18.781, Fall 2007 Problem Set 2

Solutions to Selected Problems

Problem 2.1.17 By Wilson's theorem, we have

$$70! \equiv -1 \pmod{71},$$

where

$$70! \equiv 63! \cdot 64 \cdots 70 \equiv 63! \cdot (-7) \cdot (-6) \cdots (-1) \equiv (-1)^7 \cdot 63! \cdot (7!) \pmod{71}.$$

Notice that

$$7! \equiv (7 \cdot 5 \cdot 2 \cdot)(6 \cdot 4 \cdot 3) \equiv 70 \cdot 72 \equiv -1 \pmod{71}.$$

Therefore, we have

$$(-1) \equiv 70! \equiv (-1) \cdot (63!) \cdot (7!) \equiv (-1) \cdot (63!) \cdot (-1) \equiv 63! \pmod{71}.$$

That is,

$$63! + 1 \equiv 0 \pmod{71}$$
.

Also, $62 \cdot 63 \equiv (-9) \cdot (-8) \equiv 72 \equiv 1 \pmod{71}$, hence

$$61! + 1 \equiv 61! \cdot (1) + 1 \equiv 61! \cdot (62 \cdot 63) + 1 \equiv 63! + 1 \equiv 0 \pmod{71}$$

as desired. \square

Problem 2.1.25 $91 = 7 \cdot 13$ and 7, 13 are prime numbers. By given condition, a, n are both prime to 7, 13. Then, by Fermat's theorem, we have

$$n^6 \equiv 1 \pmod{7}$$
 and $a^6 \equiv 1 \pmod{7}$.

By squaring both sides of each equation, we get

$$n^{12} \equiv 1 \pmod{7}$$
 and $a^{12} \equiv 1 \pmod{7}$.

Hence $7 \mid n^{12} - a^{12}$.

Again by Fermat's theorem,

$$n^{12} \equiv 1 \pmod{13}$$
 and $a^{12} \equiv 1 \pmod{13}$.

Hence $13 \mid n^{12} - a^{12}$.

Since (7,13)=1, we have $91 \mid n^{12}-a^{12}$. \square

Problem 2.1.28 This problem is equivalent to find the residue of 3^{400} divided by 10. Then,

$$3^{400} \equiv (3^4)^{100} \equiv 81^{100} \equiv 1^{100} \equiv 1 \pmod{10}.$$

Therefore, the answer is 1. \Box

Problem 2.1.46 First of all, by Fermat's theorem,

$$a \equiv a^p \equiv b^p \equiv b \pmod{p}$$
.

Then

$$a^{p} - b^{p} = (a - b)(a^{p-1} + a^{p-2}b + \dots + ab^{p-2} + b^{p-1})$$

Because $a \equiv b \pmod{p}$, we have $p \mid (a - b)$, and also have

$$(a^{p-1} + a^{p-2}b + \dots + ab^{p-2} + b^{p-1}) \equiv (a^{p-1} + a^{p-2}a + \dots + aa^{p-2} + a^{p-1}) \equiv pa^{p-1} \equiv 0 \pmod{p}.$$

Hence, $a^p - b^p$ is a multiple of two integers which are both multiple of p, that is, a multiple of p^2 . Therefore we get $a^p \equiv b^p \pmod{p^2}$. \square

Problem 2.1.54 (a) By Fermat's theorem, $2^{10} \equiv 1 \pmod{11}$. Hence $2^{340} \equiv (2^{10})^{34} \equiv 1 \pmod{11}$. This gives $2^{341} - 2 = 2(2^{340} - 1)$ is divisible by 11. Similarly, $2^{340} \equiv (2^5)^{68} \equiv 1 \pmod{31}$, and this gives $2^{341} - 2 = 2(2^{340} - 1)$ is divisible by 31. Therefore, $341 \mid 2^{341} - 2$.

But $3^{340} \equiv (3^{30})^{11} \cdot 3^{10} \equiv 3^{10} \equiv (3^3)^3 \cdot 3 \equiv 27^3 \cdot 3 \equiv (-4)^3 \cdot 3 \equiv (-64) \cdot 9 \equiv (-2) \cdot 9 \equiv 13 \pmod{31}$, hence $3^{341} \equiv 39 \equiv 8 \not\equiv 3 \pmod{31}$. This implies that $3^{341} \not\equiv 3 \pmod{341}$.

