18.103 Problem Set 4 Partial Solutions Sawyer Tabony

2.2.7 First let us prove the following.

Lemma. Given some measurable $A \subseteq J$ for J a finite interval, $\exists\left\{I_{j}\right\}_{j=1}^{N}$ intervals such that for $B=\cup_{j=1}^{n} I_{j}, \mu(S(A, B))<\varepsilon$.

We know that $\mu(A) \leq \mu(J)<\infty$, so $\mu(A)$ is finite. By measurability, $\mu(A)=\mu^{*}(A)$, so we can choose a countable set of intervals $\left\{I_{j}\right\}_{j=1}^{\infty}$ such that $A \subseteq \cup_{j=1}^{\infty} I_{j}$ and

$$
\sum_{j=1}^{\infty} \mu\left(I_{j}\right)<\mu(A)+\frac{\varepsilon}{2} .
$$

So in particular, this infinite sum converges. Therefore, $\exists N \in \mathbb{N}$ such that

$$
\sum_{j=N+1}^{\infty} \mu\left(I_{j}\right)<\frac{\varepsilon}{2}
$$

Thus we have, for $B=\cup_{j=1}^{N} I_{j}$,
$\mu(S(A, B)) \leq \mu(A-B)+\mu(B-A) \leq \mu\left(\bigcup_{j=N+1}^{\infty} I_{j}\right)+\mu\left(\bigcup_{j=1}^{\infty} I_{j}\right)-\mu(A)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.
So we are given a simple function $s: J \longrightarrow \mathbb{R}$, for $J \subset \mathbb{R}$ a finite interval. If s takes on the values $c_{1}<c_{2}<\ldots<c_{r}$ on the measurable sets $A_{1}, A_{2}, \ldots, A_{r}$ that partition J, by the lemma we can choose finite unions of intervals B_{i} such that

$$
\mu\left(S\left(A_{i}, B_{i}\right)\right)<\frac{\varepsilon}{r \cdot\left(\left|c_{1}\right|+\left|c_{r}\right|\right)} .
$$

Then we may define a simple function f to be c_{1} on B_{1}, c_{2} on $B_{2} \backslash B_{1}, c_{3}$ on $B_{3} \backslash\left(B_{1} \cup B_{2}\right)$, and so forth, letting $f=0$ on $J \backslash\left(\cup B_{i}\right)$. Then f is a step function because the finite union and difference of intervals is a finite union of intervals. Then we can bound $|s-f| \leq\left|c_{1}\right|+\left|c_{r}\right|$ everywhere on J, and the set $T=\{x \in J \mid f(x) \neq s(x)\}$ is contained in

$$
\bigcup_{i=1}^{r} S\left(A_{i}, B_{i}\right) \cup \bigcup_{1 \leq i<j \leq r}\left(B_{i} \cap B_{j}\right) .
$$

But any element $x \in B_{i} \cap B_{j}$ cannot be in both A_{i} and A_{j}, and so must be in either $B_{i} \backslash A_{i}$ or $B_{j} \backslash A_{j}$, so the second union is contained in the first. Therefore,

$$
\begin{aligned}
& \int_{J}|s-f| d \mu_{L}=\int_{T}|s-f| d \mu_{L} \leq \int_{T}\left(\left|c_{1}\right|+\left|c_{r}\right|\right) d \mu_{L}=\left(\left|c_{1}\right|+\left|c_{r}\right|\right) \cdot \mu(T) \leq \\
& \leq\left(\left|c_{1}\right|+\left|c_{r}\right|\right) \sum_{i=1}^{r} \mu\left(S\left(A_{i}, B_{i}\right)\right)<\left(\left|c_{1}\right|+\left|c_{r}\right|\right) \sum_{i=1}^{r} \frac{\varepsilon}{r \cdot\left(\left|c_{1}\right|+\left|c_{r}\right|\right)}=\varepsilon
\end{aligned}
$$

