18.781, Fall 2007 Problem Set 4

Solutions to Selected Problems

Problem 2.7.2 You may want to solve this problem by taking x as 0 through 6 and find the
value of x which makes the given equation true. It might be easier, but here we will use the
Theorem 2.29.

Since (4,7) = 1, by multiplying 4, the given equation has same solution with

23 + 622 + 3z 4+ 4 =0 (mod 7).

Since degree of this equation is 3, if we show that 23+ 622 + 32 +4 is a factor of 27 — 2 modulo
7, we can conclude that 2 4+ 622 + 32 + 4 = 0 (mod 7) has three solutions by Theorem 2.29.

Keeping the fact that every coefficient is in modulo 7 in your mind, divide 27 — x by x3 +
622 4 3z 4+ 4. Then we can calculate like following :

(7 — ) — (2% 4 622 + 3z 4+ 4)(2*) = (25 + 425 + 32* — 2)
(2% + 42° + 32* — 2) — (2% 4 627 4 3z + 4)(2®) = (52° + 32 — )
(52° + 323 — ) — (23 + 622 + 32 + 4)(52°%) = 52t + 223 + 2% — 2
5zt +22% + 2% —2) — (23 + 62 + 32 +4)(5z) =0

This implies that > + 622 + 32 + 4 is a factor of 27 — 2 modulo 7, so we’ve done. O

Problem 2.7.3 We can find that

21 4+ 1222 = 21 — 2?2 = (2™ — 2) (mod 13).

Since (z!3 — z) = 0 (mod 13) for all integer z by Fermat’s theorem, z'* 4+ 1222 = 0 (mod 13)
has 13 solutions. O

Problem 2.7.4 First of all, if the degree of f is strictly less than 1, f(z) = 0 (mod p ) has a
solution if and only if f(z) is identically zero. Then if we let ¢(z) = 0, we get a desired
conclusion. Now assume that degree of f > 0.

We will use an induction on j. Before proceeding, we prove the following claim :

Suppose that f(z) =0 (mod p) has a solution = a (mod p). Then there is a polynomial
q(x) such that f(x) = (z — a)q(z) (mod p).



Dividing f(x) by (z — a), we have f(z) = (z — a)q(z) + r(z) (mod p) where deg(r) < 1, that
is, r(z) is constant in modulo p. Since f(a) =0 (mod p), r(a) = 0 (mod p). Hence r(z) =0
in modulo p, so we can find that f(x) = (z — a)q(z) (mod p).

Now we prove the statement of problem by induction. The case of j = 1 is just proved by the
claim. Suppose that the statement is true for j = k, and consider the case of j = k+1. Because
that f(x) =0 (mod p ) has k solutions, we can say that f(x) = (x—a1)(z—a2) - - (r—a)q(x)
(mod p ). Applying & = axy1, we have

0= f(akt1) = (ag+1 — a1)(ag1 — a2) -+ (ag+1 — ag)g(ag+1) (mod p)

Since a1 is different from aq,--- ,ax in modulo p, (axy1 — a;) is not 0 for ¢ = 1,--- k.
Therefore, g(ag+1) = 0 (mod p ). By the above claim, we have ¢(z) = (x — ag+1)s(z) (mod
p). With the fact that f(z) = (z —a1)(x —a2) -+ - (z — ax)g(x) (mod p), we can conclude that
f(x)=(r—a1)(x —az) - (x — ax)(z — ar+1)s(x) (mod p). Hence the statement is true for
j =k + 1. This completes the proof. O.

Problem 2.8.2 We should find a such that a®> =1 (mod 23 ) and a’ # 1 (mod 23) for any other
i | 22. Note that the positive divisors of 22 are 1,2, 11, 22.

For the case a = 2, we can find that

21 =2048 = 23-89 + 1 =1 (mod 23)

Therefore the order of 2 modulo 23 is < 11, (Actually, is equal to 11), so 2 is not a primitive
root of 23.

For the case a = 3, we can find that

311 =(3%)3.32=27.9=4%.9=(-5)- 9= —45 = 1 (mod 23)

Therefore, the order of 3 modulo 23 is < 11, (Actually, is equal to 11), so 3 is not a primitive
root of 23.

For the case a = 5, we can find that
5' # 1 (mod 23),
52 = 2 # 1 (mod 23),
511 =255.5=25.5=160= —1 # 1 (mod 23).

522 = 1 (mod 23) is clearly true by Euler’s theorem, hence 5 is a primitive root of 23.

