18.781, Fall 2007 Problem Set 3

Solutions to Selected Problems

Problem 2.3.17 First of all, we can observe that $143=11 \cdot 13$ and

$$
x^{3}-9 x^{2}+23 x-15=(x-1)(x-3)(x-5) .
$$

Hence, x is a solution of given equation if and only if

$$
(x-1)(x-3)(x-5) \equiv 0(\bmod 11) \text { and }(x-1)(x-3)(x-5) \equiv 0(\bmod 13)
$$

Clearly, this means that

$$
x \equiv 1,3,5(\bmod 11) \text { and } x \equiv 1,3,5(\bmod 13)
$$

Using the relation $6 \cdot 11+(-5) \cdot 13=1$, we have

$$
\begin{gathered}
x \equiv a_{1}(\bmod 11) \text { and } x \equiv a_{2}(\bmod 13) \\
\hat{\Downarrow} \\
x \equiv-65 a_{1}+66 a_{2}(\bmod 143) .
\end{gathered}
$$

(Using the Chinese Remainder theorem with $m_{1}=11, m_{2}=13, b_{1}=-5, b_{2}=6$.)
Therefore, we can conclude that the solutions are

$$
\begin{gathered}
\text { For }\left(a_{1}, a_{2}\right)=(1,1), x \equiv 1(\bmod 143) . \\
\text { For }\left(a_{1}, a_{2}\right)=(1,3), x \equiv 133(\bmod 143) . \\
\text { For }\left(a_{1}, a_{2}\right)=(1,5), x \equiv 265 \equiv 122(\bmod 143) . \\
\text { For }\left(a_{1}, a_{2}\right)=(3,1), x \equiv-129 \equiv 14(\bmod 143) . \\
\text { For }\left(a_{1}, a_{2}\right)=(3,3), x \equiv 3(\bmod 143) . \\
\text { For }\left(a_{1}, a_{2}\right)=(3,5), x \equiv 135(\bmod 143) . \\
\text { For }\left(a_{1}, a_{2}\right)=(5,1), x \equiv-259 \equiv 27(\bmod 143) . \\
\text { For }\left(a_{1}, a_{2}\right)=(5,3), x \equiv-127 \equiv 16(\bmod 143) . \\
\quad \text { For }\left(a_{1}, a_{2}\right)=(5,5), x \equiv 5(\bmod 143) .
\end{gathered}
$$

Problem 2.3.21 First we prove "if" part. This is quite trivial. Suppose that $a_{i} \equiv a_{r}\left(\bmod p^{\alpha_{i}}\right)$ for $i=1,2, \cdots, r$. Then $x=a_{r}$ is the solution of the given system.

Now we prove "only if" part. Suppose that there is a simultaneous solution x. Then for any $i, x \equiv a_{i}\left(\bmod p^{\alpha_{i}}\right)$, hence we can express x as $x=a_{i}+t_{i} p^{\alpha_{i}}$.
Then for fixed $i, a_{i}+t_{i} p^{\alpha_{i}}=x=a_{r}+t_{r} p^{\alpha_{r}}$, that is,

$$
a_{i}-a_{r}=t_{r} p^{\alpha_{r}}-t_{i} p^{\alpha_{i}}=p^{\alpha_{i}}\left(t_{r} p^{\alpha_{r}-\alpha_{i}}-t_{i}\right)
$$

where $\alpha_{r}-\alpha_{i} \geq 0$.
This gives that $a_{i} \equiv a_{r}\left(\bmod p^{\alpha_{i}}\right)$ for $i=1,2, \cdots, r$.
Problem 2.3.29 For any even positive integer n, we can express n as $n=2^{t} m$ where $(2, m)=1$ and $t \geq 1$. Then

$$
\begin{gathered}
\phi(2 n)=\phi\left(2^{t+1} m\right)=\phi\left(2^{t+1}\right) \phi(m)=\left(2^{t+1}-2^{t}\right) \phi(m)=2^{t} \phi(m) \\
\phi(n)=\phi\left(2^{t} m\right)=\phi\left(2^{t}\right) \phi(m)=\left(2^{t}-2^{t-1}\right) \phi(m)=2^{t-1} \phi(m)
\end{gathered}
$$

Thus $\phi(2 n)=\phi(n)$ if and only if $2^{t}=2^{t-1}$, which never happen. Therefore, there is no such even number n.

For any odd positive integer $n,(2, n)=1$. Then $\phi(2 n)=\phi(2) \phi(n)=1 \cdot \phi(n)=\phi(n)$. Therefore, every odd number n satisfies the given equation.

