18.781, Fall 2007 Problem Set 7

Solutions to Selected Problems

Problem 1 First, observe that $N(13) = 13^2 - 13 \cdot 0 + 0^2 = 169 = 13^2$. If ab = 13 for some nonunit $a, b \in R$, then $N(a)N(b) = 13^2$ and N(a) = N(b) = 13 since 13 is a prime number in \mathbb{Z} and N(a), N(b) > 1.

For any $a = r + s\omega$, we have $N(a) = (r - s)^2 + rs$. By some computations, we can find the set of (r, s) which gives N(a) = 13. (Actually, they are (4, 1), (-4, -1), (4, 3), (-4, -3)). And we can easily find that

$$13 = (3 + 4\omega)(-1 - 4\omega).$$

Each element of left hand side is clearly non-unit in R since the value by N is not 1. \square

Problem 2 For any element a = s + ti in $\mathbb{Z}[i]$, define the function λ by $\lambda(a) = s^2 + t^2$. Since s + ti = 0 if and only if both s and t are 0, we see that $\lambda(s + ti) \ge 1$ when $s + ti \equiv 0$. It is easy to find that $\lambda(ab) = \lambda(a)\lambda(b)$ for $a, b \in \mathbb{Z}[i]$. Then when $b \ne 0$ we have

$$\lambda(a) = \lambda(a) \cdot 1 \le \lambda(a)\lambda(b) = \lambda(ab).$$

If $b \neq 0$, it is also easy to verify that $\frac{a}{b}$ is a complex number that can be written in the form c+di, where $c,d\in\mathbb{Q}$. Since $c\in\mathbb{Q}$, it lies between two consecutive integers; and similarly for d. Hence, there are integers m and n such that $|m-c|\leq \frac{1}{2}$ and $|n-d|\leq \frac{1}{2}$. Since $\frac{a}{b}=c+di$.

$$a = b[c + di] = b[(c - m + m) + (d - n + n)i]$$

$$= b[(m + ni) + ((c - m) + (d - n)i)]$$

$$= b[m + ni] + b[(c - m) + (d - n)i]$$

$$= bq + r,$$

where $q = m + ni \in \mathbb{Z}[i]$ and r = b[(c - m) + (d - n)i]. Since r = a - bq and $a, b, q \in \mathbb{Z}[i]$, we see that $r \in \mathbb{Z}[i]$. Therefore,

$$\lambda(r) = \lambda(b)\lambda[(c-m) + (d-n)i] = \lambda(b)[(c-m)^2 + (d-n)^2]$$

$$\leq \lambda(b)\left[\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2\right] = \left(\frac{1}{2}\right) \cdot \lambda(b) < \lambda(b).$$

This implies that $\mathbb{Z}[i]$ is a Euclidean domain. \square

Problem 3 We need to find elements $a = s + ti \in \mathbb{Z}[i]$ such that $\lambda(a) = s^2 + t^2 = 1$. Clearly, $s^2 + t^2 = 1$ if and only if (s, t) = (1, 0), (-1, 0), (0, 1), (0, -1). Thus all the units of $\mathbb{Z}[i]$ are

$$1, -1, i, -i$$
.

Problem 4 It is easy to find that

$$2 = (1+i)(1-i)$$

and 1+i, 1-i are irreducible because $\lambda(1+i)=\lambda(1-i)=2$ is a prime number in \mathbb{Z} . \square

Problem 5 For any $\alpha = a + b\omega \in R$, we have $\alpha = a + b\omega = (a + b) + (-b)(1 - \omega)$. Since a + b is an integer, $a + b \equiv 0, 1$ or 1 in modulus 3. This implies that a + b = 3k + r for some integer k and r = 0, 1 or 1. Note that 3 = (2 + w)(1 - w). Therefore, we have

$$\alpha = (a+b) + (-b)(1-\omega) = (3k+r) + (-b)(1-\omega) = r + (k(2+w) - b)(1-\omega).$$

Since $k(2+w)-b\in R$, we can conclude that α must be congruent to r, which is one of 0,1, or $-1 \mod 1 - \omega$. \square

Problem 6 Suppose that 1 and ω are same in $R/\wp R$. Then $(1-\omega)=a\wp$ for some $a\in R$. Take the norm, we have $3=N(1-\omega)=N(a)N(\wp)$. Hence $N(\wp)=1$ or 3, but by assumption, $N(\wp)\neq 3$, so we have $N(\wp)=1$. But this implies that \wp is an unit in R, which is a contradiction because \wp is a prime element. Therefore, 1 and ω are distinct in $R/\wp R$.

Similarly, $N(1-\omega^2) = N(2+\omega) = 2^2 - 2 \cdot 1 + 1 = 3$ and $N(\omega - \omega^2) = N(1+2\omega) = 3$ implies that, together with the above observation, $1, \omega$ and ω^2 are distinct in $R/\wp R$.

Hence, for any nonzero element r in $R/\wp R$, $r, r\omega, r\omega^2$ are all distinct. since $\omega^3 = 1$, we can say

Nonzero elements of
$$R/\wp R = \bigsqcup \{r, r\omega, r\omega^2\}$$

where | | means disjoint union.

This implies that $N(\wp) = \sharp$ of elements of $R/\wp R = 1 + \sharp$ of nonzero elements of $R/\wp R = 1 + 3k$. Thus we can conclude that $3 \mid N(\wp) - 1$. \square

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)