18.781, Fall 2007 Problem Set 11

Solutions to Selected Problems

Problem 1 (a) It is very easy to find the sequence which satisfies given condition. For example,

N
n=1

(Note that this sequence has no zero term.) Then Py =[]
clearly 0.

ap = %, and the limit of P, is

(b) Write as following ;

[Tan=T]0+ (@ —1).
n=1 n=1

Let b, := a, — 1, then to show lim,, ., b, = 0 is equivalent to show that lim,, .. a, = 1. For
the convergent infinite product, by our definition, lim, o, P, = @ where e # 0. Then

. . P, lim,,— o Py, «
lim a, = lim = =— =1,
n—o0 n—oo [ 1 limy,— o0 Pr—1 «

as desired.

(c) Think of b, = 2. Then 1+ b, = “1 and we have

n

N
n+1 2 3 N+1

Py = = —..——— =N+1.

v =[] Lo +

n
n=1

As N — oo, Py — 00, so it does not converge.

(d) When a,, > 0 for all n, we can say that log(Py) = Zivzl log a,,. Hence, [P, converges
nonzero number] is equivalent to [> -, log a, converges]. Therefore it is enough to show that

zp:log(u Y = Ep:log <pspj 1) — zp:log (1 o 1_ 1) < o0

To show that, I claim that

If 2 > 0, then log(1 + x) < z.



It is not hard to prove this. For example, let f(z) = x —log(1 + z). Then f(0) = 0 and

fl(x)=1- H% = —117 <0, hence f is decreasing in [0, oc], so 0 = f(0) > f(z), and we get

the conclusion.

Thus, since p* — 1 > 1, we have

1 1 2
zp:log<1+ps_1><§p:ps_l<§p:ps< — < oo,

where the last inequality from calculus class. (I omit this, but you can easily do that using
integration.) O

Problem 2 When we try to prove the Dirichlet’s theorem on primes in general modulus d, we

need to find a good method to express Yy, as similar as the character used in the proof for
prime modulus. Note that we used a primitive root to define that character. But for general
modulus d, the problem is that d may not have a primitive root.
To resolve this problem, let’s think d = 2Fp;€1pa®2 - - p,°7, where p; is a prime divisor of d.
Then each p;® has a primitive root, so let g; be the primitive root of p;* for each i. As
the case of prime modulus, take complex ¢(p;') th root of unity w;, and let v; be the index
function for each w;.

First consider the case k = 0. (i.e, d is odd.) By Chinese remainder theorem, residue class n
in modulus d such that ged(n,d) = 1 is defined by residue class n; in modulus p;® such that
ged(ng, p;) = 1 for each i. Then define y(n) = w " ("wy2("2) ... qp,or(*r) - (Actually, we can
just write that x(n) = w " Mwy¥2(™ ... 4,2 (")) Tt can be easily verified that this is actually
a character, and all the character are coming from this, depending on choice of w;. Then we

have
'

Z x(n) = Z Z w; Vi ™)
X

=1 w;

For each i, ), . w" (™ = 0 if ¢(p;®) 1 n and >, w' ™ = ¢(p;%) if n = 0 (mod P(p;®)).
With use of Chinese remainder theorem properly, this formation gives desired result.

When k > 1, it is more complicated. The problem is that 2* does not have a primitive root.
But we can resolve this problem to find values which play roles similar with the primitive
root. More precisely, we will show that any reduced residue class of 2¥ can be expressed by

(—1)’57 where i = 0,1 and j =1,--- ,2""2 = @ When we prove this, all the cases will be
proved by similar argument.

We use the following fact to prove this.
Let f(n) is the largest integer  such that 2* | n. Then for each 0 < i < 2%,

F(C)) = k= 1G).

(This can be proved using f(2F — i) = f(i) for 0 < i < 2¥, and expansion of (Zk))

%



We can write as following :
2k k
2 4
52° _ (92 4 1)2" = 92i.
(2°+1) ;0 ;

Now using the above fact, we can conclude that f ((2ik)22i) =k — f(i) + 2i. Since i > f(i)

is clear, we have 52" = 28%2 4 1 (mod 2¥3). By squaring this, 52" =1 (mod 2+3).

Note that ¢(2%) = 2¥~1. Now what we have observed gives us following facts.

(1) The order of 5 in modulus 2* is 282
(2) 527" =251 412 —1 (mod 2F).

Consider the set {£5/}(j = 1,2,---,2¥2). By above two facts, all elements are distinct in
modulus 2¥. (Only nontrivial part is proving 5 +1 # 0 (mod 2*) for i = 0,1,--- ,2¥"2 —1. If
5'+1 =0, 5% = 1, hence by (1), 2¥=2 | 2i, so only possible i is 2°~3, but this is a contradiction
because of (2).) Thus comparing the number of elements, this is same with reduced residue
class of 2%, as desired. O

Problem 3 Let’s calculate this sum for several primes ¢ = 3(mod 4).

q—1

Forq:372m<m>:1—2:—l.

m=1 q

-1
m

For ¢ =7, m<>:1+2—3+4—5—6:—7.
q

1

£}

3
I

q—1
For g = 11, m<m> —1-924344-5-6-7—849—10=—11.
m=1 q
q—1 m
Forq=19,5 " m () — 1-2-3+44+546+47—8+9—10+11—12—13—14—15+16+17—18 = —19.
q

m=1

q—1
Forqu?;,Zm(m) =...=—069.
q

m=1

From above, we may guess that this sum is divisible by ¢. Actually it is. Let A is the
sum of quadratic residue of ¢ and B is the sum of quadratic nonresidue, then A + B =
1+2+---+q—1:q-%. Let g be the primitive root of ¢. Then B = g' +¢% + -+ 4 g972



(mod ¢) and A = ¢g?> + g* +--- + g7~ (mod ¢). Therefore, A = gB (mod ¢), and we can
conclude that 0 = A+ B = (g+ 1)B (mod q). If ¢ is not 3, g Z —1 (mod q) clearly, so B =0

m

(mod ¢). This implies that A =0 (mod ¢), so S := S 'm (?) =A— B =0 (mod q).

In the class, we already prove that this sum is not equal to zero using parity. (More over, S
is an odd integer.) Therefore, if S > 0, then S > q.

But it is still hard to make the conclusion.... I can’t find elementary solution, but I think
there will be a simple solution. If you find something nice, please let me know.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)