Problem 2.3.32 Suppose that x satisfying $\phi(x)=24$. If x has the canonical factorization $\prod p^{\alpha}$, then $p^{\alpha-1}(p-1) \mid \phi(x)=24$, in particular, we have $(p-1) \mid 24$. Since all the positive divisors of 24 are $1,2,3,4,6,8,12,24$, the possible values of p are $2,3,5,7,13$. (4, 9, 25 are not prime numbers.)
Now let's say $x=2^{a_{1}} 3^{a_{2}} 5^{a_{3}} 7^{a_{4}} 13^{a_{5}}$. For each p, to satisfy $p^{\alpha-1}(p-1) \mid \phi(x)=24$, it is easily verified that
a_{1} can be $0,1,2,3,4$, and for each case, $\phi\left(2^{a_{1}}\right)=1,1,2,4,8$, respectively.
a_{2} can be $0,1,2$, and for each case, $\phi\left(3^{a_{2}}\right)=1,2,6$, respectively.
a_{3} can be 0,1 , and for each case, $\phi\left(5^{a_{3}}\right)=1,4$, respectively.
a_{4} can be 0,1 , and for each case, $\phi\left(7^{a_{4}}\right)=1,6$, respectively.
a_{5} can be 0,1 , and for each case, $\phi\left(13^{a_{2}}\right)=1,12$, respectively.
We should find the proper $\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)$ such that $\phi(x)=\phi\left(2^{a_{1}}\right) \phi\left(3^{a_{2}}\right) \phi\left(5^{a_{3}}\right) \phi\left(7^{a_{4}}\right) \phi\left(13^{a_{2}}\right)=$ 24.

Because that $3 \mid 24$, we can say that $\phi\left(3^{a_{2}}\right)=6$ or $\phi\left(7^{a_{4}}\right)=6$ or $\phi\left(13^{a_{2}}\right)=12$ should hold. That is, $a_{2}=2$ or $a_{4}=1$ or $a_{5}=1$.

If $a_{2}=2, \phi\left(2^{a_{1}}\right) \phi\left(5^{a_{3}}\right) \phi\left(7^{a_{4}}\right) \phi\left(13^{a_{2}}\right)=4$, therefore, we have

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(0,2,1,0,0),(1,2,1,0,0),(3,2,0,0,0)
$$

If $a_{4}=1, \phi\left(2^{a_{1}}\right) \phi\left(3^{a_{2}}\right) \phi\left(5^{a_{3}}\right) \phi\left(13^{a_{2}}\right)=4$, therefore, we have

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(0,0,1,1,0),(1,0,1,1,0),(3,0,0,1,0),(2,1,0,1,0)
$$

If $a_{5}=1, \phi\left(2^{a_{1}}\right) \phi\left(3^{a_{2}}\right) \phi\left(5^{a_{3}}\right) \phi\left(7^{a_{4}}\right)=2$, therefore, we have

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right)=(0,1,0,0,1),(1,1,0,0,1),(2,0,0,0,1)
$$

Thus we can conclude that the solutions are

$$
x=45,90,72,35,70,56,84,39,78,52 .
$$

Problem 2.3.37 It is easy to find that $\phi(100)=40$. Hence by Euler's theorem we have $3^{40} \equiv 1$ $(\bmod 100)$.
Since each a_{i} is odd, we have $a_{i+1}=3^{a_{i}} \equiv(-1)^{a_{i}} \equiv 3(\bmod 4)$. Also note that $3^{4}=81 \equiv 1$ $(\bmod 40)$. Then for each $i \geq 1$,

$$
a_{i+1}=3^{a_{i}}=3^{4 k+3}=81^{k} \cdot 27 \equiv 27(\bmod 40)
$$

Hence

$$
a_{i+2}=3^{a_{i+1}}=3^{40 t+27}=\left(3^{40}\right)^{t} \cdot 3^{27}=3^{27}(\bmod 100)
$$

So we have now that $a_{j} \equiv 3^{27}(\bmod 100)$ for $j \geq 3$. Also,

$$
3^{27}=\left(3^{4}\right)^{6} \cdot 3^{3}=81^{6} \cdot 27=(80+1)^{6} \cdot 27=\left(80^{6}+\cdots+6 \cdot 80+1\right) \cdot 27 \equiv 481 \cdot 27 \equiv 81 \cdot 27 \equiv 87(\bmod 100)
$$

Therefore we can conclude that the given sequence $(\bmod 100)$ is nothing but

$$
3,27,87,87,87,87,87, \cdots
$$

Problem 2.3.44 If $m=1$, there is nothing to prove. Now assume that $m>1$.
Let I be the set of prime factors p of m which satisfy $(a, p)>1$ (That is, $p \mid a$). Then m can be factorized by $m=\left(\prod_{p \in I} p^{\alpha}\right) \cdot M$, where $(a, M)=1$. Also note that $\left(\prod_{p \in I} p^{\alpha}, M\right)=1$ by our setting, hence $\phi(M) \mid \phi(m)$.