(Of course, the cases of a = 2 and a = 3 are needless when you have good intuition or good
luck or page 514. )

g



Problem 2.8.6 Suppose that a’ = a/ (mod m ) for some different 4,j € {1,---h}. Without loss
of generality, we may assume that i > j. Then @'~/ =1 (mod m ) where 1 <i —j < h. But
by definition, h is the smallest positive integer such that a” = 1 (mod m ), hence this is a
contradiction. Therefore, no two of them are congruent modulo m. O

Problem 2.8.9 Let h be the order of 3 modulo 17. By Euler’s theorem, we already have 3'6 = 1
(mod 17). Therefore, h | 16. Because of 16 = 24, if h {23 ‘then h = 16. But 3% = —1 # 1
(mod 17) implies that h { 23. Thus we can have h = 16, which implies that 3 is the primitive
root of 17. O

Problem 2.8.14 Let @ has order of A modulo p. From
1=1"= (aa)" = o" - @" = " (modp),

we can find that h | h . Also, from

1h = a" (modp),
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we can find that h | h. Therefore, h = h.

From a = g* (mod p ), multiplying @ by both sides, we have
a-¢g'=aa=1=g¢" ' mod p).

Since i < p — 1, we can conclude that @ = ¢g?~'~%( mod p), as desired. O

Problem 2.8.18 The fact that g is a primitive root of p implies that ¢ Z 1 (mod p ) for any
integer 0 < ¢ < p — 1. In particular, g% # 1 (mod p ). The proof of Corollary 2.38 implies

_ —1
that this gives g% = —1 (mod p ). Similarly, g’pT = —1 (mod p ). Thus we can find that

(99)"F = ¢"T¢"% = (1) (~1) = 1(modp).

Hence gg’ has order equal to or less than %, s0 g¢g' is not a primitive root of p. O

‘We need to solve more exercises to prove the statement of Exercise 2.8.27.

Problem 2.8.25 Express m as m = [[p®. Then
a™ ! =1(modm) < a™ ! = 1(modp®) for each p such that p | m.

By Corollary 2.42, 2™~ ! = 1(modp®) has (m — 1, ¢(p®)) solutions modulo p®. Here, ¢(p*) =
p*~Y(p—1). Also, p | m implies that (p,m—1) = 1. Therefore, (m—1,$(p%)) = (m—1,p—1).
In short, ™! = 1(modp®) has (m — 1,p — 1) solutions for each p | m. By Chinese remainder
theorem, we can conclude that 2™ ! =1 (mod m ) has exactly Hp‘m(p —1,m — 1) solutions,
which is the claim in Exercise 25. O



Problem 2.8.26 First we show that if m is a Carmichael number, m is composite, square-free and
(p—1) | (m—1) for all primes p dividing m.
m is composite by definition of Carmichael number in page 59. By Exercise 25, the number
of reduced residues a (mod m ) such that a™ ! =1 (mod m ) is exactly [Lm(p—1,m—1).
Since m is a Carmichael number, all the reduced residues a (mod m ) satisfy a™ ! = 1 (mod
m ). Therefore, we can have
o(m) = [[(0 = 1,m —1).

plm
But when m = []p®,

om)=[[r -1 =2][e-1)=][P-1.m-1),
plm plm plm
thus all the equality should hold. This implies that each « should be 1 and (p —1,m — 1) =
(p — 1) which means that (p — 1) | (m — 1).

Now we assume that m is composite, square-free and (p—1) | (m —1) for all primes p dividing
m. Then these condition give us ¢(m) = Hp|m(p —1,m — 1) as we just observed. By exercise
25, that is the number reduced residues a (mod m ) satisfy a™~! =1 (mod m ). Since that
is equal to ¢(m), all the reduced residues a (mod m ) satisfy a™~! = 1 (mod m ). Because
m is composite, we can conclude that m is a Carmichael number. O

Problem 2.8.27 First assume that m is composite and a™ = a (mod m ) for all integers a. Then
for any a such that (a,m) = 1, we can divide the both side of congruence by a, so we have
a™ ! =1 (mod m ). By definition, m is a Carmichael number.

Now assume that m is a Carmichael number. Then m is a composite number by definition.
Also by Exercise 26, m is square-free and (p — 1) | (m — 1) for any p | m.

Fix any prime p such that p | m. For an integer a such that (a,p) =1, ! =1 (mod p ).
Since (p—1) | (m — 1), this gives @™ ! =1 (mod p ), hence, a™ = a (mod p ). For an integer
a such that p | a, clearly ¢ =0 = a (mod p ).

