18.103 Problem Set 5 Partial Solutions Sawyer Tabony

2.3.9 We are given an integrable function $f: \mathbb{R} \longrightarrow \mathbb{R}$ whose integral over any interval is zero. We know we can write f as $f_{+}-f_{-}$for nonnegative integrable functions f_{+}and f_{-}. Suppose

$$
\int_{\mathbb{R}} f_{+} d \mu_{L}>0
$$

By definition of integrable, this integral is finite. Then, on some (finite) interval I, we have

$$
0<\int_{I} f_{+} d \mu_{L}=D<\infty
$$

Now, we have $f=f_{+}-f_{-}$, so by the hypothesis,

$$
0=\int_{I} f d \mu_{L}=\int_{I} f_{+} d \mu_{L}-\int_{I} f_{-} d \mu_{L}=D-\int_{I} f_{-} d \mu_{L} \Longrightarrow \int_{I} f_{-} d \mu_{L}=D
$$

Now consider the sets $A_{n}=\left\{x \in I ; f_{-}>n\right\}$. It is clear that

$$
\int_{I} f_{-} d \mu_{L}=D \Longrightarrow \mu_{L}\left(A_{n}\right)<\frac{D}{n} \Longrightarrow \mu_{L}\left(A_{n}\right) \longrightarrow 0
$$

Therefore, because the A_{n} are nested,

$$
\lim _{n \longrightarrow \infty} \int_{A_{n}} f_{-} d \mu_{L}=0
$$

So for some N,

$$
\int_{A_{N}} f_{-} d \mu_{L}<\frac{D}{2}
$$

Let $\varepsilon=\mu_{L}\left(A_{N}\right)$. Then for any measurable subset B of I with $\mu_{L}(B) \leq \varepsilon$, we have

$$
\begin{aligned}
\int_{B} f_{-} d \mu_{L}= & \int_{B \cap A_{N}} f_{-} d \mu_{L}+\int_{B \backslash A_{N}} f_{-} d \mu_{L} \leq \int_{B \cap A_{N}} f_{-} d \mu_{L}+\int_{B \backslash A_{N}} N d \mu_{L}= \\
& =\int_{B \cap A_{N}} f_{-} d \mu_{L}+\mu\left(B \backslash A_{N}\right) \cdot N \leq \int_{B \cap A_{N}} f_{-} d \mu_{L}+\mu\left(A_{N} \backslash B\right) \cdot N= \\
& =\int_{B \cap A_{N}} f_{-} d \mu_{L}+\int_{A_{N} \backslash B} N d \mu_{L} \leq \int_{B \cap A_{N}} f_{-} d \mu_{L}+\int_{A_{N} \backslash B} f_{-} d \mu_{L}=\int_{A_{N}} f_{-} d \mu_{L}<\frac{D}{2}
\end{aligned}
$$

Similarly, we can choose ε to be small enough so that over any measurable subset B of I with $\mu_{L}(B) \leq \varepsilon$, the integral of f_{+}over B is less than $\frac{D}{2}$.

Now we use a lemma proved in a previous to cleverly produce an interval on which f has a positive integral. For problem 2.2 .7 we showed that any measurable subset of a finite
interval can be approximated arbitrarily by a finite union of intervals. Let us approximate $T_{+}=\left\{x \in I ; f_{+}(x)>0\right\}$ by a union of disjoint intervals $\left\{J_{i}\right\}_{i=1}^{M}$, so that

$$
\mu_{L}\left(S\left(T_{+}, \bigcup_{i=1}^{M} J_{i}\right)\right)<\varepsilon .
$$

Then we take the integral of f over all the J_{i} :
$0=\sum_{i=1}^{M} \int_{J_{i}} f d \mu_{L}=\int_{\cup J_{i}} f d \mu_{L}=\int_{T_{+}} f d \mu_{L}+\int_{\cup J_{i} \backslash T_{+}} f d \mu_{L}-\int_{T_{+} \backslash\left(\cup J_{i}\right)} f d \mu_{L}=D-\int_{\cup J_{i} \backslash T_{+}} f_{-} d \mu_{L}-\int_{T_{+} \backslash\left(\cup J_{i}\right)} f_{+} d \mu_{L}$.
But each of these final two integrals is less than $\frac{D}{2}$ in absolute value. Therefore D minus them cannot be zero. This is our contradiction, so our assumption must be false. Thus we have shown that

$$
\int_{\mathbb{R}} f_{+} d \mu_{L}=0 .
$$

Since this is a nonnegative function, this shows that f_{+}is zero almost everywhere. Similarly, f_{-}is zero almost everywhere (follows by applying the above argument to $-f$). So f is zero almost everywhere.

