
18.781, Fall 2007 Problem Set 5

Solutions to Selected Problems

Problem 2.11.1 By the argument of from 122 page to 123 page, since 9 = 32, the multiplicative
group modulo 9 is a cyclic group of order φ(9) = 6. It is clear that the additive group modulo
6 is a cyclic group of order 6. Hence, their isomorphic.

More precisely, define a function f : R9 ⇒ Z6 by

f(2) = 1, f(4) = 2, f(8) = 3, f(7) = 4, f(5) = 5, f(1) = 0.

( For each a ∈ R9, there is an g such that 2g ≡ a in modulo 9 because 2 is a primitive root of
9, and we define f(a) = g where g lies in modulo 6. This is well defined since 6 is the order
of 2 in modulo 9.
Then f is bijective, clearly. To show that f is an isomorphism, we need to show that f is a
group homomorphism. For a, b ∈ R9, there are g, h such that 2g ≡ a and 2h ≡ b in modulo 9.
So we have

f(ab) ≡ f(2g · 2h) =≡ f(2g+h) ≡ g + h ≡ f(2g) + f(2h) ≡ f(a) + f(b) (mod 6).

Therefore f is a group homomorphism. 2

Problem 2.11.6 By the argument from 122 page to 123 page, Rm is a cyclic group if and only
if m = 2, 4, p, pα. For 2, 3, 4, 5, 6, 7, each of them is one of the previous form, and 8 is not.
Therefore, 8 is the smallest positive integer m such that the multiplicative group modulo m
is not cyclic. 2

Problem 2.11.11
Solution 1 If we proved that G is a group, it is clear that G is noncommutative because
a ⊕ b = d 6= f = b ⊕ a. Looking at the table, we can easily find that e is an identity, and
each element of a, b, c, d, f has an inverse element (a⊕a = b⊕b = c⊕c = e, d⊕f = f⊕d = e).

It remains to prove the associativity. We need to show that x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z for
x, y, z ∈ {e, a, b, c, d, f}. If one of x, y, z is e, the associativity clearly holds. For the other
cases,

For (x, y, z) = (a, a, a), we have x⊕ (y ⊕ z) = a = (x⊕ y)⊕ z.
For (x, y, z) = (a, a, b), we have x⊕ (y ⊕ z) = b = (x⊕ y)⊕ z.
For (x, y, z) = (a, a, c), we have x⊕ (y ⊕ z) = c = (x⊕ y)⊕ z.
For (x, y, z) = (a, a, d), we have x⊕ (y ⊕ z) = d = (x⊕ y)⊕ z.
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For (x, y, z) = (a, a, f), we have x⊕ (y ⊕ z) = f = (x⊕ y)⊕ z.
For (x, y, z) = (a, b, a), we have x⊕ (y ⊕ z) = c = (x⊕ y)⊕ z.
For (x, y, z) = (a, b, b), we have x⊕ (y ⊕ z) = a = (x⊕ y)⊕ z.
For (x, y, z) = (a, b, c), we have x⊕ (y ⊕ z) = b = (x⊕ y)⊕ z.
For (x, y, z) = (a, b, d), we have x⊕ (y ⊕ z) = f = (x⊕ y)⊕ z.
For (x, y, z) = (a, b, f), we have x⊕ (y ⊕ z) = e = (x⊕ y)⊕ z.

...

For (x, y, z) = (f, f, a), we have x⊕ (y ⊕ z) = c = (x⊕ y)⊕ z.
For (x, y, z) = (f, f, b), we have x⊕ (y ⊕ z) = a = (x⊕ y)⊕ z.
For (x, y, z) = (f, f, c), we have x⊕ (y ⊕ z) = b = (x⊕ y)⊕ z.
For (x, y, z) = (f, f, d), we have x⊕ (y ⊕ z) = f = (x⊕ y)⊕ z.
For (x, y, z) = (f, f, f), we have x⊕ (y ⊕ z) = e = (x⊕ y)⊕ z.

Solution 2 As above, it is enough to show that x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z for x, y, z ∈
{e, a, b, c, d, f}.
Consider the set of bijective function from the set {1, 2, 3} to itself. This set is composed by
6 elements, namely

e, which is defined by e(1) = 1, e(2) = 2, e(3) = 3.
a, which is defined by a(1) = 2, a(2) = 1, a(3) = 3.
b, which is defined by b(1) = 1, b(2) = 3, b(3) = 2.
c, which is defined by c(1) = 3, c(2) = 2, c(3) = 1.
d, which is defined by d(1) = 2, d(2) = 3, d(3) = 1.
f , which is defined by f(1) = 3, f(2) = 1, f(3) = 2.

If we define the composition of functions as a operation ⊕, it can be verified that these
satisfy the given table. Since the composition of functions is associative generally, (that is,
f ◦ (g ◦ h) = (f ◦ g) ◦ h .) the operation ⊕ which is given by table is clearly associative. 2

Problem 3.1.7 (a) Note that for p = 8k + t, p2−1
8 = (8k+t)2−1

8 = 2(4k2 + kt) + t2−1
8 , and

(−1)2(4k2+kt) = 1 surely. Then, since 61 ≡ 5 (mod 8), we can compute that(
2
61

)
= (−1)

612−1
8 = (−1)

52−1
8 = −1.

