
18.781, Fall 2007 Problem Set 4

Solutions to Selected Problems

Problem 2.7.2 You may want to solve this problem by taking x as 0 through 6 and find the
value of x which makes the given equation true. It might be easier, but here we will use the
Theorem 2.29.

Since (4, 7) = 1, by multiplying 4, the given equation has same solution with

x3 + 6x2 + 3x + 4 ≡ 0 (mod 7).

Since degree of this equation is 3, if we show that x3 +6x2 +3x+4 is a factor of x7−x modulo
7, we can conclude that x3 + 6x2 + 3x + 4 ≡ 0 (mod 7) has three solutions by Theorem 2.29.

Keeping the fact that every coefficient is in modulo 7 in your mind, divide x7 − x by x3 +
6x2 + 3x + 4. Then we can calculate like following :

(x7 − x)− (x3 + 6x2 + 3x + 4)(x4) ≡ (x6 + 4x5 + 3x4 − x)

(x6 + 4x5 + 3x4 − x)− (x3 + 6x2 + 3x + 4)(x3) ≡ (5x5 + 3x3 − x)

(5x5 + 3x3 − x)− (x3 + 6x2 + 3x + 4)(5x2) ≡ 5x4 + 2x3 + x2 − x

(5x4 + 2x3 + x2 − x)− (x3 + 6x2 + 3x + 4)(5x) ≡ 0

This implies that x3 + 6x2 + 3x + 4 is a factor of x7 − x modulo 7, so we’ve done. 2

Problem 2.7.3 We can find that

x14 + 12x2 ≡ x14 − x2 ≡ x(x13 − x) (mod 13).

Since (x13 − x) ≡ 0 (mod 13) for all integer x by Fermat’s theorem, x14 + 12x2 ≡ 0 (mod 13)
has 13 solutions. 2

Problem 2.7.4 First of all, if the degree of f is strictly less than 1, f(x) ≡ 0 (mod p ) has a
solution if and only if f(x) is identically zero. Then if we let q(x) = 0, we get a desired
conclusion. Now assume that degree of f > 0.
We will use an induction on j. Before proceeding, we prove the following claim :

Suppose that f(x) ≡ 0 (mod p) has a solution x ≡ a (mod p). Then there is a polynomial
q(x) such that f(x) ≡ (x− a)q(x) (mod p).

1



Dividing f(x) by (x− a), we have f(x) ≡ (x− a)q(x) + r(x) (mod p) where deg(r) < 1, that
is, r(x) is constant in modulo p. Since f(a) ≡ 0 (mod p), r(a) ≡ 0 (mod p). Hence r(x) ≡ 0
in modulo p, so we can find that f(x) ≡ (x− a)q(x) (mod p).

Now we prove the statement of problem by induction. The case of j = 1 is just proved by the
claim. Suppose that the statement is true for j = k, and consider the case of j = k+1. Because
that f(x) ≡ 0 (mod p ) has k solutions, we can say that f(x) ≡ (x−a1)(x−a2) · · · (x−ak)q(x)
(mod p ). Applying x = ak+1, we have

0 ≡ f(ak+1) ≡ (ak+1 − a1)(ak+1 − a2) · · · (ak+1 − ak)q(ak+1) (mod p)

Since ak+1 is different from a1, · · · , ak in modulo p, (ak+1 − ai) is not 0 for i = 1, · · · , k.
Therefore, q(ak+1) ≡ 0 (mod p ). By the above claim, we have q(x) ≡ (x − ak+1)s(x) (mod
p). With the fact that f(x) ≡ (x− a1)(x− a2) · · · (x− ak)q(x) (mod p), we can conclude that
f(x) ≡ (x − a1)(x − a2) · · · (x − ak)(x − ak+1)s(x) (mod p). Hence the statement is true for
j = k + 1. This completes the proof. 2.

Problem 2.8.2 We should find a such that a22 ≡ 1 (mod 23 ) and ai 6≡ 1 (mod 23) for any other
i | 22. Note that the positive divisors of 22 are 1, 2, 11, 22.

For the case a = 2, we can find that

211 ≡ 2048 ≡ 23 · 89 + 1 ≡ 1 (mod 23)

.

Therefore the order of 2 modulo 23 is ≤ 11, (Actually, is equal to 11), so 2 is not a primitive
root of 23.

For the case a = 3, we can find that

311 ≡ (33)3 · 32 ≡ 273 · 9 ≡ 43 · 9 ≡ (−5) · 9 ≡ −45 ≡ 1 (mod 23)

.

Therefore, the order of 3 modulo 23 is ≤ 11, (Actually, is equal to 11), so 3 is not a primitive
root of 23.

For the case a = 5, we can find that

51 6≡ 1 (mod 23),

52 ≡ 2 6≡ 1 (mod 23),

511 ≡ 255 · 5 ≡ 25 · 5 = 160 ≡ −1 6≡ 1 (mod 23).

522 ≡ 1 (mod 23) is clearly true by Euler’s theorem, hence 5 is a primitive root of 23.

