18.781, Fall 2007 Problem Set 4

Solutions to Selected Problems

Problem 2.7.2 You may want to solve this problem by taking x as 0 through 6 and find the value of x which makes the given equation true. It might be easier, but here we will use the Theorem 2.29.

Since $(4,7)=1$, by multiplying 4 , the given equation has same solution with

$$
x^{3}+6 x^{2}+3 x+4 \equiv 0(\bmod 7) .
$$

Since degree of this equation is 3 , if we show that $x^{3}+6 x^{2}+3 x+4$ is a factor of $x^{7}-x$ modulo 7 , we can conclude that $x^{3}+6 x^{2}+3 x+4 \equiv 0(\bmod 7)$ has three solutions by Theorem 2.29 .
Keeping the fact that every coefficient is in modulo 7 in your mind, divide $x^{7}-x$ by $x^{3}+$ $6 x^{2}+3 x+4$. Then we can calculate like following :

$$
\begin{gathered}
\left(x^{7}-x\right)-\left(x^{3}+6 x^{2}+3 x+4\right)\left(x^{4}\right) \equiv\left(x^{6}+4 x^{5}+3 x^{4}-x\right) \\
\left(x^{6}+4 x^{5}+3 x^{4}-x\right)-\left(x^{3}+6 x^{2}+3 x+4\right)\left(x^{3}\right) \equiv\left(5 x^{5}+3 x^{3}-x\right) \\
\left(5 x^{5}+3 x^{3}-x\right)-\left(x^{3}+6 x^{2}+3 x+4\right)\left(5 x^{2}\right) \equiv 5 x^{4}+2 x^{3}+x^{2}-x \\
\quad\left(5 x^{4}+2 x^{3}+x^{2}-x\right)-\left(x^{3}+6 x^{2}+3 x+4\right)(5 x) \equiv 0
\end{gathered}
$$

This implies that $x^{3}+6 x^{2}+3 x+4$ is a factor of $x^{7}-x$ modulo 7 , so we've done.

Problem 2.7.3 We can find that

$$
x^{14}+12 x^{2} \equiv x^{14}-x^{2} \equiv x\left(x^{13}-x\right)(\bmod 13)
$$

Since $\left(x^{13}-x\right) \equiv 0(\bmod 13)$ for all integer x by Fermat's theorem, $x^{14}+12 x^{2} \equiv 0(\bmod 13)$ has 13 solutions.

Problem 2.7.4 First of all, if the degree of f is strictly less than $1, f(x) \equiv 0(\bmod p)$ has a solution if and only if $f(x)$ is identically zero. Then if we let $q(x)=0$, we get a desired conclusion. Now assume that degree of $f>0$.
We will use an induction on j. Before proceeding, we prove the following claim :

Suppose that $f(x) \equiv 0(\bmod p)$ has a solution $x \equiv a(\bmod p)$. Then there is a polynomial $q(x)$ such that $f(x) \equiv(x-a) q(x)(\bmod p)$.

Dividing $f(x)$ by $(x-a)$, we have $f(x) \equiv(x-a) q(x)+r(x)(\bmod p)$ where $\operatorname{deg}(r)<1$, that is, $r(x)$ is constant in modulo p. Since $f(a) \equiv 0(\bmod p), r(a) \equiv 0(\bmod p)$. Hence $r(x) \equiv 0$ in modulo p, so we can find that $f(x) \equiv(x-a) q(x)(\bmod p)$.
Now we prove the statement of problem by induction. The case of $j=1$ is just proved by the claim. Suppose that the statement is true for $j=k$, and consider the case of $j=k+1$. Because that $f(x) \equiv 0(\bmod p)$ has k solutions, we can say that $f(x) \equiv\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right) q(x)$ $(\bmod p)$. Applying $x=a_{k+1}$, we have

$$
0 \equiv f\left(a_{k+1}\right) \equiv\left(a_{k+1}-a_{1}\right)\left(a_{k+1}-a_{2}\right) \cdots\left(a_{k+1}-a_{k}\right) q\left(a_{k+1}\right)(\bmod p)
$$