EGOROFF'S THEOREM

1. Let E be a measurable set (finite measure), and f_{n} a sequence of measurable functions defined on E such that, for each $x \in E, f_{n}(x) \longrightarrow f(x)$, where f is a real-valued function. Then show that given any $\varepsilon, \delta>0$ there exists a measurable set $A \subseteq E$ with $\mu(A)<\delta$ and an integer N such that, for all $x \notin A$, and all $n \geq N$,

$$
\left|f_{n}(x)-f(x)\right|<\varepsilon .
$$

Proof. Let's define (as the hint suggested), for the fixed $\varepsilon>0$ given,

$$
G_{n}=\left\{x \in E ;\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\} .
$$

Then, because $f_{n} \longrightarrow f$ pointwise, we know $\left\{G_{n} ;\right.$ i.o. $\}=\emptyset$. Thus,

$$
0=\mu(\emptyset)=\mu\left(\left\{G_{n} ; \text { i.o. }\right\}\right)=\mu\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} G_{k}\right)=\lim _{n \longrightarrow \infty} \mu\left(\bigcup_{k=n}^{\infty} G_{k}\right) .
$$

The last equality is an application of problem 1.4.6a, since the unions are obviously nested, and the total space E has finite measure. Thus, for the fixed $\delta>0$ given, we can choose some N such that

$$
\mu\left(\bigcup_{k=N}^{\infty} G_{k}\right)<\delta
$$

Then if we let

$$
A=\bigcup_{k=N}^{\infty} G_{k}
$$

we have $\mu(A)<\delta$, and for all $x \notin A, n \geq N, x \notin G_{n}$ so $\left|f_{n}(x)-f(x)\right|<\varepsilon$.
2. Give an example that shows the assumption $\mu(E)<\infty$ is necessary in the above result.

So to find a counterexample to the proposition when $\mu(E)=\infty$, look to where we used the fact that is had finite measure in the proof. We needed it to say that the limit of $\mu\left(\cup G_{k}\right) \longrightarrow 0$, given that the intersection of the nested sets, $\left\{G_{n} ;\right.$ i.o. $\}$, is empty. If these sets are allowed to have infinite measure, it is easy to come up with examples of a nested sequence of sets, all with infinite measure, that have empty intersection. One such example is:

$$
A_{n}=(n, \infty), \text { so } A_{n} \supset A_{n+1} \text { and } \bigcap_{n=1}^{\infty} A_{n}=\emptyset
$$

Now we construct the f_{n} so that the $G_{n}=(n, \infty)$. Let $E=\mathbb{R}$ and

$$
f_{n}= \begin{cases}1 & \text { if } x>n \\ 0 & \text { if } x \leq n\end{cases}
$$

Then it is clear that $f_{n}(x) \longrightarrow 0$ for all $x \in \mathbb{R}$, but if $\varepsilon=\frac{1}{2}$, for any N, the set

$$
G_{N}=x \in \mathbb{R} ;\left|f_{N}(x)-0\right| \geq \frac{1}{2}=(N, \infty)
$$

has infinite measure.
3. Let E be a measurable set (finite measure), and f_{n} a sequence of measurable functions defined on E such that, for each $x \in E, f_{n}(x) \longrightarrow f(x)$, where f is a real-valued function. Then given any $\eta>0$, there exists a measurable set $A \subseteq E$ with $\mu(A)<\eta$ such that f_{n} converges uniformly to f on $E \backslash A$.
Proof. For each $n \in \mathbb{N}$, let $\varepsilon_{n}=\frac{1}{n}$ and $\delta_{n}=2^{-n} \eta$. Then from problem 1 above, we get $A_{n} \subseteq E$ with $\mu\left(A_{n}\right)<\delta_{n}=2^{-n} \eta$ and some N_{n} such that for all $m \geq N_{n}, x \notin A_{n},\left|f_{m}(x)-f(x)\right|<\varepsilon=\frac{1}{n}$. Then we let

$$
A=\bigcup_{n=1}^{\infty} A_{n} .
$$

This gives

$$
\mu(A)=\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)<\sum_{n=1}^{\infty} 2^{-n} \eta=\eta
$$

and for any $\varepsilon>0$, we can choose some $M>\varepsilon^{-1}$, and so $\forall m>N_{M}, \forall x \notin A$,

$$
x \notin A_{m} \Longrightarrow\left|f_{m}(x)-f(x)\right|<\frac{1}{M}<\varepsilon .
$$

