18.103 Problem Set 8 Partial Solutions Sawyer Tabony

3.3.8 This problem is actually solved by combining the results of the previous two problems. In 3.3.6 you showed that the S_{n} 's converge to a function H in the \mathcal{L}^{2} norm. In 3.3.7 you proved a bound on the size of the measure of

$$
A(\varepsilon, n, m)=\left\{\omega \in I:\left|S_{k}(\omega)-S_{n}(\omega)\right|>\varepsilon \text { for some } k \text { between } m \text { and } n\right\}
$$

for fixed $m>n, \varepsilon>0$.
Now we are asked to show that the S_{n} 's converge pointwise almost everywhere to H. Let's prove this by contradiction. So we assume not, that there is some set of positive measure B, with

$$
\forall \omega \in B, S_{n}(\omega) \text { does not converge pointwise, }
$$

or,

$$
\forall \omega \in B, \exists \varepsilon(\omega)>0 \text { such that } \forall N \in \mathbb{N}, \exists n>N \text { with }\left|S_{n}(\omega)-H(\omega)\right|>\varepsilon .
$$

Now $\varepsilon(\omega)$ is a positive function on B, a set of positive measure, so using the same old trick (B is the union of $\left.\varepsilon^{-1}\left(\left(\frac{1}{n}, \infty\right)\right)\right)$, there is some fixed ε that works for a subset C of B of positive measure. Let $\mu(C)=\delta>0$. We note that for any $\omega \in C$, for that ε and any $n \in \mathbb{N}, \exists m \in \mathbb{N}$ such that $\omega \in A(\varepsilon, n, m)$.

Now applying problem 3.3.6, since S_{n} converges to H in the \mathcal{L}^{2} norm, it is Cauchy, so we can choose an $N \in \mathbb{N}$ such that for any $m>n>N$,

$$
\int\left(S_{m}-S_{n}\right)^{2} d \mu<\frac{1}{2} \varepsilon^{2} \delta .
$$

Thus, for any $m>n>N$, by problem 3.3.7,

$$
\mu(A(\varepsilon, n, m)) \leq \frac{1}{\varepsilon^{2}} \int\left(S_{m}-S_{n}\right)^{2} d \mu<\frac{1}{\varepsilon^{2}} \cdot \frac{1}{2} \varepsilon^{2} \delta=\frac{1}{2} \delta .
$$

Now, we send $m \longrightarrow \infty$. Since the sets are nested, we have

$$
\lim _{m \longrightarrow \infty} \mu(A(\varepsilon, n, m))=\mu\left(\bigcup_{m=n+1}^{\infty} A(\varepsilon, n, m)\right) \leq \frac{1}{2} \delta .
$$

But we had above that

$$
C \subseteq \bigcup_{m=n+1}^{\infty} A(\varepsilon, n, m)
$$

so

$$
\delta=\mu(C) \leq \lim _{m \longrightarrow \infty} \mu(A(\varepsilon, n, m)) \leq \frac{1}{2} \delta .
$$

This is our contradiction, showing that $S_{n}(\omega)$ converges for almost all ω.

