### 18.781, Fall 2007 Problem Set 10 <br> Due: MONDAY, November 19

A few more problems on algebraic numbers and the general reciprocity program:

1. Show that $\sin (\pi / 12)$ is algebraic.
2. In class, we determined that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain: We stated that unique factorization in a ring $R$ implies $R$ is a principal ideal domain. This means that every ideal in $R$ is generated by a single element. Moreover, $\mathbb{Z}[\sqrt{-5}]$ does not have unique factorization since

$$
6=2 \cdot 3=(1+\sqrt{-5}) \cdot(1-\sqrt{-5}) .
$$

(a) Explain how, using the norm in $\mathbb{Z}[\sqrt{-5}]$, this factorization of 6 implies that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain. (In particular, why can't the factorizations of 6 factor further?)
(b) Investigate the ideal $(3,1+\sqrt{-5})$, the ideal generated by 3 and $1+\sqrt{-5}$ (i.e. the smallest ideal containing these two elements in $\mathbb{Z}[\sqrt{-5}]$ ). Can you describe the set of elements in the ideal more concretely? Does the ideal consist of the entire ring $\mathbb{Z}[\sqrt{-5}]$ ? Is it a prime ideal? (Recall, an ideal $P$ is "prime" if, for any $a, b \in P$, $a \in P$ or $b \in P$ ).
3. Define an $n$th power residue symbol. That is, choose a ring $R$ in which to perform this calculation, and then describe how to define the $n$th power residue symbol using congruence conditions in $R$, and prove that your definition is well-defined (i.e. makes sense). (Hint: recall how we do this for cubic and quadratic reciprocity and do the same for $n$th order reciprocity using a congruence modulo a prime ideal: For a prime ideal $P$,

$$
a \equiv b(P) \quad \text { means } \quad a-b \in P
$$

And now questions related to ANALYTIC NUMBER THEORY:
4. Prove that

$$
\sum_{p: \text { prime }} \frac{1}{p(p-1)}<1
$$

5. Recall that we defined a character on $(\mathbb{Z} / q \mathbb{Z})^{\times}$in class by choosing a complex number $\zeta$ such that $\zeta^{q-1}=1$ and a primitive root $g \bmod q$. Let $\nu_{g}(n)$ denote the index of $n$ for the primitive root $g$, i.e.

$$
g^{\nu_{g}(n)} \equiv n(q)
$$

Then we defined a character $\chi$ by

$$
\chi(n)=\zeta^{\nu_{g}(n)}
$$

Prove that given any other primitive root $h$, there exists a $\zeta^{\prime}$ with $\left(\zeta^{\prime}\right)^{q-1}=1$ such that

$$
\zeta^{\nu_{h}(n)}=\left(\zeta^{\prime}\right)^{\nu_{g}(n)}
$$

