18.781, Fall 2007 Problem Set 4

Solutions to Selected Problems

Problem 2.7.2 You may want to solve this problem by taking x as 0 through 6 and find the value of x which makes the given equation true. It might be easier, but here we will use the Theorem 2.29.

Since (4,7) = 1, by multiplying 4, the given equation has same solution with

$$x^3 + 6x^2 + 3x + 4 \equiv 0 \pmod{7}.$$

Since degree of this equation is 3, if we show that $x^3 + 6x^2 + 3x + 4$ is a factor of $x^7 - x$ modulo 7, we can conclude that $x^3 + 6x^2 + 3x + 4 \equiv 0 \pmod{7}$ has three solutions by Theorem 2.29.

Keeping the fact that every coefficient is in modulo 7 in your mind, divide $x^7 - x$ by $x^3 + 6x^2 + 3x + 4$. Then we can calculate like following:

$$(x^{7} - x) - (x^{3} + 6x^{2} + 3x + 4)(x^{4}) \equiv (x^{6} + 4x^{5} + 3x^{4} - x)$$

$$(x^{6} + 4x^{5} + 3x^{4} - x) - (x^{3} + 6x^{2} + 3x + 4)(x^{3}) \equiv (5x^{5} + 3x^{3} - x)$$

$$(5x^{5} + 3x^{3} - x) - (x^{3} + 6x^{2} + 3x + 4)(5x^{2}) \equiv 5x^{4} + 2x^{3} + x^{2} - x$$

$$(5x^{4} + 2x^{3} + x^{2} - x) - (x^{3} + 6x^{2} + 3x + 4)(5x) \equiv 0$$

This implies that $x^3 + 6x^2 + 3x + 4$ is a factor of $x^7 - x$ modulo 7, so we've done. \Box

Problem 2.7.3 We can find that

$$x^{14} + 12x^2 \equiv x^{14} - x^2 \equiv x(x^{13} - x) \pmod{13}.$$

Since $(x^{13} - x) \equiv 0 \pmod{13}$ for all integer x by Fermat's theorem, $x^{14} + 12x^2 \equiv 0 \pmod{13}$ has 13 solutions. \Box

Problem 2.7.4 First of all, if the degree of f is strictly less than 1, $f(x) \equiv 0 \pmod{p}$ has a solution if and only if f(x) is identically zero. Then if we let q(x) = 0, we get a desired conclusion. Now assume that degree of f > 0.

We will use an induction on j. Before proceeding, we prove the following claim:

Suppose that $f(x) \equiv 0 \pmod{p}$ has a solution $x \equiv a \pmod{p}$. Then there is a polynomial q(x) such that $f(x) \equiv (x - a)q(x) \pmod{p}$.

1

Dividing f(x) by (x-a), we have $f(x) \equiv (x-a)q(x) + r(x) \pmod{p}$ where $\deg(r) < 1$, that is, r(x) is constant in modulo p. Since $f(a) \equiv 0 \pmod{p}$, $r(a) \equiv 0 \pmod{p}$. Hence $r(x) \equiv 0$ in modulo p, so we can find that $f(x) \equiv (x-a)q(x) \pmod{p}$.

Now we prove the statement of problem by induction. The case of j=1 is just proved by the claim. Suppose that the statement is true for j=k, and consider the case of j=k+1. Because that $f(x) \equiv 0 \pmod{p}$ has k solutions, we can say that $f(x) \equiv (x-a_1)(x-a_2)\cdots(x-a_k)q(x) \pmod{p}$. Applying $x=a_{k+1}$, we have

$$0 \equiv f(a_{k+1}) \equiv (a_{k+1} - a_1)(a_{k+1} - a_2) \cdots (a_{k+1} - a_k)q(a_{k+1}) \pmod{p}$$

Since a_{k+1} is different from a_1, \dots, a_k in modulo p, $(a_{k+1} - a_i)$ is not 0 for $i = 1, \dots, k$. Therefore, $q(a_{k+1}) \equiv 0 \pmod{p}$. By the above claim, we have $q(x) \equiv (x - a_{k+1})s(x) \pmod{p}$. With the fact that $f(x) \equiv (x - a_1)(x - a_2) \cdots (x - a_k)q(x) \pmod{p}$, we can conclude that $f(x) \equiv (x - a_1)(x - a_2) \cdots (x - a_k)(x - a_{k+1})s(x) \pmod{p}$. Hence the statement is true for j = k + 1. This completes the proof. \square .

