18.781, Fall 2007 Problem Set 2
 Solutions to Selected Problems

Problem 2.1.17 By Wilson's theorem, we have

$$
70!\equiv-1(\bmod 71)
$$

where

$$
70!\equiv 63!\cdot 64 \cdots 70 \equiv 63!\cdot(-7) \cdot(-6) \cdots(-1) \equiv(-1)^{7} \cdot 63!\cdot(7!)(\bmod 71)
$$

Notice that

$$
7!\equiv(7 \cdot 5 \cdot 2 \cdot)(6 \cdot 4 \cdot 3) \equiv 70 \cdot 72 \equiv-1(\bmod 71) .
$$

Therefore, we have

$$
(-1) \equiv 70!\equiv(-1) \cdot(63!) \cdot(7!) \equiv(-1) \cdot(63!) \cdot(-1) \equiv 63!(\bmod 71) .
$$

That is,

$$
63!+1 \equiv 0(\bmod 71) .
$$

Also, $62 \cdot 63 \equiv(-9) \cdot(-8) \equiv 72 \equiv 1(\bmod 71)$, hence

$$
61!+1 \equiv 61!\cdot(1)+1 \equiv 61!\cdot(62 \cdot 63)+1 \equiv 63!+1 \equiv 0(\bmod 71),
$$

as desired.
Problem 2.1.25 $91=7 \cdot 13$ and 7,13 are prime numbers. By given condition, a, n are both prime to 7,13 . Then, by Fermat's theorem, we have

$$
n^{6} \equiv 1(\bmod 7) \text { and } a^{6} \equiv 1(\bmod 7) .
$$

By squaring both sides of each equation, we get

$$
n^{12} \equiv 1(\bmod 7) \text { and } a^{12} \equiv 1(\bmod 7)
$$

Hence $7 \mid n^{12}-a^{12}$.
Again by Fermat's theorem,

$$
n^{12} \equiv 1(\bmod 13) \text { and } a^{12} \equiv 1(\bmod 13) .
$$

Hence $13 \mid n^{12}-a^{12}$.
Since $(7,13)=1$, we have $91 \mid n^{12}-a^{12}$.

Problem 2.1.28 This problem is equivalent to find the residue of 3^{400} divided by 10 . Then,

$$
3^{400} \equiv\left(3^{4}\right)^{100} \equiv 81^{100} \equiv 1^{100} \equiv 1(\bmod 10)
$$

Therefore, the answer is 1 .
Problem 2.1.46 First of all, by Fermat's theorem,

$$
a \equiv a^{p} \equiv b^{p} \equiv b(\bmod \mathrm{p})
$$

Then

$$
a^{p}-b^{p}=(a-b)\left(a^{p-1}+a^{p-2} b+\cdots+a b^{p-2}+b^{p-1}\right)
$$

Because $a \equiv b(\bmod \mathrm{p})$, we have $p \mid(a-b)$, and also have

$$
\left(a^{p-1}+a^{p-2} b+\cdots+a b^{p-2}+b^{p-1}\right) \equiv\left(a^{p-1}+a^{p-2} a+\cdots+a a^{p-2}+a^{p-1}\right) \equiv p a^{p-1} \equiv 0(\bmod \mathrm{p})
$$

Hence, $a^{p}-b^{p}$ is a multiple of two integers which are both multiple of p, that is, a multiple of p^{2}. Therefore we get $a^{p} \equiv b^{p}\left(\bmod p^{2}\right)$.

Problem 2.1.54 (a) By Fermat's theorem, $2^{10} \equiv 1(\bmod 11)$. Hence $2^{340} \equiv\left(2^{10}\right)^{34} \equiv 1(\bmod 11)$. This gives $2^{341}-2=2\left(2^{340}-1\right)$ is divisible by 11 . Similarly, $2^{340} \equiv\left(2^{5}\right)^{68} \equiv 1(\bmod 31)$, and this gives $2^{341}-2=2\left(2^{340}-1\right)$ is divisible by 31 . Therefore, $341 \mid 2^{341}-2$.

But $3^{340} \equiv\left(3^{30}\right)^{11} \cdot 3^{10} \equiv 3^{10} \equiv\left(3^{3}\right)^{3} \cdot 3 \equiv 27^{3} \cdot 3 \equiv(-4)^{3} \cdot 3 \equiv(-64) \cdot 9 \equiv(-2) \cdot 9 \equiv 13(\bmod 31)$, hence $3^{341} \equiv 39 \equiv 8 \not \equiv 3(\bmod 31)$. This implies that $3^{341} \not \equiv 3(\bmod 341)$.
(b) For any integer a satisfying $3 \mid a$, clearly $a^{561} \equiv a(\bmod 3)$. For an integer a such that $(a, 3)=1, a^{2} \equiv 1(\bmod 3)$ by Fermat's theorem. Then $a^{561} \equiv\left(a^{2}\right)^{280} \cdot a \equiv a(\bmod 3)$. Therefore for any integer $a, a^{561} \equiv a(\bmod 3)$.

