
18.781, Fall 2007 Problem Set 3

Solutions to Selected Problems

Problem 2.3.17 First of all, we can observe that 143 = 11 · 13 and

x3 − 9x2 + 23x− 15 = (x− 1)(x− 3)(x− 5).

Hence, x is a solution of given equation if and only if

(x− 1)(x− 3)(x− 5) ≡ 0(mod 11) and (x− 1)(x− 3)(x− 5) ≡ 0(mod 13).

Clearly, this means that

x ≡ 1, 3, 5(mod 11) and x ≡ 1, 3, 5(mod 13).

Using the relation 6 · 11 + (−5) · 13 = 1, we have

x ≡ a1(mod 11) and x ≡ a2(mod 13)

m

x ≡ −65a1 + 66a2(mod 143).

(Using the Chinese Remainder theorem with m1 = 11,m2 = 13, b1 = −5, b2 = 6. )

Therefore, we can conclude that the solutions are

For (a1, a2) = (1, 1), x ≡ 1(mod 143).

For (a1, a2) = (1, 3), x ≡ 133(mod 143).

For (a1, a2) = (1, 5), x ≡ 265 ≡ 122(mod 143).

For (a1, a2) = (3, 1), x ≡ −129 ≡ 14(mod 143).

For (a1, a2) = (3, 3), x ≡ 3(mod 143).

For (a1, a2) = (3, 5), x ≡ 135(mod 143).

For (a1, a2) = (5, 1), x ≡ −259 ≡ 27(mod 143).

For (a1, a2) = (5, 3), x ≡ −127 ≡ 16(mod 143).

For (a1, a2) = (5, 5), x ≡ 5(mod 143).
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Problem 2.3.21 First we prove ”if” part. This is quite trivial. Suppose that ai ≡ ar (mod pαi )
for i = 1, 2, · · · , r. Then x = ar is the solution of the given system.

Now we prove ”only if” part. Suppose that there is a simultaneous solution x. Then for any
i, x ≡ ai (mod pαi ) , hence we can express x as x = ai + tip

αi .
Then for fixed i, ai + tip

αi = x = ar + trp
αr , that is,

ai − ar = trp
αr − tip

αi = pαi(trpαr−αi − ti),

where αr − αi ≥ 0.
This gives that ai ≡ ar (mod pαi ) for i = 1, 2, · · · , r. 2

Problem 2.3.29 For any even positive integer n, we can express n as n = 2tm where (2,m) = 1
and t ≥ 1. Then

φ(2n) = φ(2t+1m) = φ(2t+1)φ(m) = (2t+1 − 2t)φ(m) = 2tφ(m)

φ(n) = φ(2tm) = φ(2t)φ(m) = (2t − 2t−1)φ(m) = 2t−1φ(m)

Thus φ(2n) = φ(n) if and only if 2t = 2t−1, which never happen. Therefore, there is no such
even number n.

For any odd positive integer n, (2, n) = 1. Then φ(2n) = φ(2)φ(n) = 1 · φ(n) = φ(n).
Therefore, every odd number n satisfies the given equation. 2

Problem 2.3.32 Suppose that x satisfying φ(x) = 24. If x has the canonical factorization
∏

pα,
then pα−1(p−1) | φ(x) = 24, in particular, we have (p−1) | 24. Since all the positive divisors
of 24 are 1, 2, 3, 4, 6, 8, 12, 24, the possible values of p are 2, 3, 5, 7, 13. (4, 9, 25 are not prime
numbers.)
Now let’s say x = 2a13a25a37a413a5 . For each p, to satisfy pα−1(p− 1) | φ(x) = 24, it is easily
verified that

a1 can be 0, 1, 2, 3, 4, and for each case, φ(2a1) = 1, 1, 2, 4, 8, respectively.
a2 can be 0, 1, 2, and for each case, φ(3a2) = 1, 2, 6, respectively.

a3 can be 0, 1, and for each case, φ(5a3) = 1, 4, respectively.
a4 can be 0, 1, and for each case, φ(7a4) = 1, 6, respectively.

a5 can be 0, 1, and for each case, φ(13a2) = 1, 12, respectively.

We should find the proper (a1, a2, a3, a4, a5) such that φ(x) = φ(2a1)φ(3a2)φ(5a3)φ(7a4)φ(13a2) =
24.
Because that 3 | 24, we can say that φ(3a2) = 6 or φ(7a4) = 6 or φ(13a2) = 12 should hold.
That is, a2 = 2 or a4 = 1 or a5 = 1.

If a2 = 2, φ(2a1)φ(5a3)φ(7a4)φ(13a2) = 4, therefore, we have

(a1, a2, a3, a4, a5) = (0, 2, 1, 0, 0), (1, 2, 1, 0, 0), (3, 2, 0, 0, 0).