In conclusion, for any integer a and for any prime p such that p | m , @™ = a (mod p ).
This implies that for any integer a, a™ = a (mod Hp|mp ), where Hp|mp = m since m is
square-free. Thus we complete the proof. O

m

Problem 2.8.31 First we prove the following claim.

For the rational number r, its decimal expansion
r=>_ (ril0") = rymry_1---ro.r—1r—2- -+  where , # 0 ( m may be negative )
is periodic with period k if and only if (10¥~™r — 10~™7) is an integer.

Suppose there exist a rational number r whose decimal expansion r = Y.7* _ (r;10") =
TmTm—1-"*T0.T—17—2 - -+ where r,,, # 0 ( m may be negative ).

If this expression is periodic with period k, then 10¥~™s and 10~™r have same fractional
part. That is, 10F~™r — 10~™r is an integer.



Conversely, Suppose that there is k such that 10~™s — 10~ is an integer. Then 10%~™r
and 107™r have same fractional part. Therefore, we have

"TmTm—1"""Tm—k+1 - Tm—k " "Tm—-2k+1 Tm—2k" " Tm—-3k+1 Tm-3k" """

0 . "mT™m—1"""Tm—k+1 Tm—k " "Tm—-2k+1 Tm—2k"""

Since the fractional parts are equal, by comparing first k£ terms of fractional part, the expres-
Sion Ty« + - Fyp—ga1 18 same with 7, g - rp_opr1. Comparing next & terms, the expression
Tm—k - Tm—ok+1 18 identical with r,_og - - - T"rm—3k+1-

By comparing repeatedly, we can have that the decimal expansion of r is periodic. (To make
this argument precise, you may use an induction.)

Now we prove the original problem. Suppose that the decimal expansion of % has period
p—1. It means that the decimal expansion of ]l? is periodic with least period p—1. Let r = 113
and m be the number which appears in the above argument. Since % < 1, m is negative.
By the above claim, 10P~=™r — 10~"r is an integer. That is,

10r-1 -1
D

10~

is an integer. It is easy to verify that p is neither 2 nor 5 in this assumption. Therefore
p cannot divide 10~™. Hence we can conclude that 10°P~! = 1 (mod p). For any other k
(1<k<p—1),If10* =1 (mod p),lO*m% becomes an integer, so by the above claim,the
decimal expansion of % is periodic with period k, which is absurd. Therefore, 10% # 1 (mod
p) for each (1 < k < p—1), and we can conclude that 10 is a primitive root of p.
Conversely, If 10 is the primitive root of p, it is clear that 10P~1=™y — 10~™r is an integer
because 10P~! = 1 (mod p) and m is negative. For any k (1 < k < p — 1), 10F-™r — 107"
is not an integer because

1) 10¥ # 1 (mod p) implies that 10* — 1 is not a multiple of p.
2) The fact 10 is the primitive root of p implies that p is neither 2 nor 5, hence 10~ is not
a multiple of p.

Thus the decimal expansion of % is periodic with least period p — 1, as desired. O

‘We need to solve more exercises to prove the statement of Exercise 2.8.35.

Problem 2.8.33 It is clear that a®* =1 ( mod (a* —1) ). Forany 0 <i <k, 0<a’ —1<a’ -1,
soa’ #1 ( mod (a* — 1) ). This means that k is the order of @ modulo (a* — 1). Since
(a,a* — 1) = 1, it is also clear that a®@ =1 =1 ( mod (a* — 1) ) by Euler’s theorem.
Therefore, k | ¢(a¥ — 1), as desired. O



Problem 2.8.34 Express m as m = [ ,,¢". Then ¢(m) =[], q¢* (g —1). Since p | p(m),
p=gqorp]l(q—1) for some g such that ¢ | m. But the previous case never happen because
p 1 m. Therefore there is a prime factor ¢ of m such that p | (¢ — 1), that is, ¢ =1 (mod p ).
O

Problem 2.8.35 Suppose that there are only finitely many prime numbers ¢ = 1 (mod p ). Let
q1,- - ,qr are all the such primes. Let a = pq1q2--- ¢ and k = p. By applying Exercise 33,
we have

plo((pargz- - g )P —1).

If we let m = (pqiq2 - - - ¢ )P —1, then p | ¢(m) and p 1 m. Thus by Exercise 34, there is a prime
factor ¢ of m such that ¢ = 1 (mod p ). By our assumption, ¢ should be one of ¢, ,¢g.
But it is clear that (m,¢;) =1 for each i = 1,--- | r, hence ¢ {m, this is a contradiction.
Therefore there exist infinitely many prime numbers ¢ = 1 (mod p ). O

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)



