18.781, Fall 2007 Problem Set 3

Solutions to Selected Problems

Problem 2.3.17 First of all, we can observe that 143 = 11-13 and

3 =922 + 232 — 15 = (z — 1)(x — 3)(z — 5).

Hence, z is a solution of given equation if and only if

(x—1)(x —3)(z —5) =0(mod 11) and (z —1)(x — 3)(z —5) = 0(mod 13).

Clearly, this means that

x=1,3,5(mod 11) and z =1,3,5(mod 13).

Using the relation 6 - 11 + (—5) - 13 = 1, we have

x = aj(mod 11) and x = az(mod 13)

)

x = —65ay + 66as(mod 143).

(Using the Chinese Remainder theorem with my = 11,my = 13,b; = —5,bs = 6. )

Therefore, we can conclude that the solutions are

For (aj,a2) = (1,1), = = 1(mod 143).

For (a1,a2) = (1,3), = =133(mod 143).
For (ai,a2)=(1,5), = =265 = 122(mod 143).
For (a1,a2) = (3,1), = —129 = 14(mod 143).

For (ai,a2)=(3,3), = = 3(mod 143).

For (a1,a2) = (3,5), x = 135(mod 143).
For (ai,az) = (5,1), x = —259 = 27(mod 143).
For (a1,a2) = (5,3), = —127 = 16(mod 143).

For (a1,as) = (5,5), = = 5(mod 143).



Problem 2.3.21 First we prove ”if” part. This is quite trivial. Suppose that a; = a, (mod p*i )
fori=1,2,--- ,r. Then z = a, is the solution of the given system.

Now we prove "only if” part. Suppose that there is a simultaneous solution x. Then for any
i, x = a; (mod p® ) , hence we can express x as x = a; + t;p™.
Then for fixed 7, a; + t;p* = x = a, + t.p®", that is,

a; — ap = t,p*" — t;p™ = p“i (trpaT_ai - ti)a
where o, — a; > 0.
This gives that a; = a, (mod p® ) for i =1,2,--- ,r. O

Problem 2.3.29 For any even positive integer n, we can express n as n = 2!m where (2,m) = 1
and ¢t > 1. Then

$(2n) = ¢(2"7'm) = ¢(2")p(m) = (2" — 2")p(m) = 2'¢(m)
d(n) = ¢(2'm) = ¢(2")p(m) = (2' = 2""")p(m) = 2" p(m)

Thus ¢(2n) = ¢(n) if and only if 2/ = 2!=1, which never happen. Therefore, there is no such
even number n.

For any odd positive integer n, (2,n) = 1. Then ¢(2n) = ¢(2)p(n) = 1- p(n) = ¢(n).
Therefore, every odd number n satisfies the given equation. O

Problem 2.3.32 Suppose that = satisfying ¢(z) = 24. If = has the canonical factorization []p®,
then p®~1(p—1) | ¢(x) = 24, in particular, we have (p— 1) | 24. Since all the positive divisors
of 24 are 1,2,3,4,6,8,12,24, the possible values of p are 2,3,5,7,13. (4, 9, 25 are not prime
numbers.)

Now let’s say @ = 2913259794139 For each p, to satisfy p®~1(p — 1) | ¢(x) = 24, it is easily
verified that

ay can be 0,1,2,3,4, and for each case, ¢(2%1) = 1,1, 2,4, 8, respectively.
ag can be 0, 1,2, and for each case, $(3%2) = 1,2, 6, respectively.
as can be 0,1, and for each case, ¢(5%3) = 1,4, respectively.
a4 can be 0,1, and for each case, ¢p(7%4) = 1,6, respectively.
as can be 0,1, and for each case, ¢(13%2) = 1, 12, respectively.

We should find the proper (a1, az, as, as, as) such that ¢(z) = ¢(2%)p(3%2)p(5%)p(7%)p(13%2) =
24.

Because that 3 | 24, we can say that ¢(3%2) = 6 or ¢(7*) = 6 or ¢(13%2) = 12 should hold.
That is, ag =2 or ag = 1 or a5 = 1.

