
18.781, Fall 2007 Problem Set 11

Solutions to Selected Problems

Problem 1 (a) It is very easy to find the sequence which satisfies given condition. For example,

an :=
1
n

(Note that this sequence has no zero term.) Then PN =
∏N

n=1 an = 1
n! , and the limit of Pn is

clearly 0.

(b) Write as following ;
∞∏

n=1

an =
∞∏

n=1

(1 + (an − 1)).

Let bn := an− 1, then to show limn→∞ bn = 0 is equivalent to show that limn→∞ an = 1. For
the convergent infinite product, by our definition, limn→∞ Pn = α where α 6= 0. Then

lim
n→∞

an = lim
n→∞

Pn

Pn−1
=

limn→∞ Pn

limn→∞ Pn−1
=

α

α
= 1,

as desired.

(c) Think of bn = 1
n . Then 1 + bn = n+1

n , and we have

PN =
N∏

n=1

n + 1
n

=
2
1
· 3
2
· · · N + 1

N
= N + 1.

As N →∞, PN →∞, so it does not converge.

(d) When an > 0 for all n, we can say that log(PN ) =
∑N

n=1 log an. Hence, [Pn converges
nonzero number] is equivalent to [

∑∞
n=1 log an converges]. Therefore it is enough to show that

∑
p

log([1− p−s]−1) =
∑

p

log
(

ps

ps − 1

)
=

∑
p

log
(

1 +
1

ps − 1

)
< ∞

.

To show that, I claim that

If x > 0, then log(1 + x) ≤ x.
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It is not hard to prove this. For example, let f(x) = x − log(1 + x). Then f(0) = 0 and
f ′(x) = 1− 1

1+x = − x
1+x < 0, hence f is decreasing in [0,∞], so 0 = f(0) ≥ f(x), and we get

the conclusion.

Thus, since ps − 1 > 1, we have

∑
p

log
(

1 +
1

ps − 1

)
<

∑
p

1
ps − 1

<
∑

p

2
ps

<
∞∑

n=2

2
ns

< ∞,

where the last inequality from calculus class. (I omit this, but you can easily do that using
integration.) 2

Problem 2 When we try to prove the Dirichlet’s theorem on primes in general modulus d, we
need to find a good method to express χ, as similar as the character used in the proof for
prime modulus. Note that we used a primitive root to define that character. But for general
modulus d, the problem is that d may not have a primitive root.
To resolve this problem, let’s think d = 2kp1

e1p2
e2 · · · pr

er , where pi is a prime divisor of d.
Then each pi

ei has a primitive root, so let gi be the primitive root of pi
ei for each i. As

the case of prime modulus, take complex φ(pi
ei) th root of unity wi, and let vi be the index

function for each wi.

First consider the case k = 0. (i.e, d is odd.) By Chinese remainder theorem, residue class n
in modulus d such that gcd(n, d) = 1 is defined by residue class ni in modulus pi

ei such that
gcd(ni, pi) = 1 for each i. Then define χ(n) = w1

v1(n1)w2
v2(n2) · · ·wr

vr(nr). (Actually, we can
just write that χ(n) = w1

v1(n)w2
v2(n) · · ·wr

vr(n).) It can be easily verified that this is actually
a character, and all the character are coming from this, depending on choice of wi. Then we
have ∑

χ

χ(n) =
r∑

i=1

∑
wi

wi
vi(n).

For each i,
∑

wi
wi

vi(n) = 0 if φ(pi
ei) - n and

∑
wi

wi
vi(n) = φ(pi

ei) if n ≡ 0 (mod φ(pi
ei)).

With use of Chinese remainder theorem properly, this formation gives desired result.

When k ≥ 1, it is more complicated. The problem is that 2k does not have a primitive root.
But we can resolve this problem to find values which play roles similar with the primitive
root. More precisely, we will show that any reduced residue class of 2k can be expressed by
(−1)i5j where i = 0, 1 and j = 1, · · · , 2k−2 = φ(2k)

2 . When we prove this, all the cases will be
proved by similar argument.

We use the following fact to prove this.

Let f(n) is the largest integer x such that 2x | n. Then for each 0 ≤ i ≤ 2k,
f

((
2k

i

))
= k − f(i).

(This can be proved using f(2k − i) = f(i) for 0 < i < 2k, and expansion of
(
2k

i

)
.)
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We can write as following :

52k
= (22 + 1)2

k
=

2k∑
i=0

(
2k

i

)
22i.

Now using the above fact, we can conclude that f
((

2k

i

)
22i

)
= k − f(i) + 2i. Since i ≥ f(i)

is clear, we have 52k ≡ 2k+2 + 1 (mod 2k+3). By squaring this, 52k+1 ≡ 1 (mod 2k+3).

Note that φ(2k) = 2k−1. Now what we have observed gives us following facts.

(1) The order of 5 in modulus 2k is 2k−2.
(2) 52k−3 ≡ 2k−1 + 1 6≡ −1 (mod 2k).

Consider the set {±5j}(j = 1, 2, · · · , 2k−2). By above two facts, all elements are distinct in
modulus 2k. (Only nontrivial part is proving 5i +1 6≡ 0 (mod 2k) for i = 0, 1, · · · , 2k−2−1. If
5i+1 ≡ 0, 52i ≡ 1, hence by (1), 2k−2 | 2i, so only possible i is 2k−3, but this is a contradiction
because of (2).) Thus comparing the number of elements, this is same with reduced residue
class of 2k, as desired. 2

Problem 3 Let’s calculate this sum for several primes q ≡ 3(mod 4).

For q = 3,

q−1∑
m=1

m

(
m

q

)
= 1− 2 = −1.

For q = 7,

q−1∑
m=1

m

(
m

q

)
= 1 + 2− 3 + 4− 5− 6 = −7.

For q = 11,

q−1∑
m=1

m

(
m

q

)
= 1− 2 + 3 + 4− 5− 6− 7− 8 + 9− 10 = −11.

For q = 19,

q−1∑
m=1

m

(
m

q

)
= 1−2−3+4+5+6+7−8+9−10+11−12−13−14−15+16+17−18 = −19.

For q = 23,

q−1∑
m=1

m

(
m

q

)
= · · · = −69.

...

From above, we may guess that this sum is divisible by q. Actually it is. Let A is the
sum of quadratic residue of q and B is the sum of quadratic nonresidue, then A + B =
1 + 2 + · · ·+ q − 1 = q · q−1

2 . Let g be the primitive root of q. Then B ≡ g1 + g3 + · · ·+ gq−2

3



(mod q) and A ≡ g2 + g4 + · · · + gq−1 (mod q). Therefore, A ≡ gB (mod q), and we can
conclude that 0 ≡ A + B ≡ (g + 1)B (mod q). If q is not 3, g 6≡ −1 (mod q) clearly, so B ≡ 0
(mod q). This implies that A ≡ 0 (mod q), so S :=

∑q−1
m=1 m

(
m
q

)
= A−B ≡ 0 (mod q).

In the class, we already prove that this sum is not equal to zero using parity. (More over, S
is an odd integer.) Therefore, if S ≥ 0, then S ≥ q.
But it is still hard to make the conclusion.... I can’t find elementary solution, but I think
there will be a simple solution. If you find something nice, please let me know.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)
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