
18.781, Fall 2007 Problem Set 2

Solutions to Selected Problems

Problem 2.1.17 By Wilson’s theorem, we have

70! ≡ −1 (mod 71),

where

70! ≡ 63! · 64 · · · 70 ≡ 63! · (−7) · (−6) · · · (−1) ≡ (−1)7 · 63! · (7!) (mod 71).

Notice that

7! ≡ (7 · 5 · 2·)(6 · 4 · 3) ≡ 70 · 72 ≡ −1 (mod 71).

Therefore, we have

(−1) ≡ 70! ≡ (−1) · (63!) · (7!) ≡ (−1) · (63!) · (−1) ≡ 63! (mod 71).

That is,

63! + 1 ≡ 0 (mod 71).

Also, 62 · 63 ≡ (−9) · (−8) ≡ 72 ≡ 1 (mod 71) , hence

61! + 1 ≡ 61! · (1) + 1 ≡ 61! · (62 · 63) + 1 ≡ 63! + 1 ≡ 0 (mod 71),

as desired. 2

Problem 2.1.25 91 = 7 · 13 and 7, 13 are prime numbers. By given condition, a, n are both prime
to 7, 13. Then, by Fermat’s theorem, we have

n6 ≡ 1 (mod 7) and a6 ≡ 1 (mod 7).

By squaring both sides of each equation, we get

n12 ≡ 1 (mod 7) and a12 ≡ 1 (mod 7).

Hence 7 | n12 − a12.

Again by Fermat’s theorem,

n12 ≡ 1 (mod 13) and a12 ≡ 1 (mod 13).

Hence 13 | n12 − a12.

Since (7,13)=1, we have 91 | n12 − a12. 2
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Problem 2.1.28 This problem is equivalent to find the residue of 3400 divided by 10. Then,

3400 ≡ (34)100 ≡ 81100 ≡ 1100 ≡ 1(mod 10).

Therefore, the answer is 1. 2

Problem 2.1.46 First of all, by Fermat’s theorem,

a ≡ ap ≡ bp ≡ b (mod p).

Then

ap − bp = (a− b)(ap−1 + ap−2b + · · ·+ abp−2 + bp−1)

Because a ≡ b (mod p), we have p | (a− b), and also have

(ap−1 +ap−2b+ · · ·+abp−2 +bp−1) ≡ (ap−1 +ap−2a+ · · ·+aap−2 +ap−1) ≡ pap−1 ≡ 0(mod p).

Hence, ap − bp is a multiple of two integers which are both multiple of p, that is, a multiple
of p2. Therefore we get ap ≡ bp(mod p2). 2

Problem 2.1.54 (a) By Fermat’s theorem, 210 ≡ 1(mod 11). Hence 2340 ≡ (210)34 ≡ 1(mod 11).
This gives 2341 − 2 = 2(2340 − 1) is divisible by 11. Similarly, 2340 ≡ (25)68 ≡ 1(mod 31), and
this gives 2341 − 2 = 2(2340 − 1) is divisible by 31. Therefore, 341 | 2341 − 2.

But 3340 ≡ (330)11·310 ≡ 310 ≡ (33)3·3 ≡ 273·3 ≡ (−4)3·3 ≡ (−64)·9 ≡ (−2)·9 ≡ 13(mod 31),
hence 3341 ≡ 39 ≡ 8 6≡ 3(mod 31). This implies that 3341 6≡ 3(mod 341).

(b) For any integer a satisfying 3 | a, clearly a561 ≡ a(mod 3). For an integer a such that
(a, 3) = 1, a2 ≡ 1(mod 3) by Fermat’s theorem. Then a561 ≡ (a2)280·a ≡ a(mod 3). Therefore
for any integer a, a561 ≡ a(mod 3).

We will go on similarly for 11 and 17. For any integer a satisfying 11 | a, clearly a561 ≡
a(mod 11). For an integer a such that (a, 11) = 1, a10 ≡ 1(mod 11) by Fermat’s theorem.
Then a561 ≡ (a10)56 · a ≡ a(mod 11). Therefore for any integer a, a561 ≡ a(mod 11).

For any integer a satisfying 17 | a, clearly a561 ≡ a(mod 17). For an integer a such that
(a, 17) = 1, a16 ≡ 1(mod 17) by Fermat’s theorem. Then a561 ≡ (a16)35 · a ≡ a(mod 17).
Therefore for any integer a, a561 ≡ a(mod 17).

Therefore a561 − a is divisible by 3, 11, 17, hence we can conclude that a561 ≡ a(mod 561) for
any integer a.

Problem 2.1.55 Hint : Consider the determinant in the modulus 4.
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Problem 2.2.8 (a) x2 ≡ 1 (mod pα ) gives that pα | (x−1)(x+1). If x−1, x+1 are both divided
by p, 2 = (x + 1)− (x− 1) is divided by p, which is a contradiction. Therefore, (p, x− 1) = 1
or (p, x + 1) = 1, so pα | (x− 1)(x + 1) implies that

x ≡ 1 (mod pα ) or x ≡ −1 (mod pα ).

And it is clear that these are solutions of the given equation. 2

Problem 2.2.11 1 − (1 − ax1)s ≡ 1 − 1s ≡ 0 (mod a) implies that xs is an integer. Also, by
definition of xs ,

axs − 1 = (1− ax1)s.

Since m | 1− ax1, we have ms | (1− ax1)s. Therefore, xs is a solution of ax ≡ 1 (mod ms ).

Problem 2.2.12 First of all, since (a,m) = 1, (a,ms) = 1. Then by theorem 2.17, the solution of
ax ≡ 1 (mod ms )exists and is unique in (mod ms ).

By exercise 2.2.11, we know that xs is that solution. Hence it is enough to show that xs is
the nearest integer to A := −

(
1
a

)
(1− ax1)s. But it is trivial since 0 ≤ xs−A = 1

a ≤
1
3 . ( For

nonzero integer m, m ≤ (xs + m)− A ≤ m + 1
3 , so for positive m, 1 ≤ m ≤| (xs + m)− A |,

and for negative m, 2
3 =| (−1) + 1

3 |≤| (xs + m)−A |. So if m is nonzero, | (xs + m)−A | is
bigger than | xs −A |. ) 2

Problem 2.3.7 We are going through this problem similarly with Example 2.

5x ≡ 1(mod 6) ⇔ 5x ≡ 1(mod 3) and 5x ≡ 1(mod 2) ⇔ x ≡ 2(mod 3) and x ≡ 1(mod 2)

4x ≡ 13(mod 15) ⇔ 4x ≡ 13(mod 3) and 4x ≡ 13(mod 5) ⇔ x ≡ 1(mod 3) and x ≡ 2(mod 5)

Therefore the given congruences are inconsistent because there is no x for which both x ≡
1(mod 3) and x ≡ 2(mod 3) . 2

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)
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