If ag =2, ¢(29)p(5%3)p(7%)p(13%2) = 4, therefore, we have

(al)a25 ag, a4, a5) - (07 27 17 070)5 (17 27 17 070)5 (37 27 07 070)

If ag = 1, ¢(2°1)p(3%2)p(5%3)p(132) = 4, therefore, we have

(al,CLQ, ag, a4, CL5) = (07 07 17 1>O)1 (17 07 17 1>O)1 (37 07 07 1>O)1 (27 17 07 170)



If as = 1, ¢(291)p(3%2)p(5%3)p(7*4) = 2, therefore, we have

(ah az,as, a4, a5) = (07 17 07 07 1)7 (17 17 07 07 1)7 (27 07 07 07 1)
Thus we can conclude that the solutions are
x = 45,90, 72, 35,70, 56,84, 39, 78, 52.
O

Problem 2.3.37 It is easy to find that ¢(100) = 40. Hence by Euler’s theorem we have 3% = 1
(mod 100).
Since each a; is odd, we have a;;1 = 3% = (—1)% = 3 (mod 4) . Also note that 3* =81 =1
(mod 40). Then for each i > 1,

aiy1 = 3% = 3% 3 = 1% . 27 = 27(mod 40)

Hence

Qipo = 3%i+1 — 340t+27 — (340)t . 327 — 327(m0d 100)

So we have now that a; = 32"(mod 100) for j > 3. Also,

3% = (3%)5.3% = 815.27 = (80+1)%-27 = (80%+- - -4-6-80+1)-27 = 481-27 = 8127 = 87(mod 100).
Therefore we can conclude that the given sequence (mod 100) is nothing but

3,27,87,87,87,87,87, - --
O

Problem 2.3.44 If m = 1, there is nothing to prove. Now assume that m > 1.
Let I be the set of prime factors p of m which satisfy (a,p) > 1 (That is, p | a). Then m can
be factorized by m = ([],c; p®) - M, where (a, M) = 1. Also note that ([[,c;p*, M) =1 by
our setting, hence ¢p(M) | ¢(m).

By usual Euler’s theorem, a®™) = 1 (mod M ), so with the fact ¢(M) | ¢(m), we have
a®(m) =1 (mod M ). Multiplying a™= (M) to both sides and subtracting, we have

a™ — a™ (M) = ((modM).
Now for each p € I, since p | a, we have p~¢(™) | (a™ — a™~*(™)). We know that p® | m and

p®~ 1| ¢(m). Thus p®~! | (m—p(m)). With the fact m—p(m) > 0, we have m—¢(m) > p*~1.
Now let’s prove the following :

Claim : a®*! > 2 holds for a > 2 and positive integer x.



It is enough to show the case of @ = 2 holds because a*~! > 2771,
If x = 1, it is clearly true. If x > 2, consider 2! as a binomial expansion (1 + 1)®~!. Then
it has = terms, and each term is clearly > 1. Hence the above inequality holds.

By this claim, we can find that o < p®~!. Thus, with the facts that p™~¢(™) | (g™ — gm—¢("))
and m — ¢(m) > p®~ L, we get

pa ‘ (am o am—¢(m))
for each p®.

Therefore, (a™ — a™ (™) is a multiple of (Il,erp*). Combining with a™ — am—om) =
0(modM), we can conclude that

a™ = ™) (modm).
as desired. O

Problem 2.6.3 First we note that x = 4 (mod 5) is the only solution of 23 + z + 57 = 0 (mod 5).
For the simplicity of computation, say that £ = (—1) (mod 5) is the solution.
Since f'(x) = 32% + 1, we see that f/(—1) = 4 # 0 (mod 5), so this root is nonsingular.
Taking f'(1) = (=1) , we see by (2.6) on page 87 that the root a = (—1) (mod 5) lifts to
az = (1) — f(=1) - (=1) = (—1) — 55 (—1) = 54. Since ay is considered (mod 52 ), we may
take instead ay = 4.
Then a3 =4 — f(4) - (—1) =4 — 125 (—1) = 129 = 4 (mod 5% ). Thus we conclude that 4 is
the desired root and that there are no others. O

Problem 2.6.10 We will use an induction on j. If j = 1, it’s just the given assumption, so the
solution exists. Now assume that 22 = a (mod p’ ) has a solution. Let that solution be b.
For f(z) = 2% — a, f'(z) = 2x. Because b*> = a (mod p’ )and a # 0 (mod p), we have b # 0
(mod p). Therefore, f'(b) = 2b never be 0 in (mod p). (Here we should use the fact that
p # 2. ) Thus by theorem 2.23, 22 = a (mod p’*! ) has a solution.
Therefore, we prove that 22 = a (mod p’ ) has a solution for all j. O

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)