Since a_{k+1} is different from a_{1}, \cdots, a_{k} in modulo $p,\left(a_{k+1}-a_{i}\right)$ is not 0 for $i=1, \cdots, k$. Therefore, $q\left(a_{k+1}\right) \equiv 0(\bmod p)$. By the above claim, we have $q(x) \equiv\left(x-a_{k+1}\right) s(x)(\bmod$ $p)$. With the fact that $f(x) \equiv\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right) q(x)(\bmod p)$, we can conclude that $f(x) \equiv\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{k}\right)\left(x-a_{k+1}\right) s(x)(\bmod p)$. Hence the statement is true for $j=k+1$. This completes the proof.

Problem 2.8.2 We should find a such that $a^{22} \equiv 1(\bmod 23)$ and $a^{i} \not \equiv 1(\bmod 23)$ for any other $i \mid 22$. Note that the positive divisors of 22 are $1,2,11,22$.
For the case $a=2$, we can find that

$$
2^{11} \equiv 2048 \equiv 23 \cdot 89+1 \equiv 1(\bmod 23)
$$

Therefore the order of 2 modulo 23 is ≤ 11, (Actually, is equal to 11), so 2 is not a primitive root of 23 .

For the case $a=3$, we can find that

$$
3^{11} \equiv\left(3^{3}\right)^{3} \cdot 3^{2} \equiv 27^{3} \cdot 9 \equiv 4^{3} \cdot 9 \equiv(-5) \cdot 9 \equiv-45 \equiv 1(\bmod 23)
$$

Therefore, the order of 3 modulo 23 is ≤ 11, (Actually, is equal to 11), so 3 is not a primitive root of 23 .

For the case $a=5$, we can find that

$$
\begin{gathered}
5^{1} \not \equiv 1(\bmod 23) \\
5^{2} \equiv 2 \not \equiv 1(\bmod 23) \\
5^{11} \equiv 25^{5} \cdot 5 \equiv 2^{5} \cdot 5=160 \equiv-1 \not \equiv 1(\bmod 23)
\end{gathered}
$$

$5^{22} \equiv 1(\bmod 23)$ is clearly true by Euler's theorem, hence 5 is a primitive root of 23 .
(Of course, the cases of $a=2$ and $a=3$ are needless when you have good intuition or good luck or page 514.)

Problem 2.8.6 Suppose that $a^{i} \equiv a^{j}(\bmod m)$ for some different $i, j \in\{1, \cdots h\}$. Without loss of generality, we may assume that $i>j$. Then $a^{i-j} \equiv 1(\bmod m)$ where $1 \leq i-j<h$. But by definition, h is the smallest positive integer such that $a^{h} \equiv 1(\bmod m)$, hence this is a contradiction. Therefore, no two of them are congruent modulo m.

Problem 2.8.9 Let h be the order of 3 modulo 17. By Euler's theorem, we already have $3^{16} \equiv 1$ $(\bmod 17)$. Therefore, $h \mid 16$. Because of $16=2^{4}$, if $h \nmid 2^{3}$, then $h=16$. But $3^{8} \equiv-1 \not \equiv 1$ $(\bmod 17)$ implies that $h \nmid 2^{3}$. Thus we can have $h=16$, which implies that 3 is the primitive root of 17 .