Problem 2.8.2 We should find a such that $a^{22} \equiv 1 \pmod{23}$ and $a^i \not\equiv 1 \pmod{23}$ for any other $i \mid 22$. Note that the positive divisors of 22 are 1, 2, 11, 22.

For the case a = 2, we can find that

$$2^{11} \equiv 2048 \equiv 23 \cdot 89 + 1 \equiv 1 \pmod{23}$$

.

Therefore the order of 2 modulo 23 is ≤ 11 , (Actually, is equal to 11), so 2 is not a primitive root of 23.

For the case a = 3, we can find that

$$3^{11} \equiv (3^3)^3 \cdot 3^2 \equiv 27^3 \cdot 9 \equiv 4^3 \cdot 9 \equiv (-5) \cdot 9 \equiv -45 \equiv 1 \pmod{23}$$

.

Therefore, the order of 3 modulo 23 is ≤ 11 , (Actually, is equal to 11), so 3 is not a primitive root of 23.

For the case a = 5, we can find that

$$5^1 \not\equiv 1 \pmod{23},$$

$$5^2 \equiv 2 \not\equiv 1 \pmod{23},$$

$$5^{11} \equiv 25^5 \cdot 5 \equiv 2^5 \cdot 5 = 160 \equiv -1 \not\equiv 1 \pmod{23}.$$

 $5^{22} \equiv 1 \pmod{23}$ is clearly true by Euler's theorem, hence 5 is a primitive root of 23.

(Of course, the cases of a=2 and a=3 are needless when you have good intuition or good luck or page 514.)

Problem 2.8.6 Suppose that $a^i \equiv a^j \pmod{m}$ for some different $i, j \in \{1, \dots h\}$. Without loss of generality, we may assume that i > j. Then $a^{i-j} \equiv 1 \pmod{m}$ where $1 \leq i-j < h$. But by definition, h is the smallest positive integer such that $a^h \equiv 1 \pmod{m}$, hence this is a contradiction. Therefore, no two of them are congruent modulo m. \square

Problem 2.8.9 Let h be the order of 3 modulo 17. By Euler's theorem, we already have $3^{16} \equiv 1 \pmod{17}$. Therefore, $h \mid 16$. Because of $16 = 2^4$, if $h \nmid 2^3$, then h = 16. But $3^8 \equiv -1 \not\equiv 1 \pmod{17}$ implies that $h \nmid 2^3$. Thus we can have h = 16, which implies that 3 is the primitive root of 17. \square

Problem 2.8.14 Let \bar{a} has order of \bar{h} modulo p. From

$$1 \equiv 1^h \equiv (a\bar{a})^h \equiv a^h \cdot \bar{a}^h \equiv \bar{a}^h \pmod{p},$$

we can find that $\bar{h} \mid h$. Also, from

$$1 \equiv 1^{\bar{h}} \equiv (a\bar{a})^{\bar{h}} \equiv a^{\bar{h}} \cdot \bar{a}^{\bar{h}} \equiv a^{\bar{h}} \pmod{p},$$

we can find that $h \mid \bar{h}$. Therefore, $h = \bar{h}$.

From $a \equiv g^i \pmod{p}$, multiplying \bar{a} by both sides, we have

$$\bar{a} \cdot g^i \equiv \bar{a}a \equiv 1 \equiv g^{p-1} \pmod{p}.$$

Since i < p-1, we can conclude that $\bar{a} \equiv q^{p-1-i} \pmod{p}$, as desired. \square

Problem 2.8.18 The fact that g is a primitive root of p implies that $g^i \not\equiv 1 \pmod p$ for any integer 0 < i < p-1. In particular, $g^{\frac{p-1}{2}} \not\equiv 1 \pmod p$. The proof of Corollary 2.38 implies that this gives $g^{\frac{p-1}{2}} \equiv -1 \pmod p$. Similarly, $g'^{\frac{p-1}{2}} \equiv -1 \pmod p$. Thus we can find that

$$(gg')^{\frac{p-1}{2}} \equiv g^{\frac{p-1}{2}} g'^{\frac{p-1}{2}} \equiv (-1) \cdot (-1) \equiv 1 \pmod{p}.$$

Hence gg' has order equal to or less than $\frac{p-1}{2}$, so gg' is not a primitive root of p. \Box

We need to solve more exercises to prove the statement of Exercise 2.8.27.

Problem 2.8.25 Express m as $m = \prod p^{\alpha}$. Then

$$a^{m-1} \equiv 1 \pmod{p} \Leftrightarrow a^{m-1} \equiv 1 \pmod{p^{\alpha}}$$
 for each p such that $p \mid m$.

