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Sawyer Tabony

2.2.7 First let us prove the following.
Lemma. Given some measurable A C J for J a finite interval, EI{Ij}j.V:l intervals such that
for B=U7_,I;, n(S(A, B)) <e.
We know that pu(A) < u(J) < oo, so u(A) is finite. By measurability, u(A4) = p*(A), so we
can choose a countable set of intervals {1;}32; such that A C U2, I; and

Do nlly) < () + 5.

Jj=1

So in particular, this infinite sum converges. Therefore, 3N € N such that

> €
Z plly) < 3
j=N+1
Thus we have, for B = U;V:Jj,
0 o e ¢
pSAB) <uA-B)+uB-A)<p| |J L|+u| UL ]| -nA)< gtg=e U
j=N+1 Jj=1

So we are given a simple function s : J — R, for J C R a finite interval. If s takes on
the values ¢; < ¢ < ... < ¢, on the measurable sets A;, Ao, ..., A, that partition J, by the
lemma we can choose finite unions of intervals B; such that

€

w(S(Ai, Bi)) < (al+lah

Then we may define a simple function f to be ¢; on Bj, ¢a on By \ By, ¢3 on B3\ (B1 U B3),
and so forth, letting f = 0 on J \ (UB;). Then f is a step function because the finite union
and difference of intervals is a finite union of intervals. Then we can bound |s — f| < |e1] + ey |
everywhere on J, and the set T = {x € J|f(z) # s(x)} is contained in

T

Us@i.Byu |J (BinBy).

i=1 1<i<j<r

But any element « € B; N B; cannot be in both A; and A;, and so must be in either B;\ A;
or Bj\ Aj, so the second union is contained in the first. Therefore,

/Is—flduLz/ |s—f|dm§/<cl+|cr|>duL=<|cl|+|cr|>-u<T>g
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EGOROFF’S THEOREM

1. Let E be a measurable set (finite measure), and f, a sequence of measurable functions defined
on E such that, for each z € E, f,(z) — f(z), where f is a real-valued function. Then show
that given any €, > 0 there exists a measurable set A C E with pu(A) < ¢ and an integer N
such that, for all x € A, and all n > N,

|fn(@) = fl2)] <e.
Proof. Let’s define (as the hint suggested), for the fixed £ > 0 given,
Gp={z € E;|fu(z) — f(2)| 2 €}
Then, because f,, — f pointwise, we know {Gp;i.0.} = 0. Thus,

0=p(0) =p({Gn;io}) = p (ﬂ U Gk> = lim_p (U Gk> :

n=1k=n k=n
The last equality is an application of problem 1.4.6a, since the unions are obviously nested, and
the total space E has finite measure. Thus, for the fixed § > 0 given, we can choose some N such

that
m < U Gk> <4
k=N

Then if we let

A= Gy,
k=N
we have pu(A) < d,and forall x € A, n > N, 2 & G, so |fn(z) — f(z)] <e. O

2. Give an example that shows the assumption p(F) < oo is necessary in the above result.
So to find a counterexample to the proposition when p(E) = oo, look to where we used the
fact that is had finite measure in the proof. We needed it to say that the limit of pu(UGy) — 0,
given that the intersection of the nested sets, {Gy;i.0.}, is empty. If these sets are allowed to
have infinite measure, it is easy to come up with examples of a nested sequence of sets, all with
infinite measure, that have empty intersection. One such example is:

Ay = (n,00),s0 A, D Ayt and m A, =0.

n=1
Now we construct the f, so that the G,, = (n,00). Let E =R and
£ = 1 ifz>n
"o ifz <n.

Then it is clear that f,(z) — 0 for all z € R, but if ¢ = %, for any N, the set

Gy =z eR;|fn(z) - 0] =

has infinite measure.



3. Let F be a measurable set (finite measure), and f,, a sequence of measurable functions defined
on F such that, for each z € E, f,(x) — f(x), where f is a real-valued function. Then given
any 71 > 0, there exists a measurable set A C E with u(A) < n such that f,, converges uniformly
to fon E\ A.

Proof. For each n € N, let ¢, = % and 0, = 27"n. Then from problem 1 above, we get A, C E
with p(A,) < 6, = 27" and some N,, such that for all m > N, & A, |fm(z) — f(z)| <e =2+

Then we let - "
A= A4,
n=1

This gives
p(A) = p (U An) <D ou(An) <Y 2=
n=1 n= n=1

, and so Vm > Ny, Vo & A,

L S

and for any € > (0, we can choose some M > e~

v ¢ An = (@) = [@)] < 17 << a



