18.781, Fall 2007 Problem Set 6

Solutions to Selected Problems

Problem 3.2.6 First note that 1009 is a prime number. We need to decide the value of $\left(\frac{150}{1009}\right)$. We can find that

$$
\left(\frac{150}{1009}\right)=\left(\frac{2}{1009}\right)\left(\frac{3}{1009}\right)\left(\frac{25}{1009}\right)
$$

Because $1009 \equiv 1(\bmod 8)$, we have $\left(\frac{2}{1009}\right)=1$.
By the theorem 3.5, with the fact that $1009=3 \cdot 336+1,\left(\frac{3}{1009}\right)=\left(\frac{1}{3}\right)=1$.

Since 25 is a square number, $\left(\frac{25}{1009}\right)=1$.
In conclusion, we have $\left(\frac{150}{1009}\right)=1$. Therefore, the given equation is solvable. (Actually, $139^{2} \equiv 150(\bmod 1009)$.)

Problem 3.2.7 First, it is easily observed that $x^{2} \equiv 13(\bmod p)$ has a solution when p is 2 or 13 . Now assume that p is neither 2 nor 13 . Then p is an odd prime, and we have

$$
x^{2} \equiv 13(\bmod p) \text { has a solution. } \Leftrightarrow\left(\frac{13}{p}\right)=1 . \Leftrightarrow\left(\frac{p}{13}\right)(-1)^{\frac{13-1}{2} \frac{p-1}{2}}=\left(\frac{p}{13}\right)=1
$$

By a little computation, we can easily verify that the quadric residues of 13 are $\{1,3,4,9,10,12\}$. Therefore, $\left(\frac{p}{13}\right)=1$ if and only if $p \equiv 1,3,4,9,10,12(\bmod 13)$.

Thus we can find that $x^{2} \equiv 13(\bmod p)$ has a solution when p is 2 or 13 or $p \equiv 1,3,4,9,10,12$ $(\bmod 13)$.

Problem 3.2.11 Suppose that $x^{2} \equiv a(\bmod p q)$ is solvable. This implies that there exist a x satisfying $x^{2} \equiv a(\bmod p)$, so it is absurd because a is a quadratic nonresidue of p. Therefore, $x^{2} \equiv a(\bmod p q)$ is not solvable.

Problem 3.2.14 Suppose p, q are twin primes satisfying $q=p+2$. Then clearly they are both odd, and one of the p, q is of the form $4 k+1$. Therefore, $(-1)^{\frac{p-1}{2} \frac{q-1}{2}}=1$. Hence we can find that

There is an integer a such that $p \mid\left(a^{2}-q\right)$.

$$
\begin{aligned}
& \left(\frac{q}{p}\right)_{\Uparrow}^{\Uparrow}=1 . \\
& \Uparrow \\
& \left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)(-1)^{\frac{p-1}{2} \frac{q-1}{2}}=1 . \\
& \text { I }
\end{aligned}
$$

There is an integer b such that $q \mid\left(a^{2}-p\right)$.
as desired.

Problem 3.2.19 First suppose that p is a divisor of numbers of both of the forms $m^{2}+1, n^{2}+2$. By the exercise 3.1.20, we have $p \equiv 1(\bmod 4)$ and $p \equiv 1$ or $3(\bmod 8)$. Therefore, $p \equiv 1$ $(\bmod 8)$. By theorem 2.37, with $a=-1, n=4$, we can conclude that $x^{4} \equiv-1(\bmod p)$ has a solution. That is equivalent to say that p is a divisor of some number of the form $k^{4}+1$.

Conversely, assume that p is a divisor of some number of the form $k^{4}+1$. Again by the exercise 3.1.20, we have $p \equiv 1(\bmod 8)$. This implies that (by again same exercise) p is a divisor of numbers of both of the forms $m^{2}+1, n^{2}+2$, as desired.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