(b) For any integer a satisfying $3 \mid a$, clearly $a^{561} \equiv a \pmod{3}$. For an integer a such that $(a,3)=1, a^2 \equiv 1 \pmod{3}$ by Fermat's theorem. Then $a^{561} \equiv (a^2)^{280} \cdot a \equiv a \pmod{3}$. Therefore for any integer $a, a^{561} \equiv a \pmod{3}$.

We will go on similarly for 11 and 17. For any integer a satisfying $11 \mid a$, clearly $a^{561} \equiv a \pmod{11}$. For an integer a such that $(a,11)=1, a^{10}\equiv 1 \pmod{11}$ by Fermat's theorem. Then $a^{561}\equiv (a^{10})^{56}\cdot a\equiv a \pmod{11}$. Therefore for any integer $a, a^{561}\equiv a \pmod{11}$.

For any integer a satisfying $17 \mid a$, clearly $a^{561} \equiv a \pmod{17}$. For an integer a such that $(a,17)=1,\ a^{16} \equiv 1 \pmod{17}$ by Fermat's theorem. Then $a^{561} \equiv (a^{16})^{35} \cdot a \equiv a \pmod{17}$. Therefore for any integer $a,\ a^{561} \equiv a \pmod{17}$.

Therefore $a^{561} - a$ is divisible by 3, 11, 17, hence we can conclude that $a^{561} \equiv a \pmod{561}$ for any integer a.

Problem 2.1.55 Hint: Consider the determinant in the modulus 4.

Problem 2.2.8 (a) $x^2 \equiv 1 \pmod{p^{\alpha}}$ gives that $p^{\alpha} \mid (x-1)(x+1)$. If x-1, x+1 are both divided by p, 2 = (x+1) - (x-1) is divided by p, which is a contradiction. Therefore, (p, x-1) = 1 or (p, x+1) = 1, so $p^{\alpha} \mid (x-1)(x+1)$ implies that

$$x \equiv 1 \pmod{p^{\alpha}}$$
 or $x \equiv -1 \pmod{p^{\alpha}}$.

And it is clear that these are solutions of the given equation. \Box

Problem 2.2.11 $1 - (1 - ax_1)^s \equiv 1 - 1^s \equiv 0 \pmod{a}$ implies that x_s is an integer. Also, by definition of x_s ,

$$ax_s - 1 = (1 - ax_1)^s$$
.

Since $m \mid 1 - ax_1$, we have $m^s \mid (1 - ax_1)^s$. Therefore, x_s is a solution of $ax \equiv 1 \pmod{m^s}$.

Problem 2.2.12 First of all, since (a, m) = 1, $(a, m^s) = 1$. Then by theorem 2.17, the solution of $ax \equiv 1 \pmod{m^s}$ exists and is unique in $\pmod{m^s}$.

By exercise 2.2.11, we know that x_s is that solution. Hence it is enough to show that x_s is the nearest integer to $A:=-\left(\frac{1}{a}\right)(1-ax_1)^s$. But it is trivial since $0\leq x_s-A=\frac{1}{a}\leq \frac{1}{3}$. (For nonzero integer $m,\ m\leq (x_s+m)-A\leq m+\frac{1}{3}$, so for positive $m,\ 1\leq m\leq |\ (x_s+m)-A\ |$, and for negative $m,\ \frac{2}{3}=|\ (-1)+\frac{1}{3}\ |\leq |\ (x_s+m)-A\ |$. So if m is nonzero, $|\ (x_s+m)-A\ |$ is bigger than $|\ x_s-A\ |$.) \square

Problem 2.3.7 We are going through this problem similarly with Example 2.

 $5x \equiv 1 \pmod{6} \Leftrightarrow 5x \equiv 1 \pmod{3}$ and $5x \equiv 1 \pmod{2} \Leftrightarrow x \equiv 2 \pmod{3}$ and $x \equiv 1 \pmod{2}$

 $4x \equiv 13 \pmod{15} \iff 4x \equiv 13 \pmod{3} \text{ and } 4x \equiv 13 \pmod{5} \iff x \equiv 1 \pmod{3} \text{ and } x \equiv 2 \pmod{5}$

Therefore the given congruences are inconsistent because there is no x for which both $x \equiv 1 \pmod 3$ and $x \equiv 2 \pmod 3$. \square

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)