\{0, g^{1}, g^{2}, \cdots, g^{N(\pi)-1}=1\right\}$.

If α is a cubic residue $\bmod \pi, \alpha \equiv x^{3}(\pi)$. Then $\left(\frac{\alpha}{\pi}\right)_{3} \equiv x^{N(\pi)-1}=g^{t(N(\pi)-1)}=1$.
Conversely, $\left(\frac{\alpha}{\pi}\right)_{3}=1$ implies that if $\alpha=g^{t}, g^{\frac{t(N(\pi)-1)}{3}}=1$. Since g is a primitive root, it is equivalent to $(N(\pi)-1) \left\lvert\, \frac{t(N(\pi)-1)}{3}\right.$ (in $\left.\mathbb{Z}\right)$, which is same as $3 \mid t$. Therefore, $\alpha=\left(g^{\frac{t}{3}}\right)^{3}$, so α is a cubic residue $\bmod \pi$.

Problem 7 For (a), we already know that 5 is a prime in R by the claim in problem 2. Hence, by the observation in problem 5, any nonzero element can be written as g^{t} and $g^{24} \equiv 1$ in $R / 5 R$. Therefore, any nonzero element α in $R / 5 R$ satisfies $\alpha^{24}=1$ in $R / 5 R$. Since the number of nonzero elements in $R / 5 R$ is exactly $N(5)-1=24$, the factorization of $x^{24}-1$ in $R / 5 R$ is

$$
x^{24}-1=\prod_{\alpha \in(R / 5 R)^{*}}(x-\alpha)
$$

where $(R / 5 R)^{*}$ indicates the set of nonzero elements in $(R / 5 R)$.

For (b), we already observed that $\alpha=g^{t}$ is a cubic residue if and only if $3 \mid t$ in \mathbb{Z}. Thus, there are 8 cubic residues in $R / 5 R$.

For (c), we can compute that, in $R / 5 R$,

$$
\begin{aligned}
(\omega(1-\omega))^{4}= & \omega^{4}(1-\omega)^{4}=\omega \cdot(-3 \omega)^{2}=9=-1 \neq 1 \\
& (\omega(1-\omega))^{8}=(-1)^{2}=1
\end{aligned}
$$

implies that $\omega(1-\omega)$ has order 8. Clearly ω has order 3 . Since $\operatorname{gcd}(3,8)=1, \omega^{2}(1-\omega)=$ $(\omega)(\omega(1-\omega))$ has order $3 \cdot 8=24$.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

