18.781, Fall 2007 Problem Set 8 Due: FRIDAY, November 2

These exercises continue to develop the theory of algebraic integers needed for cubic reciprocity.

In all the following problems, let $R = \mathbb{Z}[\omega]$, with $\omega = \frac{-1+i\sqrt{3}}{2}$.

- 1. Prove that the number of residue classes in $R/\pi R$ is $N(\pi)$. (That is, rewrite the portion of the proof done in class, and then finish the proof by showing the representatives we chose are indeed distinct mod π .)
- 2. Factor the following elements of R into primes (in R, of course): 7, 21, 45, 22, 143 (and prove that your factors are indeed prime).
- 3. As we'll discuss in lecture on Monday, it is often convenient to choose a particular representative from the set of elements defined up to a choice of units. For rational numbers, we chose n from the set $\{n, -n\}$. For an element $\eta \in R$, we must choose from among

$$\{\eta, -\eta, \omega\eta, -\omega\eta, \omega^2\eta, -\omega^2\eta\}.$$

Prove that for any prime π with $N(\pi) = p \equiv 1$ (3), exactly one of these six elements (i.e. π multiplied by some unit in R) is equivalent to 2 (mod 3).

- 4. A prime $\pi \in R$ is called primary if $\pi \equiv 2$ (3). Factor 19 in R, and find primary primes which are "associates" of each prime factor (that is, they differ from the prime factor by a multiple of a unit).
- 5. Prove that primitive roots exist for $R/\pi R$, where π is a prime in R. Conclude that

$$\left(\frac{\alpha}{\pi}\right)_3 = 1$$
 if and only if α is a cubic residue mod π .

Recall that the symbol is defined by the congruence

$$\left(\frac{\alpha}{\pi}\right)_3 \equiv \alpha^{N(\pi)-1/3} (\pi).$$

6. Show that

$$\overline{\left(\frac{\alpha}{\pi}\right)_3} = \left(\frac{\alpha}{\pi}\right)_3^2 = \left(\frac{\alpha^2}{\pi}\right)_3 = \left(\frac{\bar{\alpha}}{\bar{\pi}}\right)_3,$$

where $\bar{\alpha}$ denotes the complex conjugate $(a + bi \mapsto a - bi)$.

7. The following questions concern R/5R.

- (a) What is the factorization of $x^{24} 1$ in R/5R?
- (b) How many cubic residues are there in R/5R?
- (c) Show that $\omega(1-\omega)$ has order 8 in R/5R and that $\omega^2(1-\omega)$ has order 24 in R/5R.