(Of course, the cases of a = 2 and a = 3 are needless when you have good intuition or good
luck or page 514. )

2

2



Problem 2.8.6 Suppose that ai ≡ aj (mod m ) for some different i, j ∈ {1, · · ·h}. Without loss
of generality, we may assume that i > j. Then ai−j ≡ 1 (mod m ) where 1 ≤ i− j < h. But
by definition, h is the smallest positive integer such that ah ≡ 1 (mod m ), hence this is a
contradiction. Therefore, no two of them are congruent modulo m. 2

Problem 2.8.9 Let h be the order of 3 modulo 17. By Euler’s theorem, we already have 316 ≡ 1
(mod 17). Therefore, h | 16. Because of 16 = 24, if h - 23 ,then h = 16. But 38 ≡ −1 6≡ 1
(mod 17) implies that h - 23. Thus we can have h = 16, which implies that 3 is the primitive
root of 17. 2

Problem 2.8.14 Let ā has order of h̄ modulo p. From

1 ≡ 1h ≡ (aā)h ≡ ah · āh ≡ āh (modp),

we can find that h̄ | h . Also, from

1 ≡ 1h̄ ≡ (aā)h̄ ≡ ah̄ · āh̄ ≡ ah̄ (modp),

we can find that h | h̄. Therefore, h = h̄.

From a ≡ gi (mod p ), multiplying ā by both sides, we have

ā · gi ≡ āa ≡ 1 ≡ gp−1( mod p).

Since i < p− 1, we can conclude that ā ≡ gp−1−i( mod p), as desired. 2

Problem 2.8.18 The fact that g is a primitive root of p implies that gi 6≡ 1 (mod p ) for any
integer 0 < i < p− 1. In particular, g

p−1
2 6≡ 1 (mod p ). The proof of Corollary 2.38 implies

that this gives g
p−1
2 ≡ −1 (mod p ). Similarly, g′

p−1
2 ≡ −1 (mod p ). Thus we can find that

(gg′)
p−1
2 ≡ g

p−1
2 g′

p−1
2 ≡ (−1) · (−1) ≡ 1(modp).

Hence gg′ has order equal to or less than p−1
2 , so gg′ is not a primitive root of p. 2

We need to solve more exercises to prove the statement of Exercise 2.8.27.

Problem 2.8.25 Express m as m =
∏

pα. Then

am−1 ≡ 1(modm) ⇔ am−1 ≡ 1(modpα) for each p such that p | m.

By Corollary 2.42, xm−1 ≡ 1(modpα) has (m− 1, φ(pα)) solutions modulo pα. Here, φ(pα) =
pα−1(p−1). Also, p | m implies that (p, m−1) = 1. Therefore, (m−1, φ(pα)) = (m−1, p−1).
In short, xm−1 ≡ 1(modpα) has (m− 1, p− 1) solutions for each p | m. By Chinese remainder
theorem, we can conclude that xm−1 ≡ 1 (mod m ) has exactly

∏
p|m(p− 1,m− 1) solutions,

which is the claim in Exercise 25. 2
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Problem 2.8.26 First we show that if m is a Carmichael number, m is composite, square-free and
(p− 1) | (m− 1) for all primes p dividing m.
m is composite by definition of Carmichael number in page 59. By Exercise 25, the number
of reduced residues a (mod m ) such that am−1 ≡ 1 (mod m ) is exactly

∏
p|m(p− 1,m− 1).

Since m is a Carmichael number, all the reduced residues a (mod m ) satisfy am−1 ≡ 1 (mod
m ). Therefore, we can have

φ(m) =
∏
p|m

(p− 1,m− 1).

But when m =
∏

pα,

φ(m) =
∏
p|m

pα−1(p− 1) ≥
∏
p|m

(p− 1) ≥
∏
p|m

(p− 1,m− 1),

thus all the equality should hold. This implies that each α should be 1 and (p− 1,m− 1) =
(p− 1) which means that (p− 1) | (m− 1).

Now we assume that m is composite, square-free and (p−1) | (m−1) for all primes p dividing
m. Then these condition give us φ(m) =

∏
p|m(p− 1,m− 1) as we just observed. By exercise

25, that is the number reduced residues a (mod m ) satisfy am−1 ≡ 1 (mod m ). Since that
is equal to φ(m), all the reduced residues a (mod m ) satisfy am−1 ≡ 1 (mod m ). Because
m is composite, we can conclude that m is a Carmichael number. 2

Problem 2.8.27 First assume that m is composite and am ≡ a (mod m ) for all integers a. Then
for any a such that (a,m) = 1, we can divide the both side of congruence by a, so we have
am−1 ≡ 1 (mod m ). By definition, m is a Carmichael number.