If a4 = 1, φ(2a1)φ(3a2)φ(5a3)φ(13a2) = 4, therefore, we have

(a1, a2, a3, a4, a5) = (0, 0, 1, 1, 0), (1, 0, 1, 1, 0), (3, 0, 0, 1, 0), (2, 1, 0, 1, 0).
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If a5 = 1, φ(2a1)φ(3a2)φ(5a3)φ(7a4) = 2, therefore, we have

(a1, a2, a3, a4, a5) = (0, 1, 0, 0, 1), (1, 1, 0, 0, 1), (2, 0, 0, 0, 1).

Thus we can conclude that the solutions are

x = 45, 90, 72, 35, 70, 56, 84, 39, 78, 52.

2

Problem 2.3.37 It is easy to find that φ(100) = 40. Hence by Euler’s theorem we have 340 ≡ 1
(mod 100).
Since each ai is odd, we have ai+1 = 3ai ≡ (−1)ai ≡ 3 (mod 4) . Also note that 34 = 81 ≡ 1
(mod 40). Then for each i ≥ 1,

ai+1 = 3ai = 34k+3 = 81k · 27 ≡ 27(mod 40)

Hence

ai+2 = 3ai+1 = 340t+27 = (340)t · 327 = 327(mod 100).

So we have now that aj ≡ 327(mod 100) for j ≥ 3. Also,

327 = (34)6·33 = 816·27 = (80+1)6·27 = (806+· · ·+6·80+1)·27 ≡ 481·27 ≡ 81·27 ≡ 87(mod 100).

Therefore we can conclude that the given sequence (mod 100) is nothing but

3, 27, 87, 87, 87, 87, 87, · · ·

2

Problem 2.3.44 If m = 1, there is nothing to prove. Now assume that m > 1.
Let I be the set of prime factors p of m which satisfy (a, p) > 1 (That is, p | a). Then m can
be factorized by m = (

∏
p∈I pα) ·M , where (a,M) = 1. Also note that (

∏
p∈I pα,M) = 1 by

our setting, hence φ(M) | φ(m).

By usual Euler’s theorem, aφ(M) ≡ 1 (mod M ), so with the fact φ(M) | φ(m), we have
aφ(m) ≡ 1 (mod M ). Multiplying am−φ(m) to both sides and subtracting, we have

am − am−φ(m) ≡ 0(modM).

Now for each p ∈ I, since p | a, we have pm−φ(m) | (am− am−φ(m)). We know that pα | m and
pα−1 | φ(m). Thus pα−1 | (m−φ(m)). With the fact m−φ(m) > 0, we have m−φ(m) ≥ pα−1.
Now let’s prove the following :

Claim : ax−1 ≥ x holds for a ≥ 2 and positive integer x.
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It is enough to show the case of a = 2 holds because ax−1 ≥ 2x−1.
If x = 1, it is clearly true. If x ≥ 2, consider 2x−1 as a binomial expansion (1 + 1)x−1. Then
it has x terms, and each term is clearly ≥ 1. Hence the above inequality holds.

By this claim, we can find that α ≤ pα−1. Thus, with the facts that pm−φ(m) | (am−am−φ(m))
and m− φ(m) ≥ pα−1, we get

pα | (am − am−φ(m))

for each pα.

Therefore, (am − am−φ(m)) is a multiple of (
∏

p∈I pα). Combining with am − am−φ(m) ≡
0(modM), we can conclude that

am ≡ am−φ(m)(modm).

as desired. 2

Problem 2.6.3 First we note that x ≡ 4 (mod 5) is the only solution of x3 + x + 57 ≡ 0 (mod 5).
For the simplicity of computation, say that x ≡ (−1) (mod 5) is the solution.
Since f ′(x) = 3x2 + 1, we see that f ′(−1) = 4 6≡ 0 (mod 5), so this root is nonsingular.
Taking ¯f ′(1) = (−1) , we see by (2.6) on page 87 that the root a = (−1) (mod 5) lifts to
a2 = (−1)− f(−1) · (−1) = (−1)− 55 · (−1) = 54. Since a2 is considered (mod 52 ), we may
take instead a2 = 4.
Then a3 = 4− f(4) · (−1) = 4− 125 · (−1) = 129 ≡ 4 (mod 53 ). Thus we conclude that 4 is
the desired root and that there are no others. 2

Problem 2.6.10 We will use an induction on j. If j = 1, it’s just the given assumption, so the
solution exists. Now assume that x2 ≡ a (mod pj ) has a solution. Let that solution be b.
For f(x) = x2 − a, f ′(x) = 2x. Because b2 ≡ a (mod pj )and a 6≡ 0 (mod p), we have b 6≡ 0
(mod p). Therefore, f ′(b) = 2b never be 0 in (mod p). (Here we should use the fact that
p 6= 2. ) Thus by theorem 2.23, x2 ≡ a (mod pj+1 ) has a solution.
Therefore, we prove that x2 ≡ a (mod pj ) has a solution for all j. 2

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)
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