18.781, Fall 2007 Problem Set 10

Solutions to Selected Problems

Problem 1 We have the following identity:

$$sin^{2}(2\theta) = 4sin^{2}\theta cos^{2}\theta = 4sin^{2}\theta(1 - sin^{2}\theta)$$

Applying $\theta = \frac{\pi}{12}$ and let $\alpha = sin(\frac{\pi}{12})$. Using $sin(\frac{\pi}{6}) = \frac{1}{2}$, we have

$$\frac{1}{4} = 4\alpha^2(1 - \alpha^2).$$

That is,

$$16\alpha^4 - 16\alpha^2 + 1 = 0.$$

Therefore, $\alpha = sin(\frac{\pi}{12})$ is algebraic. \square

Problem 2 (a) First, let's prove following claim.

There is no element $\alpha \in \mathbb{Z}[\sqrt{-5}]$ such that $N(\alpha) = 2$ or 3.

To prove this, it is enough to show that there is no integral solution (x, y) satisfying $x^2 + 5y^2 = 2$ or 3. This is clear.

For $\alpha = 2, 3, 1 + \sqrt{-5}, 1 - \sqrt{-5}$, we have

$$N(2) = 4, N(3) = 9, N(1 + \sqrt{-5}) = N(1 - \sqrt{-5}) = 6.$$

Thus for each α , if there is any further factorization $\alpha = \beta \gamma$ with $N(\beta), N(\gamma) > 1$ (i.e. each of β, γ is not a unit), since $N(\alpha) = N(\beta)N(\gamma), N(\beta)$ or $N(\gamma)$ should be 2 or 3, which is absurd by the claim.

Hence, 6 is not factorized uniquely, and this implies that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain.

(b) First, we will show that $(3, 1 + \sqrt{-5}) = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}, a \equiv b \pmod{3}\}.$

By definition,
$$(3, 1 + \sqrt{-5}) = \{(r + s\sqrt{-5}) \cdot 3 + (p + q\sqrt{-5}) \cdot (1 + \sqrt{-5}) \mid r, s, p, q \in \mathbb{Z}\} = \{(3r + p - 5q) + (3s + q + p)\sqrt{-5} \mid r, s, p, q \in \mathbb{Z}\}.$$

1

It is clear that $3r + p - 5q \equiv 3s + q + p \pmod{3}$, so $(3, 1 + \sqrt{-5}) \subset \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}, a \equiv b \pmod{3}\}$.

For any $a, b \in \mathbb{Z}$ satisfying $a \equiv b \pmod{3}$, let $r = \frac{a-b}{3}$ and p = b and s = q = 0. Then $(3r+p-5q)+(3s+q+p)\sqrt{5}=a+b\sqrt{-5}$. Hence, $(3,1+\sqrt{-5})\supset \{a+b\sqrt{-5}\mid a,b\in\mathbb{Z},a\equiv b\pmod{3}\}$, and we proved the claim.

By above observation, it is clear that $(3, 1 + \sqrt{-5})$ is not a entire ring $\mathbb{Z}[\sqrt{-5}]$. (For example, $1 + 2\sqrt{-5}$ is not an element of $(3, 1 + \sqrt{-5})$.)

Now we will prove that $(3, 1 + \sqrt{-5})$ is a prime ideal in $\mathbb{Z}[\sqrt{-5}]$. Let $X = a + b\sqrt{-5}$, $Y = c + d\sqrt{-5}$, and $XY \in (3, 1 + \sqrt{-5})$. Then $XY = (ac - 5bd) + (ad + bc)\sqrt{-5} \in (3, 1 + \sqrt{-5})$, so $(ac - 5bd) \equiv (ad + bc) \pmod{3}$, and this implies that $(ac + bd) \equiv (ad + bc) \pmod{3}$, and $(a - b)(c - d) \equiv 0 \pmod{3}$. Thus, $a \equiv b \pmod{3}$ or $c \equiv d \pmod{3}$, and this is equivalent that X or Y is in $(3, 1 + \sqrt{-5})$. Hence $(3, 1 + \sqrt{-5})$ is a prime ideal in $\mathbb{Z}[\sqrt{-5}]$. \square

Problem 3 Let ζ_n be a primitive *n*th root of unity, and π be a prime element of $\mathbb{Z}[\zeta_n]$ satisfying $\pi \nmid n$.

First let's prove the following claim.

In the ring
$$R = \mathbb{Z}[\zeta_n]/\pi\mathbb{Z}[\zeta_n], \{1, \zeta_n, {\zeta_n}^2, \cdots, {\zeta_n}^{n-1}\}$$
 are distinct.

Consider $f(x) = x^n - 1 = (x - 1)(x - \zeta_n) \cdots (x - \zeta_n^{n-1})$ in R. If some of $\{1, \zeta_n, {\zeta_n}^2, \cdots, {\zeta_n}^{n-1}\}$ are same, namely a, then it is easily verified that f'(a) = 0 in R. Note that $f'(x) = nx^{n-1}$. For ζ_n^i , assume that $f'(\zeta_n^i) = n(\zeta_n^i)^{n-1} = 0$. in R. Since R is an integral domain, n = 0 or $\zeta_n^{i(n-1)} = 0$ (Which means $\zeta_n = 0$) in R. Since we pick π satisfying $\pi \nmid n, n \neq 0$. Also, it is also clear that $\zeta_n \neq 0$ in R, since ζ_n is an unit, so prime element π cannot divide ζ_n . Therefore, there is no ζ_n^i such that $f'(\zeta_n^i) = 0$, and $\{1, \zeta_n, \zeta_n^2, \cdots, \zeta_n^{n-1}\}$ are all distinct in R.

Like as the previous problem of problem set 8, this implies that $n \mid N(\pi) - 1$. Now we can define the *n*th power residue symbol as following:

$$\left(\frac{\alpha}{\pi}\right)_n = \alpha^{\frac{N(\pi)-1}{n}}$$

in the ring R. \square

Problem 4

$$\sum_{p: \text{prime}} \frac{1}{p(p-1)} \leqslant \sum_{n=2}^{\infty} \frac{1}{n(n-1)} \leqslant \sum_{n=2}^{\infty} \left(\frac{1}{n-1} - \frac{1}{n} \right) < 1.$$

Problem 5

Since h is a primitive root, there is an integer k such that $g = h^k$. Then, $n \equiv g^{v_g(n)} = h^{kv_g(n)} \pmod{q}$. Hence, $v_h(n) = kv_g(n)$. Now define $\zeta' = \zeta^k$. This satisfies $(\zeta')^{q-1} = 1$ clearly, and

$$\zeta^{v_h(n)} = \zeta^{kv_g(n)} = (\zeta')^{v_g(n)},$$

as desired. \Box

If you have any question, please contact me: Yoonsuk Hyun (yshyun@math.mit.edu)