18.781, Fall 2007 Problem Set 10 Due: MONDAY, November 19

A few more problems on algebraic numbers and the general reciprocity program:

- 1. Show that $\sin(\pi/12)$ is algebraic.
- 2. In class, we determined that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain: We stated that unique factorization in a ring R implies R is a principal ideal domain. This means that every ideal in R is generated by a single element. Moreover, $\mathbb{Z}[\sqrt{-5}]$ does not have unique factorization since

$$6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5}).$$

- (a) Explain how, using the norm in $\mathbb{Z}[\sqrt{-5}]$, this factorization of 6 implies that $\mathbb{Z}[\sqrt{-5}]$ is not a principal ideal domain. (In particular, why can't the factorizations of 6 factor further?)
- (b) Investigate the ideal $(3, 1 + \sqrt{-5})$, the ideal generated by 3 and $1 + \sqrt{-5}$ (i.e. the smallest ideal containing these two elements in $\mathbb{Z}[\sqrt{-5}]$). Can you describe the set of elements in the ideal more concretely? Does the ideal consist of the entire ring $\mathbb{Z}[\sqrt{-5}]$? Is it a prime ideal? (Recall, an ideal P is "prime" if, for any $a, b \in P$, $a \in P$ or $b \in P$).
- 3. Define an *n*th power residue symbol. That is, choose a ring *R* in which to perform this calculation, and then describe how to define the *n*th power residue symbol using congruence conditions in *R*, and prove that your definition is well-defined (i.e. makes sense). (Hint: recall how we do this for cubic and quadratic reciprocity and do the same for *n*th order reciprocity using a congruence modulo a prime ideal: For a prime ideal *P*,

$$a \equiv b \ (P)$$
 means $a - b \in P$

And now questions related to ANALYTIC NUMBER THEORY:

4. Prove that

$$\sum_{p: \text{ prime}} \frac{1}{p(p-1)} < 1$$

5. Recall that we defined a character on $(\mathbb{Z}/q\mathbb{Z})^{\times}$ in class by choosing a complex number ζ such that $\zeta^{q-1} = 1$ and a primitive root $g \mod q$. Let $\nu_q(n)$ denote the index of n for the primitive root g, i.e.

$$g^{\nu_g(n)} \equiv n \ (q)$$

Then we defined a character χ by

$$\chi(n) = \zeta^{\nu_g(n)}$$

Prove that given any other primitive root h, there exists a ζ' with $(\zeta')^{q-1}=1$ such that

$$\zeta^{\nu_h(n)} = (\zeta')^{\nu_g(n)}$$