We will go on similarly for 11 and 17 . For any integer a satisfying $11 \mid a$, clearly $a^{561} \equiv$ $a(\bmod 11)$. For an integer a such that $(a, 11)=1, a^{10} \equiv 1(\bmod 11)$ by Fermat's theorem. Then $a^{561} \equiv\left(a^{10}\right)^{56} \cdot a \equiv a(\bmod 11)$. Therefore for any integer $a, a^{561} \equiv a(\bmod 11)$.

For any integer a satisfying $17 \mid a$, clearly $a^{561} \equiv a(\bmod 17)$. For an integer a such that $(a, 17)=1, a^{16} \equiv 1(\bmod 17)$ by Fermat's theorem. Then $a^{561} \equiv\left(a^{16}\right)^{35} \cdot a \equiv a(\bmod 17)$. Therefore for any integer $a, a^{561} \equiv a(\bmod 17)$.

Therefore $a^{561}-a$ is divisible by $3,11,17$, hence we can conclude that $a^{561} \equiv a(\bmod 561)$ for any integer a.

Problem 2.1.55 Hint : Consider the determinant in the modulus 4.

Problem 2.2.8 (a) $x^{2} \equiv 1\left(\bmod p^{\alpha}\right)$ gives that $p^{\alpha} \mid(x-1)(x+1)$. If $x-1, x+1$ are both divided by $p, 2=(x+1)-(x-1)$ is divided by p, which is a contradiction. Therefore, $(p, x-1)=1$ or $(p, x+1)=1$, so $p^{\alpha} \mid(x-1)(x+1)$ implies that

$$
x \equiv 1\left(\bmod p^{\alpha}\right) \text { or } x \equiv-1\left(\bmod p^{\alpha}\right)
$$

And it is clear that these are solutions of the given equation.
Problem 2.2.11 $1-\left(1-a x_{1}\right)^{s} \equiv 1-1^{s} \equiv 0(\bmod a)$ implies that x_{s} is an integer. Also, by definition of x_{s},

$$
a x_{s}-1=\left(1-a x_{1}\right)^{s}
$$

Since $m \mid 1-a x_{1}$, we have $m^{s} \mid\left(1-a x_{1}\right)^{s}$. Therefore, x_{s} is a solution of $a x \equiv 1\left(\bmod m^{s}\right)$.
Problem 2.2.12 First of all, since $(a, m)=1,\left(a, m^{s}\right)=1$. Then by theorem 2.17 , the solution of $a x \equiv 1\left(\bmod m^{s}\right)$ exists and is unique in $\left(\bmod m^{s}\right)$.
By exercise 2.2.11, we know that x_{s} is that solution. Hence it is enough to show that x_{s} is the nearest integer to $A:=-\left(\frac{1}{a}\right)\left(1-a x_{1}\right)^{s}$. But it is trivial since $0 \leq x_{s}-A=\frac{1}{a} \leq \frac{1}{3}$. (For nonzero integer $m, m \leq\left(x_{s}+m\right)-A \leq m+\frac{1}{3}$, so for positive $m, 1 \leq m \leq\left|\left(x_{s}+m\right)-A\right|$, and for negative $m, \frac{2}{3}=\left|(-1)+\frac{1}{3}\right| \leq\left|\left(x_{s}+m\right)-A\right|$. So if m is nonzero, $\left|\left(x_{s}+m\right)-A\right|$ is bigger than $\left|x_{s}-A\right|$.)

Problem 2.3.7 We are going through this problem similarly with Example 2.
$5 x \equiv 1(\bmod 6) \Leftrightarrow 5 x \equiv 1(\bmod 3)$ and $5 x \equiv 1(\bmod 2) \Leftrightarrow x \equiv 2(\bmod 3)$ and $x \equiv 1(\bmod 2)$
$4 x \equiv 13(\bmod 15) \Leftrightarrow 4 x \equiv 13(\bmod 3)$ and $4 x \equiv 13(\bmod 5) \Leftrightarrow x \equiv 1(\bmod 3)$ and $x \equiv 2(\bmod 5)$
Therefore the given congruences are inconsistent because there is no x for which both $x \equiv$ $1(\bmod 3)$ and $x \equiv 2(\bmod 3)$.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