Therefore, there is no solution for x2 ≡ 2 (mod 61).

(b) Since 59 ≡ 3 (mod 8), we can compute that(
2
59

)
= (−1)

592−1
8 = (−1)

32−1
8 = −1.

Therefore, there is no solution for x2 ≡ 2 (mod 61).

(c) We can compute that(
−2
61

)
=

(
−1
61

) (
2
61

)
= (−1)

612−1
2 (−1) = (1) · (−1) = −1.
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Therefore, there is no solution for x2 ≡ −2 (mod 61).

(d) We can compute that(
−2
59

)
=

(
−1
59

) (
2
59

)
= (−1)

59−1
2 (−1) = (−1) · (−1) = 1.

Therefore, there are solutions for x2 ≡ −2 (mod 59), and by the remark followed by theorem
3.1, the number of solutions is 2.

(e) Since x2 ≡ 2 (mod 122) implies that x2 ≡ 2 (mod 61), there is no solution by (a).

(f) Since x2 ≡ 2 (mod 118) implies that x2 ≡ 2 (mod 59), there is no solution by (b).

(g) Since x2 ≡ −2 (mod 122) implies that x2 ≡ −2 (mod 61), there is no solution by (c).

(h) x2 ≡ −2 (mod 118) if and only if x2 ≡ −2 (mod 59) and x2 ≡ −2 ≡ 0 (mod 2). By
(d), there are two solutions of x2 ≡ −2 (mod 59), and x2 ≡ 0 (mod 2) ⇔ x ≡ 0 (mod 2).
Therefore, by Chinese remainder theorem, there are two solutions for x2 ≡ −2 (mod 118)).
2.

Problem 3.1.10 By theorem 3.3, x2 ≡ 2 (mod p) has a solution if and only if p2−1
8 is even.

Since p is odd, p ≡ 1, 3, 5, 7 (mod 8). Note again that for p = 8k + t, p2−1
8 = (8k+t)2−1

8 =
2(4k2 + kt) + t2−1

8 . Therefore, for each t = 1, 3, 5, 7, we have p2−1
8 ≡ 0, 1, 1, 0 (mod 2).

In conclusion, x2 ≡ 2 (mod p) has a solution if and only if p ≡ 1, 7 (mod 8). 2

Problem 3.1.12 (
r1r2

p

)
=

(
r1

p

) (
r2

p

)
= 1 · 1 = 1(

n1n2

p

)
=

(
n1

p

) (
n2

p

)
= (−1) · (−1) = 1(

rn

p

)
=

(
r

p

) (
n

p

)
= (1) · (−1) = −1

implies that r1r2, n1n2 are residues and rn is a nonresidue for any odd prime p.

The reduced residue system of 12 is {1, 5, 7, 11} and it is easy to verify that the square of
each of them is 1 modulo 12. Therefore, 5,7 are nonresidues, and their product is 11, which
is also a nonresidue. 2

Problem 3.1.17 Denote the first given product 1 ·3 · · · (p−2) by P , and the second given product
2 · 4 · · · (p− 1) by R. Also denote (2k + 1)! by Q. Then
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1) By Wilson’s theorem, PR ≡ (−1) (mod p).
2) Q ≡ 1 · 2 · · · · (2k + 1)

≡ 1 · (−2) · 3 · (−4) · · · (−2k) · (2k + 1) · (−1)k

≡ (−1)k · 1 · (p− 2) · 3 · (p− 4) · · · (p− 2k) · (2k + 1)
≡ (−1)kP (mod p).

For any a, b ∈ {1, 2, · · · , 2k + 1}, we have 0 < a + b < p. This implies that a 6≡ −b (mod p).
Also, since p = 4k + 3, -1 is a nonresidue. Then by exercise 12, if n is any nonresidue, −n is
the quadratic residue. This induces that, since the number of quadratic residue is 2k + 1, by
replacing any nonresidue n in Q by the quadratic residue −n, we could have all the quadratic
residues modulo p. Thus, we can find that

3) Q ≡ (−1)2k+1−mA ≡ (−1)m+1A (mod p)

where A is the product of all quadratic residue modulo p.
Suppose {a1, · · · , a2k+1} are all quadratic residues, then since p = 4k + 3, {−a1, · · · − a2k+1}
are all nonresidues, and the union of them is just the reduced residue class modulo p. This
implies that A · (−1)2k+1A ≡ (p− 1)! ≡ −1 (mod p) by Wilson’s theorem. Therefore, A2 ≡ 1
(mod p), and we have A ≡ 1 (mod p) or A ≡ −1 (mod p). But since A is a product of
quadratic residue, A is also a quadratic residue. This implies that A 6= −1 (mod p) since -1
is a nonresidue modulo p = 4k + 3. Thus A ≡ 1 (mod p).