Now assume that m is a Carmichael number. Then m is a composite number by definition.
Also by Exercise 26, m is square-free and (p− 1) | (m− 1) for any p | m.
Fix any prime p such that p | m. For an integer a such that (a, p) = 1, ap−1 ≡ 1 (mod p ).
Since (p− 1) | (m− 1), this gives am−1 ≡ 1 (mod p ), hence, am ≡ a (mod p ). For an integer
a such that p | a, clearly am ≡ 0 ≡ a (mod p ).
In conclusion, for any integer a and for any prime p such that p | m , am ≡ a (mod p ).
This implies that for any integer a, am ≡ a (mod

∏
p|m p ), where

∏
p|m p = m since m is

square-free. Thus we complete the proof. 2

Problem 2.8.31 First we prove the following claim.

For the rational number r, its decimal expansion
r =

∑m
i=−∞(ri10i) = rmrm−1 · · · r0.r−1r−2 · · · where rm 6= 0 ( m may be negative )
is periodic with period k if and only if (10k−mr − 10−mr) is an integer.

Suppose there exist a rational number r whose decimal expansion r =
∑m

i=−∞(ri10i) =
rmrm−1 · · · r0.r−1r−2 · · · where rm 6= 0 ( m may be negative ).
If this expression is periodic with period k, then 10k−mr and 10−mr have same fractional
part. That is, 10k−mr − 10−mr is an integer.
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Conversely, Suppose that there is k such that 10k−mr − 10−mr is an integer. Then 10k−mr
and 10−mr have same fractional part. Therefore, we have

rmrm−1 · · · rm−k+1 . rm−k · · · rm−2k+1 rm−2k · · · rm−3k+1 rm−3k · · ·

‖

0 . rmrm−1 · · · rm−k+1 rm−k · · · rm−2k+1 rm−2k · · ·

Since the fractional parts are equal, by comparing first k terms of fractional part, the expres-
sion rm · · · rm−k+1 is same with rm−k · · · rm−2k+1. Comparing next k terms, the expression
rm−k · · · rm−2k+1 is identical with rm−2k · · · rm−3k+1.
By comparing repeatedly, we can have that the decimal expansion of r is periodic. (To make
this argument precise, you may use an induction.)

Now we prove the original problem. Suppose that the decimal expansion of 1
p has period

p−1. It means that the decimal expansion of 1
p is periodic with least period p−1. Let r = 1

p

and m be the number which appears in the above argument. Since 1
p < 1, m is negative.

By the above claim, 10p−1−mr − 10−mr is an integer. That is,

10−m 10p−1 − 1
p

is an integer. It is easy to verify that p is neither 2 nor 5 in this assumption. Therefore
p cannot divide 10−m. Hence we can conclude that 10p−1 ≡ 1 (mod p). For any other k

(1 < k < p−1), If 10k ≡ 1 (mod p),10−m 10k−1
p becomes an integer, so by the above claim,the

decimal expansion of 1
p is periodic with period k, which is absurd. Therefore, 10k 6≡ 1 (mod

p) for each (1 < k < p− 1), and we can conclude that 10 is a primitive root of p.

Conversely, If 10 is the primitive root of p, it is clear that 10p−1−mr − 10−mr is an integer
because 10p−1 ≡ 1 (mod p) and m is negative. For any k (1 ≤ k < p − 1), 10k−mr − 10−mr
is not an integer because

1) 10k 6≡ 1 (mod p) implies that 10k − 1 is not a multiple of p.
2) The fact 10 is the primitive root of p implies that p is neither 2 nor 5, hence 10−m is not

a multiple of p.

Thus the decimal expansion of 1
p is periodic with least period p− 1, as desired. 2

We need to solve more exercises to prove the statement of Exercise 2.8.35.

Problem 2.8.33 It is clear that ak ≡ 1 ( mod (ak − 1) ). For any 0 < i < k, 0 < ai − 1 < ak − 1,
so ai 6≡ 1 ( mod (ak − 1) ). This means that k is the order of a modulo (ak − 1). Since
(a, ak − 1) = 1, it is also clear that aφ(ak−1) ≡ 1 ( mod (ak − 1) ) by Euler’s theorem.
Therefore, k | φ(ak − 1), as desired. 2
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Problem 2.8.34 Express m as m =
∏

q|m qα. Then φ(m) =
∏

q|m qα−1(q − 1). Since p | φ(m),
p = q or p | (q − 1) for some q such that q | m. But the previous case never happen because
p - m. Therefore there is a prime factor q of m such that p | (q − 1), that is, q ≡ 1 (mod p ).
2

Problem 2.8.35 Suppose that there are only finitely many prime numbers q ≡ 1 (mod p ). Let
q1, · · · , qr are all the such primes. Let a = pq1q2 · · · qr and k = p. By applying Exercise 33,
we have

p | φ((pq1q2 · · · qr)p − 1).

If we let m = (pq1q2 · · · qr)p−1, then p | φ(m) and p - m. Thus by Exercise 34, there is a prime
factor q of m such that q ≡ 1 (mod p ). By our assumption, q should be one of q1, · · · , qr.
But it is clear that (m, qi) = 1 for each i = 1, · · · , r, hence q - m, this is a contradiction.
Therefore there exist infinitely many prime numbers q ≡ 1 (mod p ). 2

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)
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