By usual Euler's theorem, $a^{\phi(M)} \equiv 1(\bmod M)$, so with the fact $\phi(M) \mid \phi(m)$, we have $a^{\phi(m)} \equiv 1(\bmod M)$. Multiplying $a^{m-\phi(m)}$ to both sides and subtracting, we have

$$
a^{m}-a^{m-\phi(m)} \equiv 0(\bmod M)
$$

Now for each $p \in I$, since $p \mid a$, we have $p^{m-\phi(m)} \mid\left(a^{m}-a^{m-\phi(m)}\right)$. We know that $p^{\alpha} \mid m$ and $p^{\alpha-1} \mid \phi(m)$. Thus $p^{\alpha-1} \mid(m-\phi(m))$. With the fact $m-\phi(m)>0$, we have $m-\phi(m) \geq p^{\alpha-1}$. Now let's prove the following :

Claim : $a^{x-1} \geq x$ holds for $a \geq 2$ and positive integer x.

It is enough to show the case of $a=2$ holds because $a^{x-1} \geq 2^{x-1}$.
If $x=1$, it is clearly true. If $x \geq 2$, consider 2^{x-1} as a binomial expansion $(1+1)^{x-1}$. Then it has x terms, and each term is clearly ≥ 1. Hence the above inequality holds.

By this claim, we can find that $\alpha \leq p^{\alpha-1}$. Thus, with the facts that $p^{m-\phi(m)} \mid\left(a^{m}-a^{m-\phi(m)}\right)$ and $m-\phi(m) \geq p^{\alpha-1}$, we get

$$
p^{\alpha} \mid\left(a^{m}-a^{m-\phi(m)}\right)
$$

for each p^{α}.

Therefore, $\left(a^{m}-a^{m-\phi(m)}\right)$ is a multiple of $\left(\prod_{p \in I} p^{\alpha}\right)$. Combining with $a^{m}-a^{m-\phi(m)} \equiv$ $0(\bmod M)$, we can conclude that

$$
a^{m} \equiv a^{m-\phi(m)}(\bmod m)
$$

as desired.
Problem 2.6.3 First we note that $x \equiv 4(\bmod 5)$ is the only solution of $x^{3}+x+57 \equiv 0(\bmod 5)$.
For the simplicity of computation, say that $x \equiv(-1)(\bmod 5)$ is the solution.
Since $f^{\prime}(x)=3 x^{2}+1$, we see that $f^{\prime}(-1)=4 \not \equiv 0(\bmod 5)$, so this root is nonsingular. Taking $f^{\prime}(1)=(-1)$, we see by (2.6) on page 87 that the root $a=(-1)(\bmod 5)$ lifts to $a_{2}=(-1)-f(-1) \cdot(-1)=(-1)-55 \cdot(-1)=54$. Since a_{2} is considered $\left(\bmod 5^{2}\right)$, we may take instead $a_{2}=4$.
Then $a_{3}=4-f(4) \cdot(-1)=4-125 \cdot(-1)=129 \equiv 4\left(\bmod 5^{3}\right)$. Thus we conclude that 4 is the desired root and that there are no others.

Problem 2.6.10 We will use an induction on j. If $j=1$, it's just the given assumption, so the solution exists. Now assume that $x^{2} \equiv a\left(\bmod p^{j}\right)$ has a solution. Let that solution be b. For $f(x)=x^{2}-a, f^{\prime}(x)=2 x$. Because $b^{2} \equiv a\left(\bmod p^{j}\right)$ and $a \not \equiv 0(\bmod \mathrm{p})$, we have $b \not \equiv 0$ $(\bmod \mathrm{p})$. Therefore, $f^{\prime}(b)=2 b$ never be 0 in $(\bmod \mathrm{p})$. (Here we should use the fact that $p \neq 2$.) Thus by theorem $2.23, x^{2} \equiv a\left(\bmod p^{j+1}\right)$ has a solution. Therefore, we prove that $x^{2} \equiv a\left(\bmod p^{j}\right)$ has a solution for all j.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

