18.781, Fall 2007 Problem Set 7

Solutions to Selected Problems

Problem 1 First, observe that $N(13)=13^{2}-13 \cdot 0+0^{2}=169=13^{2}$. If $a b=13$ for some nonunit $a, b \in R$, then $N(a) N(b)=13^{2}$ and $N(a)=N(b)=13$ since 13 is a prime number in \mathbb{Z} and $N(a), N(b)>1$.
For any $a=r+s \omega$, we have $N(a)=(r-s)^{2}+r s$. By some computations, we can find the set of (r, s) which gives $N(a)=13$. (Actually, they are $(4,1),(-4,-1),(4,3),(-4,-3))$. And we can easily find that

$$
13=(3+4 \omega)(-1-4 \omega)
$$

Each element of left hand side is clearly non-unit in R since the value by N is not 1 .

Problem 2 For any element $a=s+t i$ in $\mathbb{Z}[i]$, define the function λ by $\lambda(a)=s^{2}+t^{2}$. Since $s+t i=0$ if and only if both s and t are 0 , we see that $\lambda(s+t i) \geq 1$ when $s+t i \equiv 0$. It is easy to find that $\lambda(a b)=\lambda(a) \lambda(b)$ for $a, b \in \mathbb{Z}[i]$. Then when $b \neq 0$ we have

$$
\lambda(a)=\lambda(a) \cdot 1 \leq \lambda(a) \lambda(b)=\lambda(a b)
$$

If $b \neq 0$, it is also easy to verify that $\frac{a}{b}$ is a complex number that can be written in the form $c+d i$, where $c, d \in \mathbb{Q}$. Since $c \in \mathbb{Q}$, it lies between two consecutive integers; and similarly for d. Hence, there are integers m and n such that $|m-c| \leq \frac{1}{2}$ and $|n-d| \leq \frac{1}{2}$. Since $\frac{a}{b}=c+d i$.

$$
\begin{gathered}
a=b[c+d i]=b[(c-m+m)+(d-n+n) i] \\
=b[(m+n i)+((c-m)+(d-n) i)] \\
=b[m+n i]+b[(c-m)+(d-n) i] \\
=b q+r,
\end{gathered}
$$

where $q=m+n i \in \mathbb{Z}[i]$ and $r=b[(c-m)+(d-n) i]$. Since $r=a-b q$ and $a, b, q \in \mathbb{Z}[i]$, we see that $r \in \mathbb{Z}[i]$. Therefore,

$$
\begin{aligned}
\lambda(r)= & \lambda(b) \lambda[(c-m)+(d-n) i]=\lambda(b)\left[(c-m)^{2}+(d-n)^{2}\right] \\
& \leq \lambda(b)\left[\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}\right]=\left(\frac{1}{2}\right) \cdot \lambda(b)<\lambda(b)
\end{aligned}
$$

This implies that $\mathbb{Z}[i]$ is a Euclidean domain.

Problem 3 We need to find elements $a=s+t i \in \mathbb{Z}[i]$ such that $\lambda(a)=s^{2}+t^{2}=1$. Clearly, $s^{2}+t^{2}=1$ if and only if $(s, t)=(1,0),(-1,0),(0,1),(0,-1)$. Thus all the units of $\mathbb{Z}[i]$ are

$$
1,-1, i,-i
$$

Problem 4 It is easy to find that

$$
2=(1+i)(1-i)
$$

and $1+i, 1-i$ are irreducible because $\lambda(1+i)=\lambda(1-i)=2$ is a prime number in \mathbb{Z}.

Problem 5 For any $\alpha=a+b \omega \in R$, we have $\alpha=a+b \omega=(a+b)+(-b)(1-\omega)$. Since $a+b$ is an integer, $a+b \equiv 0,1$ or 1 in modulus 3 . This implies that $a+b=3 k+r$ for some integer k and $r=0,1$ or 1 . Note that $3=(2+w)(1-w)$. Therefore, we have

$$
\alpha=(a+b)+(-b)(1-\omega)=(3 k+r)+(-b)(1-\omega)=r+(k(2+w)-b)(1-\omega) .
$$

Since $k(2+w)-b \in R$, we can conclude that α must be congruent to r, which is one of 0,1 , or $-1 \bmod 1-\omega$.

Problem 6 Suppose that 1 and ω are same in $R / \wp R$. Then $(1-\omega)=a \wp$ for some $a \in R$. Take the norm, we have $3=N(1-\omega)=N(a) N(\wp)$. Hence $N(\wp)=1$ or 3 , but by assumption, $N(\wp) \neq 3$, so we have $N(\wp)=1$. But this implies that \wp is an unit in R, which is a contradiction because \wp is a prime element. Therefore, 1 and ω are distinct in $R / \wp R$.

Similarly, $N\left(1-\omega^{2}\right)=N(2+\omega)=2^{2}-2 \cdot 1+1=3$ and $N\left(\omega-\omega^{2}\right)=N(1+2 \omega)=3$ implies that, together with the above observation, $1, \omega$ and ω^{2} are distinct in $R / \wp R$.
Hence, for any nonzero element r in $R / \wp R, r, r \omega, r \omega^{2}$ are all distinct. since $\omega^{3}=1$, we can say

$$
\text { Nonzero elements of } R / \wp R=\bigsqcup\left\{r, r \omega, r \omega^{2}\right\}
$$

where \bigsqcup means disjoint union.
This implies that $N(\wp)=\sharp$ of elements of $R / \wp R=1+\sharp$ of nonzero elements of $R / \wp R=1+$ $3 k$. Thus we can conclude that $3 \mid N(\wp)-1$.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

