Solutions to Selected Problems

Problem 1 (a) It is very easy to find the sequence which satisfies given condition. For example,

$$
a_{n}:=\frac{1}{n}
$$

(Note that this sequence has no zero term.) Then $P_{N}=\prod_{n=1}^{N} a_{n}=\frac{1}{n!}$, and the limit of P_{n} is clearly 0 .
(b) Write as following ;

$$
\prod_{n=1}^{\infty} a_{n}=\prod_{n=1}^{\infty}\left(1+\left(a_{n}-1\right)\right)
$$

Let $b_{n}:=a_{n}-1$, then to show $\lim _{n \rightarrow \infty} b_{n}=0$ is equivalent to show that $\lim _{n \rightarrow \infty} a_{n}=1$. For the convergent infinite product, by our definition, $\lim _{n \rightarrow \infty} P_{n}=\alpha$ where $\alpha \neq 0$. Then

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{P_{n}}{P_{n-1}}=\frac{\lim _{n \rightarrow \infty} P_{n}}{\lim _{n \rightarrow \infty} P_{n-1}}=\frac{\alpha}{\alpha}=1
$$

as desired.
(c) Think of $b_{n}=\frac{1}{n}$. Then $1+b_{n}=\frac{n+1}{n}$, and we have

$$
P_{N}=\prod_{n=1}^{N} \frac{n+1}{n}=\frac{2}{1} \cdot \frac{3}{2} \cdots \frac{N+1}{N}=N+1
$$

As $N \rightarrow \infty, P_{N} \rightarrow \infty$, so it does not converge.
(d) When $a_{n}>0$ for all n, we can say that $\log \left(P_{N}\right)=\sum_{n=1}^{N} \log a_{n}$. Hence, [P_{n} converges nonzero number] is equivalent to [$\sum_{n=1}^{\infty} \log a_{n}$ converges]. Therefore it is enough to show that

$$
\sum_{p} \log \left(\left[1-p^{-s}\right]^{-1}\right)=\sum_{p} \log \left(\frac{p^{s}}{p^{s}-1}\right)=\sum_{p} \log \left(1+\frac{1}{p^{s}-1}\right)<\infty
$$

To show that, I claim that

$$
\text { If } x>0, \text { then } \log (1+x) \leq x
$$

It is not hard to prove this. For example, let $f(x)=x-\log (1+x)$. Then $f(0)=0$ and $f^{\prime}(x)=1-\frac{1}{1+x}=-\frac{x}{1+x}<0$, hence f is decreasing in $[0, \infty]$, so $0=f(0) \geq f(x)$, and we get the conclusion.
Thus, since $p^{s}-1>1$, we have

$$
\sum_{p} \log \left(1+\frac{1}{p^{s}-1}\right)<\sum_{p} \frac{1}{p^{s}-1}<\sum_{p} \frac{2}{p^{s}}<\sum_{n=2}^{\infty} \frac{2}{n^{s}}<\infty
$$

where the last inequality from calculus class. (I omit this, but you can easily do that using integration.)

Problem 2 When we try to prove the Dirichlet's theorem on primes in general modulus d, we need to find a good method to express χ, as similar as the character used in the proof for prime modulus. Note that we used a primitive root to define that character. But for general modulus d, the problem is that d may not have a primitive root.
To resolve this problem, let's think $d=2^{k} p_{1}{ }^{e_{1}} p_{2}{ }^{e_{2}} \cdots p_{r}{ }^{e_{r}}$, where p_{i} is a prime divisor of d. Then each $p_{i}{ }^{e_{i}}$ has a primitive root, so let g_{i} be the primitive root of $p_{i}{ }^{e_{i}}$ for each i. As the case of prime modulus, take complex $\phi\left(p_{i}{ }^{e_{i}}\right)$ th root of unity w_{i}, and let v_{i} be the index function for each w_{i}.

First consider the case $k=0$. (i.e, d is odd.) By Chinese remainder theorem, residue class n in modulus d such that $\operatorname{gcd}(n, d)=1$ is defined by residue class n_{i} in modulus $p_{i}{ }^{e_{i}}$ such that $\operatorname{gcd}\left(n_{i}, p_{i}\right)=1$ for each i. Then define $\chi(n)=w_{1}^{v_{1}\left(n_{1}\right)} w_{2}{ }^{v_{2}\left(n_{2}\right)} \cdots w_{r}{ }^{v_{r}\left(n_{r}\right)}$. (Actually, we can just write that $\chi(n)=w_{1}{ }^{v_{1}(n)} w_{2}{ }^{v_{2}(n)} \cdots w_{r}{ }^{v_{r}(n)}$.) It can be easily verified that this is actually a character, and all the character are coming from this, depending on choice of w_{i}. Then we have

$$
\sum_{\chi} \chi(n)=\sum_{i=1}^{r} \sum_{w_{i}} w_{i}^{v_{i}(n)}
$$

For each $i, \sum_{w_{i}} w_{i}^{v_{i}(n)}=0$ if $\phi\left(p_{i}{ }^{e_{i}}\right) \nmid n$ and $\sum_{w_{i}} w_{i} v_{i}(n)=\phi\left(p_{i}^{e_{i}}\right)$ if $n \equiv 0\left(\bmod \phi\left(p_{i}{ }^{e_{i}}\right)\right)$. With use of Chinese remainder theorem properly, this formation gives desired result.

