Solutions to Selected Problems

Problem 1 We have the following identity :

$$
\sin ^{2}(2 \theta)=4 \sin ^{2} \theta \cos ^{2} \theta=4 \sin ^{2} \theta\left(1-\sin ^{2} \theta\right)
$$

Applying $\theta=\frac{\pi}{12}$ and let $\alpha=\sin \left(\frac{\pi}{12}\right)$. Using $\sin \frac{\pi}{6}=\frac{1}{2}$, we have

$$
\frac{1}{4}=4 \alpha^{2}\left(1-\alpha^{2}\right)
$$

That is,

$$
16 \alpha^{4}-16 \alpha^{2}+1=0
$$

Therefore, $\alpha=\sin \left(\frac{\pi}{12}\right)$ is algebraic.

Problem 2 (a) First, let's prove following claim.

There is no element $\alpha \in \mathbb{Z}[\sqrt{-5}]$ such that $N(\alpha)=2$ or 3.

To prove this, it is enough to show that there is no integral solution (x, y) satisfying $x^{2}+5 y^{2}=$ 2 or 3 . This is clear.

For $\alpha=2,3,1+\sqrt{-5}, 1-\sqrt{-5}$, we have

$$
N(2)=4, N(3)=9, N(1+\sqrt{-5})=N(1-\sqrt{-5})=6 .
$$

Thus for each α, if there is any further factorization $\alpha=\beta \gamma$ with $N(\beta), N(\gamma)>1$ (i.e. each of β, γ is not a unit), since $N(\alpha)=N(\beta) N(\gamma), N(\beta)$ or $N(\gamma)$ should be 2 or 3 , which is absurd by the claim.
Hence, 6 is not factorized uniquely, and this implies that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain.
(b) First, we will show that $(3,1+\sqrt{-5})=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}, a \equiv b(\bmod 3)\}$.

By definition, $(3,1+\sqrt{-5})=\{(r+s \sqrt{-5}) \cdot 3+(p+q \sqrt{-5}) \cdot(1+\sqrt{-5}) \mid r, s, p, q \in \mathbb{Z}\}=$ $\{(3 r+p-5 q)+(3 s+q+p) \sqrt{-5} \mid r, s, p, q \in \mathbb{Z}\}$.

It is clear that $3 r+p-5 q \equiv 3 s+q+p(\bmod 3)$, so $(3,1+\sqrt{-5}) \subset\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}, a \equiv b$ $(\bmod 3)\}$.
For any $a, b \in \mathbb{Z}$ satisfying $a \equiv b(\bmod 3)$, let $r=\frac{a-b}{3}$ and $p=b$ and $s=q=0$. Then $(3 r+p-5 q)+(3 s+q+p) \sqrt{5}=a+b \sqrt{-5}$. Hence, $(3,1+\sqrt{-5}) \supset\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}, a \equiv b$ $(\bmod 3)\}$, and we proved the claim.
By above observation, it is clear that $(3,1+\sqrt{-5})$ is not a entire ring $\mathbb{Z}[\sqrt{-5}]$. (For example, $1+2 \sqrt{-5}$ is not an element of $(3,1+\sqrt{-5})$.)

Now we will prove that $(3,1+\sqrt{-5})$ is a prime ideal in $\mathbb{Z}[\sqrt{-5}]$. Let $X=a+b \sqrt{-5}$, $Y=c+d \sqrt{-5}$, and $X Y \in(3,1+\sqrt{-5})$. Then $X Y=(a c-5 b d)+(a d+b c) \sqrt{-5} \in(3,1+\sqrt{-5})$, so $(a c-5 b d) \equiv(a d+b c)(\bmod 3)$, and this implies that $(a c+b d) \equiv(a d+b c)(\bmod 3)$, and $(a-b)(c-d) \equiv 0(\bmod 3)$. Thus, $a \equiv b(\bmod 3)$ or $c \equiv d(\bmod 3)$, and this is equivalent that X or Y is in $(3,1+\sqrt{-5})$. Hence $(3,1+\sqrt{-5})$ is a prime ideal in $\mathbb{Z}[\sqrt{-5}]$.

Problem 3 Let ζ_{n} be a primitive nth root of unity, and π be a prime element of $\mathbb{Z}\left[\zeta_{n}\right]$ satisfying $\pi \nmid n$.

First let's prove the following claim.

$$
\text { In the ring } R=\mathbb{Z}\left[\zeta_{n}\right] / \pi \mathbb{Z}\left[\zeta_{n}\right],\left\{1, \zeta_{n}, \zeta_{n}{ }^{2}, \cdots, \zeta_{n}{ }^{n-1}\right\} \text { are distinct. }
$$

Consider $f(x)=x^{n}-1=(x-1)\left(x-\zeta_{n}\right) \cdots\left(x-\zeta_{n}{ }^{n-1}\right)$ in R. If some of $\left\{1, \zeta_{n}, \zeta_{n}{ }^{2}, \cdots, \zeta_{n}{ }^{n-1}\right\}$ are same, namely a, then it is easily verified that $f^{\prime}(a)=0$ in R. Note that $f^{\prime}(x)=n x^{n-1}$. For $\zeta_{n}{ }^{i}$, assume that $f^{\prime}\left(\zeta_{n}{ }^{i}\right)=n\left(\zeta_{n}{ }^{i}\right)^{n-1}=0$. in R. Since R is an integral domain, $n=0$ or $\zeta_{n}{ }^{i(n-1)}=0$ (Which means $\zeta_{n}=0$) in R. Since we pick π satisfying $\pi \nmid n, n \neq 0$. Also, it is also clear that $\zeta_{n} \neq 0$ in R, since ζ_{n} is an unit, so prime element π cannot divide ζ_{n}. Therefore, there is no $\zeta_{n}{ }^{i}$ such that $f^{\prime}\left(\zeta_{n}{ }^{i}\right)=0$, and $\left\{1, \zeta_{n}, \zeta_{n}{ }^{2}, \cdots, \zeta_{n}{ }^{n-1}\right\}$ are all distinct in R.

Like as the previous problem of problem set 8 , this implies that $n \mid N(\pi)-1$. Now we can define the nth power residue symbol as following:

$$
\left(\frac{\alpha}{\pi}\right)_{n}=\alpha^{\frac{N(\pi)-1}{n}}
$$

in the ring R.

Problem 4

$$
\sum_{p: \text { prime }} \frac{1}{p(p-1)} \leqslant \sum_{n=2}^{\infty} \frac{1}{n(n-1)} \leqslant \sum_{n=2}^{\infty}\left(\frac{1}{n-1}-\frac{1}{n}\right)<1
$$

Problem 5

Since h is a primitive root, there is an integer k such that $g=h^{k}$. Then, $n \equiv g^{v_{g}(n)}=h^{k v_{g}(n)}$ $(\bmod q)$. Hence, $v_{h}(n)=k v_{g}(n)$. Now define $\zeta^{\prime}=\zeta^{k}$. This satisfies $\left(\zeta^{\prime}\right)^{q-1}=1$ clearly, and

$$
\zeta^{v_{h}(n)}=\zeta^{k v_{g}(n)}=\left(\zeta^{\prime}\right)^{v_{g}(n)}
$$

as desired.

If you have any question, please contact me : Yoonsuk Hyun (yshyun@math.mit.edu)

