18.781, Fall 2007 Problem Set 6

Solutions to Selected Problems

Problem 3.2.6 First note that 1009 is a prime number. We need to decide the value of $(\frac{150}{1009})$. We can find that

$$\left(\frac{150}{1009}\right) = \left(\frac{2}{1009}\right) \left(\frac{3}{1009}\right) \left(\frac{25}{1009}\right).$$

Because $1009 \equiv 1 \pmod{8}$, we have $\left(\frac{2}{1009}\right) = 1$.

By the theorem 3.5, with the fact that $1009 = 3 \cdot 336 + 1$, $\left(\frac{3}{1009}\right) = \left(\frac{1}{3}\right) = 1$.

Since 25 is a square number, $\left(\frac{25}{1009}\right) = 1$.

In conclusion, we have $\left(\frac{150}{1009}\right)=1$. Therefore, the given equation is solvable. (Actually, $139^2\equiv 150 \pmod{1009}$.) \square

Problem 3.2.7 First, it is easily observed that $x^2 \equiv 13 \pmod{p}$ has a solution when p is 2 or 13. Now assume that p is neither 2 nor 13. Then p is an odd prime, and we have

$$x^2 \equiv 13 \pmod{p}$$
 has a solution. $\Leftrightarrow \left(\frac{13}{p}\right) = 1. \Leftrightarrow \left(\frac{p}{13}\right)(-1)^{\frac{13-1}{2}\frac{p-1}{2}} = \left(\frac{p}{13}\right) = 1.$

By a little computation, we can easily verify that the quadric residues of 13 are $\{1, 3, 4, 9, 10, 12\}$. Therefore, $\left(\frac{p}{13}\right) = 1$ if and only if $p \equiv 1, 3, 4, 9, 10, 12$ (mod 13).

Thus we can find that $x^2 \equiv 13 \pmod{p}$ has a solution when p is 2 or 13 or $p \equiv 1, 3, 4, 9, 10, 12 \pmod{13}$. \square

Problem 3.2.11 Suppose that $x^2 \equiv a \pmod{pq}$ is solvable. This implies that there exist a x satisfying $x^2 \equiv a \pmod{p}$, so it is absurd because a is a quadratic nonresidue of p. Therefore, $x^2 \equiv a \pmod{pq}$ is not solvable.

Problem 3.2.14 Suppose p,q are twin primes satisfying q=p+2. Then clearly they are both odd, and one of the p,q is of the form 4k+1. Therefore, $(-1)^{\frac{p-1}{2}\frac{q-1}{2}}=1$. Hence we can find that

1

There is an integer a such that $p \mid (a^2 - q)$.

There is an integer b such that $q \mid (a^2 - p)$.

as desired. \square

Problem 3.2.19 First suppose that p is a divisor of numbers of both of the forms $m^2 + 1$, $n^2 + 2$. By the exercise 3.1.20, we have $p \equiv 1 \pmod{4}$ and $p \equiv 1$ or 3 (mod 8). Therefore, $p \equiv 1$ (mod 8). By theorem 2.37, with a=-1, n=4, we can conclude that $x^4\equiv -1 \pmod p$ has a solution. That is equivalent to say that p is a divisor of some number of the form $k^4 + 1$.

Conversely, assume that p is a divisor of some number of the form $k^4 + 1$. Again by the exercise 3.1.20, we have $p \equiv 1 \pmod{8}$. This implies that (by again same exercise) p is a divisor of numbers of both of the forms $m^2 + 1, n^2 + 2$, as desired. \Box

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)