Problem 2.8.14 Let \bar{a} has order of \bar{h} modulo p. From

$$
1 \equiv 1^{h} \equiv(a \bar{a})^{h} \equiv a^{h} \cdot \bar{a}^{h} \equiv \bar{a}^{h}(\bmod p),
$$

we can find that $\bar{h} \mid h$. Also, from

$$
1 \equiv 1^{\bar{h}} \equiv(a \bar{a})^{\bar{h}} \equiv a^{\bar{h}} \cdot \bar{a}^{\bar{h}} \equiv a^{\bar{h}}(\bmod p),
$$

we can find that $h \mid \bar{h}$. Therefore, $h=\bar{h}$.
From $a \equiv g^{i}(\bmod p)$, multiplying \bar{a} by both sides, we have

$$
\bar{a} \cdot g^{i} \equiv \bar{a} a \equiv 1 \equiv g^{p-1}(\bmod p) .
$$

Since $i<p-1$, we can conclude that $\bar{a} \equiv g^{p-1-i}(\bmod p)$, as desired.

Problem 2.8.18 The fact that g is a primitive root of p implies that $g^{i} \not \equiv 1(\bmod p)$ for any integer $0<i<p-1$. In particular, $g^{\frac{p-1}{2}} \not \equiv 1(\bmod p)$. The proof of Corollary 2.38 implies that this gives $g^{\frac{p-1}{2}} \equiv-1(\bmod p)$. Similarly, $g^{\frac{p-1}{2}} \equiv-1(\bmod p)$. Thus we can find that

$$
\left(g g^{\prime}\right)^{\frac{p-1}{2}} \equiv g^{\frac{p-1}{2}} g^{\frac{p-1}{2}} \equiv(-1) \cdot(-1) \equiv 1(\bmod p) .
$$

Hence $g g^{\prime}$ has order equal to or less than $\frac{p-1}{2}$, so $g g^{\prime}$ is not a primitive root of p.

We need to solve more exercises to prove the statement of Exercise 2.8.27.

Problem 2.8.25 Express m as $m=\prod p^{\alpha}$. Then

$$
a^{m-1} \equiv 1(\bmod m) \Leftrightarrow a^{m-1} \equiv 1\left(\bmod p^{\alpha}\right) \text { for each } p \text { such that } p \mid m
$$

By Corollary 2.42, $x^{m-1} \equiv 1\left(\bmod p^{\alpha}\right)$ has $\left(m-1, \phi\left(p^{\alpha}\right)\right)$ solutions modulo p^{α}. Here, $\phi\left(p^{\alpha}\right)=$ $p^{\alpha-1}(p-1)$. Also, $p \mid m$ implies that $(p, m-1)=1$. Therefore, $\left(m-1, \phi\left(p^{\alpha}\right)\right)=(m-1, p-1)$. In short, $x^{m-1} \equiv 1\left(\bmod p^{\alpha}\right)$ has $(m-1, p-1)$ solutions for each $p \mid m$. By Chinese remainder theorem, we can conclude that $x^{m-1} \equiv 1(\bmod m)$ has exactly $\prod_{p \mid m}(p-1, m-1)$ solutions, which is the claim in Exercise 25.

Problem 2.8.26 First we show that if m is a Carmichael number, m is composite, square-free and $(p-1) \mid(m-1)$ for all primes p dividing m.
m is composite by definition of Carmichael number in page 59. By Exercise 25, the number of reduced residues $a(\bmod m)$ such that $a^{m-1} \equiv 1(\bmod m)$ is exactly $\prod_{p \mid m}(p-1, m-1)$. Since m is a Carmichael number, all the reduced residues $a(\bmod m)$ satisfy $a^{m-1} \equiv 1(\bmod$ m). Therefore, we can have

$$
\phi(m)=\prod_{p \mid m}(p-1, m-1) .
$$

But when $m=\prod p^{\alpha}$,

$$
\phi(m)=\prod_{p \mid m} p^{\alpha-1}(p-1) \geq \prod_{p \mid m}(p-1) \geq \prod_{p \mid m}(p-1, m-1),
$$

thus all the equality should hold. This implies that each α should be 1 and $(p-1, m-1)=$ $(p-1)$ which means that $(p-1) \mid(m-1)$.
Now we assume that m is composite, square-free and $(p-1) \mid(m-1)$ for all primes p dividing m. Then these condition give us $\phi(m)=\prod_{p \mid m}(p-1, m-1)$ as we just observed. By exercise 25 , that is the number reduced residues $a(\bmod m)$ satisfy $a^{m-1} \equiv 1(\bmod m)$. Since that is equal to $\phi(m)$, all the reduced residues $a(\bmod m)$ satisfy $a^{m-1} \equiv 1(\bmod m)$. Because m is composite, we can conclude that m is a Carmichael number.