By Corollary 2.42, $x^{m-1} \equiv 1 \pmod{p^{\alpha}}$ has $(m-1,\phi(p^{\alpha}))$ solutions modulo p^{α} . Here, $\phi(p^{\alpha}) = p^{\alpha-1}(p-1)$. Also, $p \mid m$ implies that (p,m-1)=1. Therefore, $(m-1,\phi(p^{\alpha}))=(m-1,p-1)$. In short, $x^{m-1} \equiv 1 \pmod{p^{\alpha}}$ has (m-1,p-1) solutions for each $p \mid m$. By Chinese remainder theorem, we can conclude that $x^{m-1} \equiv 1 \pmod{m}$ has exactly $\prod_{p \mid m} (p-1,m-1)$ solutions, which is the claim in Exercise 25. \square

Problem 2.8.26 First we show that if m is a Carmichael number, m is composite, square-free and $(p-1) \mid (m-1)$ for all primes p dividing m.

m is composite by definition of Carmichael number in page 59. By Exercise 25, the number of reduced residues $a \pmod m$ such that $a^{m-1} \equiv 1 \pmod m$ is exactly $\prod_{p|m} (p-1,m-1)$. Since m is a Carmichael number, all the reduced residues $a \pmod m$ satisfy $a^{m-1} \equiv 1 \pmod m$. Therefore, we can have

$$\phi(m) = \prod_{p|m} (p-1, m-1).$$

But when $m = \prod p^{\alpha}$,

$$\phi(m) = \prod_{p|m} p^{\alpha-1}(p-1) \ge \prod_{p|m} (p-1) \ge \prod_{p|m} (p-1, m-1),$$

thus all the equality should hold. This implies that each α should be 1 and (p-1, m-1) = (p-1) which means that $(p-1) \mid (m-1)$.

Now we assume that m is composite, square-free and $(p-1) \mid (m-1)$ for all primes p dividing m. Then these condition give us $\phi(m) = \prod_{p \mid m} (p-1, m-1)$ as we just observed. By exercise 25, that is the number reduced residues $a \pmod m$ satisfy $a^{m-1} \equiv 1 \pmod m$. Since that is equal to $\phi(m)$, all the reduced residues $a \pmod m$ satisfy $a^{m-1} \equiv 1 \pmod m$. Because m is composite, we can conclude that m is a Carmichael number. \square

Problem 2.8.27 First assume that m is composite and $a^m \equiv a \pmod{m}$ for all integers a. Then for any a such that (a, m) = 1, we can divide the both side of congruence by a, so we have $a^{m-1} \equiv 1 \pmod{m}$. By definition, m is a Carmichael number.

Now assume that m is a Carmichael number. Then m is a composite number by definition. Also by Exercise 26, m is square-free and $(p-1) \mid (m-1)$ for any $p \mid m$.

Fix any prime p such that $p \mid m$. For an integer a such that (a,p) = 1, $a^{p-1} \equiv 1 \pmod p$. Since $(p-1) \mid (m-1)$, this gives $a^{m-1} \equiv 1 \pmod p$, hence, $a^m \equiv a \pmod p$. For an integer a such that $p \mid a$, clearly $a^m \equiv 0 \equiv a \pmod p$.

In conclusion, for any integer a and for any prime p such that $p \mid m$, $a^m \equiv a \pmod{p}$. This implies that for any integer a, $a^m \equiv a \pmod{\prod_{p \mid m} p}$, where $\prod_{p \mid m} p = m$ since m is square-free. Thus we complete the proof. \square

Problem 2.8.31 First we prove the following claim.

For the rational number r, its decimal expansion $r = \sum_{i=-\infty}^m (r_i 10^i) = r_m r_{m-1} \cdots r_0.r_{-1} r_{-2} \cdots$ where $r_m \neq 0$ (m may be negative) is periodic with period k if and only if $(10^{k-m}r - 10^{-m}r)$ is an integer.

Suppose there exist a rational number r whose decimal expansion $r = \sum_{i=-\infty}^{m} (r_i 10^i) = r_m r_{m-1} \cdots r_0 . r_{-1} r_{-2} \cdots$ where $r_m \neq 0$ (m may be negative).

If this expression is periodic with period k, then $10^{k-m}r$ and $10^{-m}r$ have same fractional part. That is, $10^{k-m}r - 10^{-m}r$ is an integer.