By 2),3), we have P ≡ (−1)kQ ≡ (−1)k+m+1 (mod p). By 1), we have R ≡ (−1)k+m (mod
p), as desired. 2

Problem 3.1.18 Recall the theorem 2.37.

If p is a prime and (a, p) = 1, then the congruence xn ≡ a (mod p) has (n, p− 1) solutions or

no solution according as a
p−1

(n,p−1) ≡ 1 (mod p) or not.

Suppose that p = 3k + 2. Applying the above theorem with n = 3, then (n, p− 1) = 1, hence

for any a such that (a, p) = 1, a
p−1

(n,p−1) ≡ ap−1 ≡ 1 (mod p). This implies that all integers in
a reduced residue system modulo p are cubic residues.

Now suppose that p = 3k + 1. Then (3, p− 1) = 3. By above theorem, x3 ≡ a (mod p) has 3
solutions or no solution. Consider the set A = {13, 23, · · · , (p− 1)3}. Then A can be divided
to p−1

3 sets such that the elements of each set are same in modulus p. Those elements give
us cubic residues clearly, and there are no other cubic residues because the definition of A.
Hence, only one-third of the members of a reduced residue system are cubic residues. 2

Problem 3.1.20 If there is an integer x such that p | (x2 + 1) , then x2 ≡ −1 (mod p). Hence −1
is a quadratic residue modulus p, and this implies that p ≡ 1 (mod 4).
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If there is an integer x such that p | (x2 − 2) , then x2 ≡ 2 (mod p). Hence 2 is a quadratic
residue modulus p, and this implies that p ≡ 1 or 7 (mod 8) by the exercise 10.

If there is an integer x such that p | (x2 +2) , then x2 ≡ −2 (mod p). Hence −2 is a quadratic
residue modulus p. Since −2 = (−1) · 2, it implies that (-1) and 2 are both quadratic residues
or both nonresidues. So, it is easy to verify that p ≡ 1 or 3 (mod 8) using previous two
observations.

If there is an integer x such that p | (x4 + 1) , then x4 ≡ −1 (mod p) has a solution. By

theorem 2.37, this implies that (−1)
p−1

(4,p−1) ≡ 1 (mod p). Therefore, p−1
(4,p−1) should be even

number. When we think of p = 8k + 1, 8k + 3, 8k + 5, 8k + 7, we can easily find that only
p = 8k + 1 make it even.

Suppose that there are only finitely many primes of the form 8n + 1. Let p1, · · · , pa are all
the such prime numbers. Consider the number P = 16(p1 · · · pa)4 + 1. Since P > 2 (17 is a
prime of the form 8n + 1), there exist an prime number p which divides P = (2p1 · · · pa)4 + 1.
By above observation, p = 8k + 1, but p cannot be any of pi since (pi, P ) = 1. This is a
contradiction. Thus there are infinitely many primes of the form 8n + 1.

Remark I added an coefficient 16 to make P an odd number. If you want to let P =
(p1 · · · pa)4 + 1, you should explain that P is not of the form 2t, (which is also easy to prove),
to make sure that P has an odd prime factor.

Suppose that there are only finitely many primes of the form 8n+3. Let q1, · · · , qb are all the
such prime numbers. Consider the number Q = (q1 · · · qb)2 + 2. Note that Q > 1. By above
observation, any prime factor of Q have the form q = 8k + 1 or q = 8k + 3. If all the prime
factors of Q have the form 8k + 1, then their product should be of the form 8k + 1, too. But
Q ≡ 3 (mod 8) (Note that the square of odd number is 1 in modulo 8), so it is impossible.
This implies that there exist an prime number q = 8k + 3 which divides Q. But q cannot be
any of qi since (qi, Q) = (qi, 2) = 1. This is a contradiction. Thus there are infinitely many
primes of the form 8n + 3.

Suppose that there are only finitely many primes of the form 8n+5. Let r1, · · · , rc are all the
such prime numbers. Consider the number R = 4(r1 · · · rc)2 + 1. By above observation, any
prime factor of R = (2r1 · · · rc)2 + 1 have the form r = 8k + 1 or r = 8k + 5. If all the prime
factors of R have the form 8k + 1, then their product should be of the form 8k + 1, too. But
R ≡ 5 (mod 8), so it is impossible. This implies that there exist an prime number r = 8k + 5
which divides R. But r cannot be any of ri since (ri, R) = 1. This is a contradiction. Thus
there are infinitely many primes of the form 8n + 5.

Suppose that there are only finitely many primes of the form 8n + 7. Let s1, · · · , sd are all
the such prime numbers. Consider the number S = (s1 · · · sd)2 − 2. Note that S > 1 (7 is
a prime of the form 8n + 7). By above observation, any prime factor of S have the form
s = 8k+1 or s = 8k+7. If all the prime factors of S have the form 8k+1, then their product
should be of the form 8k + 1, too. But S ≡ 7 (mod 8), so it is impossible. This implies that
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there exist an prime number s = 8k + 7 which divides S. But s cannot be any of si since
(si, S) = (si, 2) = 1. This is a contradiction. Thus there are infinitely many primes of the
form 8n + 7. 2

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)
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