Problem 2.8.27 First assume that m is composite and $a^{m} \equiv a(\bmod m)$ for all integers a. Then for any a such that $(a, m)=1$, we can divide the both side of congruence by a, so we have $a^{m-1} \equiv 1(\bmod m)$. By definition, m is a Carmichael number.

Now assume that m is a Carmichael number. Then m is a composite number by definition. Also by Exercise 26, m is square-free and $(p-1) \mid(m-1)$ for any $p \mid m$.
Fix any prime p such that $p \mid m$. For an integer a such that $(a, p)=1, a^{p-1} \equiv 1(\bmod p)$. Since $(p-1) \mid(m-1)$, this gives $a^{m-1} \equiv 1(\bmod p)$, hence, $a^{m} \equiv a(\bmod p)$. For an integer a such that $p \mid a$, clearly $a^{m} \equiv 0 \equiv a(\bmod p)$.
In conclusion, for any integer a and for any prime p such that $p \mid m, a^{m} \equiv a(\bmod p)$. This implies that for any integer $a, a^{m} \equiv a\left(\bmod \prod_{p \mid m} p\right)$, where $\prod_{p \mid m} p=m$ since m is square-free. Thus we complete the proof.

Problem 2.8.31 First we prove the following claim.
For the rational number r, its decimal expansion

$$
\begin{aligned}
& r=\sum_{i=-\infty}^{m}\left(r_{i} 10^{i}\right)=r_{m} r_{m-1} \cdots r_{0} \cdot r_{-1} r_{-2} \cdots \quad \text { where } r_{m} \neq 0(\mathrm{~m} \text { may be negative }) \\
& \quad \text { is periodic with period } k \text { if and only if }\left(10^{k-m} r-10^{-m} r\right) \text { is an integer. }
\end{aligned}
$$

Suppose there exist a rational number r whose decimal expansion $r=\sum_{i=-\infty}^{m}\left(r_{i} 10^{i}\right)=$ $r_{m} r_{m-1} \cdots r_{0} . r_{-1} r_{-2} \cdots$ where $r_{m} \neq 0(\mathrm{~m}$ may be negative $)$. If this expression is periodic with period k, then $10^{k-m} r$ and $10^{-m} r$ have same fractional part. That is, $10^{k-m} r-10^{-m} r$ is an integer.

Conversely, Suppose that there is k such that $10^{k-m} r-10^{-m} r$ is an integer. Then $10^{k-m} r$ and $10^{-m} r$ have same fractional part. Therefore, we have

$$
\begin{gathered}
r_{m} r_{m-1} \cdots r_{m-k+1} \quad . \quad r_{m-k} \cdots r_{m-2 k+1} \quad r_{m-2 k} \cdots r_{m-3 k+1}
\end{gathered} r_{m-3 k} \cdots
$$

Since the fractional parts are equal, by comparing first k terms of fractional part, the expression $r_{m} \cdots r_{m-k+1}$ is same with $r_{m-k} \cdots r_{m-2 k+1}$. Comparing next k terms, the expression $r_{m-k} \cdots r_{m-2 k+1}$ is identical with $r_{m-2 k} \cdots r_{m-3 k+1}$.
By comparing repeatedly, we can have that the decimal expansion of r is periodic. (To make this argument precise, you may use an induction.)