Conversely, Suppose that there is k such that $10^{k-m}r - 10^{-m}r$ is an integer. Then $10^{k-m}r$ and $10^{-m}r$ have same fractional part. Therefore, we have

$$r_m r_{m-1} \cdots r_{m-k+1}$$
 . $r_{m-k} \cdots r_{m-2k+1}$ $r_{m-2k} \cdots r_{m-3k+1}$ $r_{m-3k} \cdots$

$$\parallel$$

$$0 . r_m r_{m-1} \cdots r_{m-k+1}$$
 $r_{m-k} \cdots r_{m-2k+1}$ $r_{m-2k} \cdots$

Since the fractional parts are equal, by comparing first k terms of fractional part, the expression $r_m \cdots r_{m-k+1}$ is same with $r_{m-k} \cdots r_{m-2k+1}$. Comparing next k terms, the expression $r_{m-k} \cdots r_{m-2k+1}$ is identical with $r_{m-2k} \cdots r_{m-3k+1}$.

By comparing repeatedly, we can have that the decimal expansion of r is periodic. (To make this argument precise, you may use an induction.)

Now we prove the original problem. Suppose that the decimal expansion of $\frac{1}{p}$ has period p-1. It means that the decimal expansion of $\frac{1}{p}$ is periodic with **least** period p-1. Let $r=\frac{1}{p}$ and m be the number which appears in the above argument. Since $\frac{1}{p}<1$, m is **negative**. By the above claim, $10^{p-1-m}r-10^{-m}r$ is an integer. That is,

$$10^{-m} \frac{10^{p-1} - 1}{p}$$

is an integer. It is easy to verify that p is neither 2 nor 5 in this assumption. Therefore p cannot divide 10^{-m} . Hence we can conclude that $10^{p-1} \equiv 1 \pmod{p}$. For any other $k \pmod{1 < k < p-1}$, If $10^k \equiv 1 \pmod{p}$, $10^{-m} \frac{10^k-1}{p}$ becomes an integer, so by the above claim, the decimal expansion of $\frac{1}{p}$ is periodic with period k, which is absurd. Therefore, $10^k \not\equiv 1 \pmod{p}$ for each (1 < k < p-1), and we can conclude that 10 is a primitive root of p.

Conversely, If 10 is the primitive root of p, it is clear that $10^{p-1-m}r - 10^{-m}r$ is an integer because $10^{p-1} \equiv 1 \pmod{p}$ and m is negative. For any k $(1 \le k < p-1)$, $10^{k-m}r - 10^{-m}r$ is not an integer because

- 1) $10^k \not\equiv 1 \pmod{p}$ implies that $10^k 1$ is not a multiple of p.
- 2) The fact 10 is the primitive root of p implies that p is neither 2 nor 5, hence 10^{-m} is not a multiple of p.

Thus the decimal expansion of $\frac{1}{p}$ is periodic with **least** period p-1, as desired. \Box

We need to solve more exercises to prove the statement of Exercise 2.8.35.

Problem 2.8.33 It is clear that $a^k \equiv 1 \pmod{(a^k-1)}$. For any 0 < i < k, $0 < a^i-1 < a^k-1$, so $a^i \not\equiv 1 \pmod{(a^k-1)}$. This means that k is the order of a modulo (a^k-1) . Since $(a, a^k-1) = 1$, it is also clear that $a^{\phi(a^k-1)} \equiv 1 \pmod{(a^k-1)}$ by Euler's theorem. Therefore, $k \mid \phi(a^k-1)$, as desired. \square

Problem 2.8.34 Express m as $m = \prod_{q|m} q^{\alpha}$. Then $\phi(m) = \prod_{q|m} q^{\alpha-1}(q-1)$. Since $p \mid \phi(m)$, p = q or $p \mid (q-1)$ for some q such that $q \mid m$. But the previous case never happen because $p \nmid m$. Therefore there is a prime factor q of m such that $p \mid (q-1)$, that is, $q \equiv 1 \pmod{p}$.

Problem 2.8.35 Suppose that there are only finitely many prime numbers $q \equiv 1 \pmod{p}$. Let q_1, \dots, q_r are all the such primes. Let $a = pq_1q_2 \cdots q_r$ and k = p. By applying Exercise 33, we have

$$p \mid \phi((pq_1q_2\cdots q_r)^p-1).$$

If we let $m=(pq_1q_2\cdots q_r)^p-1$, then $p\mid \phi(m)$ and $p\nmid m$. Thus by Exercise 34, there is a prime factor q of m such that $q\equiv 1\pmod p$. By our assumption, q should be one of q_1,\cdots,q_r . But it is clear that $(m,q_i)=1$ for each $i=1,\cdots,r$, hence $q\nmid m$, this is a contradiction. Therefore there exist infinitely many prime numbers $q\equiv 1\pmod p$. \square

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)