When $k \geq 1$, it is more complicated. The problem is that 2^{k} does not have a primitive root. But we can resolve this problem to find values which play roles similar with the primitive root. More precisely, we will show that any reduced residue class of 2^{k} can be expressed by $(-1)^{i} 5^{j}$ where $i=0,1$ and $j=1, \cdots, 2^{k-2}=\frac{\phi\left(2^{k}\right)}{2}$. When we prove this, all the cases will be proved by similar argument.

We use the following fact to prove this.

Let $f(n)$ is the largest integer x such that $2^{x} \mid n$. Then for each $0 \leq i \leq 2^{k}$,

$$
f\left(\binom{2^{k}}{i}\right)=k-f(i)
$$

(This can be proved using $f\left(2^{k}-i\right)=f(i)$ for $0<i<2^{k}$, and expansion of $\binom{2^{k}}{i}$.)

We can write as following :

$$
5^{2^{k}}=\left(2^{2}+1\right)^{2^{k}}=\sum_{i=0}^{2^{k}}\binom{2^{k}}{i} 2^{2 i} .
$$

Now using the above fact, we can conclude that $f\left(\binom{2^{k}}{i} 2^{2 i}\right)=k-f(i)+2 i$. Since $i \geq f(i)$ is clear, we have $5^{2^{k}} \equiv 2^{k+2}+1\left(\bmod 2^{k+3}\right)$. By squaring this, $5^{2^{k+1}} \equiv 1\left(\bmod 2^{k+3}\right)$.

Note that $\phi\left(2^{k}\right)=2^{k-1}$. Now what we have observed gives us following facts.
(1) The order of 5 in modulus 2^{k} is 2^{k-2}.
(2) $5^{2^{k-3}} \equiv 2^{k-1}+1 \not \equiv-1\left(\bmod 2^{k}\right)$.

Consider the set $\left\{ \pm 5^{j}\right\}\left(j=1,2, \cdots, 2^{k-2}\right)$. By above two facts, all elements are distinct in modulus 2^{k}. (Only nontrivial part is proving $5^{i}+1 \not \equiv 0\left(\bmod 2^{k}\right)$ for $i=0,1, \cdots, 2^{k-2}-1$. If $5^{i}+1 \equiv 0,5^{2 i} \equiv 1$, hence by (1), $2^{k-2} \mid 2 i$, so only possible i is 2^{k-3}, but this is a contradiction because of (2).) Thus comparing the number of elements, this is same with reduced residue class of 2^{k}, as desired.

Problem 3 Let's calculate this sum for several primes $q \equiv 3(\bmod 4)$.

$$
\begin{gathered}
\text { For } q=3, \sum_{m=1}^{q-1} m\left(\frac{m}{q}\right)=1-2=-1 . \\
\text { For } q=7, \sum_{m=1}^{q-1} m\left(\frac{m}{q}\right)=1+2-3+4-5-6=-7 . \\
\text { For } q=11, \sum_{m=1}^{q-1} m\left(\frac{m}{q}\right)=1-2+3+4-5-6-7-8+9-10=-11 .
\end{gathered}
$$

For $q=19, \sum_{m=1}^{q-1} m\left(\frac{m}{q}\right)=1-2-3+4+5+6+7-8+9-10+11-12-13-14-15+16+17-18=-19$.

$$
\text { For } q=23, \sum_{m=1}^{q-1} m\left(\frac{m}{q}\right)=\cdots=-69 \text {. }
$$

From above, we may guess that this sum is divisible by q. Actually it is. Let A is the sum of quadratic residue of q and B is the sum of quadratic nonresidue, then $A+B=$ $1+2+\cdots+q-1=q \cdot \frac{q-1}{2}$. Let g be the primitive root of q. Then $B \equiv g^{1}+g^{3}+\cdots+g^{q-2}$
$(\bmod q)$ and $A \equiv g^{2}+g^{4}+\cdots+g^{q-1}(\bmod q)$. Therefore, $A \equiv g B(\bmod q)$, and we can conclude that $0 \equiv A+B \equiv(g+1) B(\bmod q)$. If q is not $3, g \not \equiv-1(\bmod q)$ clearly, so $B \equiv 0$ $(\bmod q)$. This implies that $A \equiv 0(\bmod q)$, so $S:=\sum_{m=1}^{q-1} m\left(\frac{m}{q}\right)=A-B \equiv 0(\bmod q)$. In the class, we already prove that this sum is not equal to zero using parity. (More over, S is an odd integer.) Therefore, if $S \geq 0$, then $S \geq q$.
But it is still hard to make the conclusion.... I can't find elementary solution, but I think there will be a simple solution. If you find something nice, please let me know.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