Now we prove the original problem. Suppose that the decimal expansion of $\frac{1}{p}$ has period $p-1$. It means that the decimal expansion of $\frac{1}{p}$ is periodic with least period $p-1$. Let $r=\frac{1}{p}$ and m be the number which appears in the above argument. Since $\frac{1}{p}<1, m$ is negative. By the above claim, $10^{p-1-m} r-10^{-m} r$ is an integer. That is,

$$
10^{-m} \frac{10^{p-1}-1}{p}
$$

is an integer. It is easy to verify that p is neither 2 nor 5 in this assumption. Therefore p cannot divide 10^{-m}. Hence we can conclude that $10^{p-1} \equiv 1(\bmod p)$. For any other k $(1<k<p-1)$, If $10^{k} \equiv 1(\bmod p), 10^{-m} \frac{10^{k}-1}{p}$ becomes an integer, so by the above claim, the decimal expansion of $\frac{1}{p}$ is periodic with period k, which is absurd. Therefore, $10^{k} \not \equiv 1(\bmod$ p) for each $(1<k<p-1)$, and we can conclude that 10 is a primitive root of p.

Conversely, If 10 is the primitive root of p, it is clear that $10^{p-1-m} r-10^{-m} r$ is an integer because $10^{p-1} \equiv 1(\bmod p)$ and m is negative. For any $k(1 \leq k<p-1), 10^{k-m} r-10^{-m} r$ is not an integer because

1) $10^{k} \not \equiv 1(\bmod p)$ implies that $10^{k}-1$ is not a multiple of p.
2) The fact 10 is the primitive root of p implies that p is neither 2 nor 5 , hence 10^{-m} is not a multiple of p.

Thus the decimal expansion of $\frac{1}{p}$ is periodic with least period $p-1$, as desired.

We need to solve more exercises to prove the statement of Exercise 2.8.35.

Problem 2.8.33 It is clear that $a^{k} \equiv 1\left(\bmod \left(a^{k}-1\right)\right)$. For any $0<i<k, 0<a^{i}-1<a^{k}-1$, so $a^{i} \not \equiv 1\left(\bmod \left(a^{k}-1\right)\right)$. This means that k is the order of a modulo ($a^{k}-1$). Since $\left(a, a^{k}-1\right)=1$, it is also clear that $a^{\phi\left(a^{k}-1\right)} \equiv 1\left(\bmod \left(a^{k}-1\right)\right)$ by Euler's theorem. Therefore, $k \mid \phi\left(a^{k}-1\right)$, as desired.

Problem 2.8.34 Express m as $m=\prod_{q \mid m} q^{\alpha}$. Then $\phi(m)=\prod_{q \mid m} q^{\alpha-1}(q-1)$. Since $p \mid \phi(m)$, $p=q$ or $p \mid(q-1)$ for some q such that $q \mid m$. But the previous case never happen because $p \nmid m$. Therefore there is a prime factor q of m such that $p \mid(q-1)$, that is, $q \equiv 1(\bmod p)$.

Problem 2.8.35 Suppose that there are only finitely many prime numbers $q \equiv 1(\bmod p)$. Let q_{1}, \cdots, q_{r} are all the such primes. Let $a=p q_{1} q_{2} \cdots q_{r}$ and $k=p$. By applying Exercise 33, we have

$$
p \mid \phi\left(\left(p q_{1} q_{2} \cdots q_{r}\right)^{p}-1\right)
$$

If we let $m=\left(p q_{1} q_{2} \cdots q_{r}\right)^{p}-1$, then $p \mid \phi(m)$ and $p \nmid m$. Thus by Exercise 34 , there is a prime factor q of m such that $q \equiv 1(\bmod p)$. By our assumption, q should be one of q_{1}, \cdots, q_{r}. But it is clear that (m, q_{i}) =1 for each $i=1, \cdots, r$, hence $q \nmid m$, this is a contradiction. Therefore there exist infinitely many prime numbers $q \equiv 1(\bmod p)$.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

